UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :1756-4646
Main Author :Park, Ki Hun
Additional Authors :Mohd Azlan Nafiah
Title :O-alkylated quercetins with selective acetylcholinesterase and?-secretase inhibitions from Melicope glabra leaves, and their flavonols profile by LC-ESI-Q-TOF/MS
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Journal of Functional Foods
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Intensive investigation of phytochemicals from edible Melicope glabra leaves provided a series of O-alkylated quercetins (1?13). The quercetin 1 bearing prenyl and methyl motif showed potent inhibition to human acetylcholinesterase (hAChE) with mixed type I mode, while quercetin was inactive. The position of methyl group was also a critical factor to hAChE inhibition: 1 (4?-O-methyl, IC50 = 12.7 ?M) vs 2 (3?-O-methyl, IC50 = 119 ?M). Inhibitory potency was doubly confirmed with the binding affinity (KSV) based on fluorescence quenching. O-Methyl groups on quercetin were observed to influence ?-secretase (BACE1) inhibition. Thus, O-methylated quercetins (4?6) displayed potential inhibitions against BACE1 with IC50 values of 1.3, 4.1, and 14.1 ?M, respectively. All compounds (3?6) have noncompetitive mode to BACE1. Additionally, all quercetin derivatives (1?13) had antioxidant potentials against different radical sources (ABTS, ORAC and FRAP). The UPLC-ESI-Q-TOF/MS indicated that the leaves part had promising metabolites towards hAChE and BACE1 inhibitions, which are the most predominant phytochemicals. ? 2021 The Authors

References

Baiseitova, A., Jenis, J., Kim, J. Y., Li, Z. P., & Park, K. H. (2021). Phytochemical analysis of aerial part of ikonnikovia kaufmanniana and their protection of DNA damage. Natural Product Research, 35(5), 880-883. doi:10.1080/14786419.2019.1607858

Blaikie, L., Kay, G., & Kong Thoo Lin, P. (2019). Current and emerging therapeutic targets of alzheimer's disease for the design of multi-target directed ligands. MedChemComm, 10(12), 2052-2072. Retrieved from www.scopus.com

Chan, S., Kantham, S., Rao, V. M., Palanivelu, M. K., Pham, H. L., Shaw, P. N., . . . Ross, B. P. (2016). Metal chelation, radical scavenging and inhibition of Aβ42 fibrillation by food constituents in relation to alzheimer's disease. Food Chemistry, 199, 14-24. doi:10.1016/j.foodchem.2015.11.118

Čolović, M. B., Krstić, D. Z., Lazarević-Pašti, T. D., Bondžić, A. M., & Vasić, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11(3), 315-335. doi:10.2174/1570159X11311030006

Dembitsky, V. M., Dzhemileva, L., Gloriozova, T., & D'yakonov, V. (2020). Natural and synthetic drugs used for the treatment of the dementia. Biochemical and Biophysical Research Communications, 524(3), 772-783. doi:10.1016/j.bbrc.2020.01.123

Di Matteo, V., & Esposito, E. (2003). Biochemical and therapeutic effects of antioxidants in the treatment of alzheimer's disease, parkinson's disease, and amyotrophic lateral sclerosis. Current Drug Targets.CNS and Neurological Disorders, 2(2), 95-107. doi:10.2174/1568007033482959

Dorta, E., Fuentes-Lemus, E., Aspée, A., Atala, E., Speisky, H., Bridi, R., . . . López-Alarcón, C. (2015). The ORAC (oxygen radical absorbance capacity) index does not reflect the capacity of antioxidants to trap peroxyl radicals. RSC Advances, 5(50), 39899-39902. doi:10.1039/c5ra01645b

Ghosh, A. K., Gemma, S., & Tang, J. (2008). β-Secretase as a therapeutic target for alzheimer's disease. Neurotherapeutics, 5(3), 399-408. doi:10.1016/j.nurt.2008.05.007

Graham, W. V., Bonito-Oliva, A., & Sakmar, T. P. (2017). Update on alzheimer's disease therapy and prevention strategies doi:10.1146/annurev-med-042915-103753 Retrieved from www.scopus.com

Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: Lessons from the alzheimer's amyloid β-peptide. Nature Reviews Molecular Cell Biology, 8(2), 101-112. doi:10.1038/nrm2101

Karmakar, A., Ambure, P., Mallick, T., Das, S., Roy, K., & Begum, N. A. (2019). Exploration of synthetic antioxidant flavonoid analogs as acetylcholinesterase inhibitors: An approach towards finding their quantitative structure–activity relationship. Medicinal Chemistry Research, 28(5), 723-741. doi:10.1007/s00044-019-02330-8

Kassim, N. K., Rahmani, M., Ismail, A., & Abdullah, A. (2012). , 31-35. Retrieved from www.scopus.com

Kassim, N. K., Rahmani, M., Ismail, A., Sukari, M. A., Ee, G. C. L., Nasir, N. M., & Awang, K. (2013). Antioxidant activity-guided separation of coumarins and lignan from melicope glabra (rutaceae). Food Chemistry, 139(1-4), 87-92. doi:10.1016/j.foodchem.2013.01.108

Kim, J. Y., Wang, Y., Song, Y. H., Uddin, Z., Li, Z. P., Ban, Y. J., & Park, K. H. (2018). Antioxidant activities of phenolic metabolites from flemingia philippinensis merr. et rolfe and their application to DNA damage protection. Molecules, 23(4) doi:10.3390/molecules23040816

Lee, B. -., Park, J. -., Ha, T. K. Q., Pham, H. T. T., An, J. -., Noh, J. -., . . . Oh, W. -. (2019). Constituents of the edible leaves of melicope pteleifolia with potential analgesic activity. Journal of Natural Products, 82(8), 2201-2210. doi:10.1021/acs.jnatprod.9b00224

Lesjak, M., Beara, I., Simin, N., Pintać, D., Majkić, T., Bekvalac, K., . . . Mimica-Dukić, N. (2018). Antioxidant and anti-inflammatory activities of quercetin and its derivatives. Journal of Functional Foods, 40, 68-75. doi:10.1016/j.jff.2017.10.047

Liu, Z., Zhang, A., Sun, H., Han, Y., Kong, L., & Wang, X. (2017). Two decades of new drug discovery and development for alzheimer's disease. RSC Advances, 7(10), 6046-6058. doi:10.1039/c6ra26737h

Papadopoulou, A., Green, R. J., & Frazier, R. A. (2005). Interaction of flavonoids with bovine serum albumin: A fluorescence quenching study. Journal of Agricultural and Food Chemistry, 53(1), 158-163. doi:10.1021/jf048693g

Pisoschi, A. M., Pop, A., Iordache, F., Stanca, L., Predoi, G., & Serban, A. I. (2021). Oxidative stress mitigation by antioxidants - an overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, 209 doi:10.1016/j.ejmech.2020.112891

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. doi:10.1016/S0891-5849(98)00315-3

Ryu, H. W., Curtis-Long, M. J., Jung, S., Jeong, I. Y., Kim, D. S., Kang, K. Y., & Park, K. H. (2012). Anticholinesterase potential of flavonols from paper mulberry (broussonetia papyrifera) and their kinetic studies. Food Chemistry, 132(3), 1244-1250. doi:10.1016/j.foodchem.2011.11.093

Saputri, R. D., Tjahjandarie, T. S., & Tanjung, M. (2018). Meliglabrin, a new flavonol derivative from the leaves of melicope glabra (blume) T.G. hartley. Natural Product Sciences, 24(3), 155-158. doi:10.20307/nps.2018.24.3.155

Shuib, N. H., Shaari, K., Khatib, A., Maulidiani, Kneer, R., Zareen, S., . . . Neto, V. (2011). Discrimination of young and mature leaves of melicope ptelefolia using 1H NMR and multivariate data analysis. Food Chemistry, 126(2), 640-645. doi:10.1016/j.foodchem.2010.10.043

Silalahi, M., Nisyawati, & Pandiangan, D. (2019). Medicinal plants used by the batak toba tribe in peadundung village, north sumatra, indonesia. Biodiversitas, 20(2), 510-525. doi:10.13057/biodiv/d200230

Smith, M. A., Harris, P. L. R., Sayre, L. M., & Perry, G. (1997). Iron accumulation in alzheimer disease is a source of redox-generated free radicals. Proceedings of the National Academy of Sciences of the United States of America, 94(18), 9866-9868. doi:10.1073/pnas.94.18.9866

Tahmasebinia, F., & Emadi, S. (2017). Effect of metal chelators on the aggregation of beta-amyloid peptides in the presence of copper and iron. BioMetals, 30(2), 285-293. doi:10.1007/s10534-017-0005-2

Tjahjandarie, T. S., Saputri, R. D., Hasanah, U., Rachmadiarti, F., & Tanjung, M. (2018). 5,7-dihydroxy-3,6-dimethoxy-3/,4'-methylendioxyflavone. MolBank, 2018(3) doi:10.3390/M1007

Vaknine, S., & Soreq, H. (2020). Central and peripheral anti-inflammatory effects of acetylcholinesterase inhibitors. Neuropharmacology, 168 doi:10.1016/j.neuropharm.2020.108020

Willem, M., Lammich, S., & Haass, C. (2009). Function, regulation and therapeutic properties of β-secretase (BACE1). Seminars in Cell and Developmental Biology, 20(2), 175-182. doi:10.1016/j.semcdb.2009.01.003

Wojdyło, A., & Nowicka, P. (2019). Anticholinergic effects of actinidia arguta fruits and their polyphenol content determined by liquid chromatography-photodiode array detector-quadrupole/time of flight-mass spectrometry (LC-MS-PDA-Q/TOF). Food Chemistry, 271, 216-223. doi:10.1016/j.foodchem.2018.07.084

Yao, Q., Gao, Y., Lai, C., Wu, C., Zhao, C. -., Wu, J. -., & Tang, D. -. (2020). The phytochemistry, pharmacology and applications of melicope pteleifolia: A review. Journal of Ethnopharmacology, 251 doi:10.1016/j.jep.2020.112546

Zhang, P., Xu, S., Zhu, Z., & Xu, J. (2019). Multi-target design strategies for the improved treatment of alzheimer's disease. European Journal of Medicinal Chemistry, 176, 228-247. doi:10.1016/j.ejmech.2019.05.020

Zhumanova, K., Lee, G., Baiseitova, A., Shah, A. B., Kim, J. H., Kim, J. Y., . . . Park, K. H. (2021). Inhibitory mechanism of O-methylated quercetins, highly potent β-secretase inhibitors isolated from caragana balchaschensis (kom.) pojark. Journal of Ethnopharmacology, 272 doi:10.1016/j.jep.2021.113935


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.