UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Intensive investigation of phytochemicals from edible Melicope glabra leaves provided a series of O-alkylated quercetins (1?13). The quercetin 1 bearing prenyl and methyl motif showed potent inhibition to human acetylcholinesterase (hAChE) with mixed type I mode, while quercetin was inactive. The position of methyl group was also a critical factor to hAChE inhibition: 1 (4?-O-methyl, IC50 = 12.7 ?M) vs 2 (3?-O-methyl, IC50 = 119 ?M). Inhibitory potency was doubly confirmed with the binding affinity (KSV) based on fluorescence quenching. O-Methyl groups on quercetin were observed to influence ?-secretase (BACE1) inhibition. Thus, O-methylated quercetins (4?6) displayed potential inhibitions against BACE1 with IC50 values of 1.3, 4.1, and 14.1 ?M, respectively. All compounds (3?6) have noncompetitive mode to BACE1. Additionally, all quercetin derivatives (1?13) had antioxidant potentials against different radical sources (ABTS, ORAC and FRAP). The UPLC-ESI-Q-TOF/MS indicated that the leaves part had promising metabolites towards hAChE and BACE1 inhibitions, which are the most predominant phytochemicals. ? 2021 The Authors |
References |
Baiseitova, A., Jenis, J., Kim, J. Y., Li, Z. P., & Park, K. H. (2021). Phytochemical analysis of aerial part of ikonnikovia kaufmanniana and their protection of DNA damage. Natural Product Research, 35(5), 880-883. doi:10.1080/14786419.2019.1607858 Blaikie, L., Kay, G., & Kong Thoo Lin, P. (2019). Current and emerging therapeutic targets of alzheimer's disease for the design of multi-target directed ligands. MedChemComm, 10(12), 2052-2072. Retrieved from www.scopus.com Chan, S., Kantham, S., Rao, V. M., Palanivelu, M. K., Pham, H. L., Shaw, P. N., . . . Ross, B. P. (2016). Metal chelation, radical scavenging and inhibition of Aβ42 fibrillation by food constituents in relation to alzheimer's disease. Food Chemistry, 199, 14-24. doi:10.1016/j.foodchem.2015.11.118 Čolović, M. B., Krstić, D. Z., Lazarević-Pašti, T. D., Bondžić, A. M., & Vasić, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11(3), 315-335. doi:10.2174/1570159X11311030006 Dembitsky, V. M., Dzhemileva, L., Gloriozova, T., & D'yakonov, V. (2020). Natural and synthetic drugs used for the treatment of the dementia. Biochemical and Biophysical Research Communications, 524(3), 772-783. doi:10.1016/j.bbrc.2020.01.123 Di Matteo, V., & Esposito, E. (2003). Biochemical and therapeutic effects of antioxidants in the treatment of alzheimer's disease, parkinson's disease, and amyotrophic lateral sclerosis. Current Drug Targets.CNS and Neurological Disorders, 2(2), 95-107. doi:10.2174/1568007033482959 Dorta, E., Fuentes-Lemus, E., Aspée, A., Atala, E., Speisky, H., Bridi, R., . . . López-Alarcón, C. (2015). The ORAC (oxygen radical absorbance capacity) index does not reflect the capacity of antioxidants to trap peroxyl radicals. RSC Advances, 5(50), 39899-39902. doi:10.1039/c5ra01645b Ghosh, A. K., Gemma, S., & Tang, J. (2008). β-Secretase as a therapeutic target for alzheimer's disease. Neurotherapeutics, 5(3), 399-408. doi:10.1016/j.nurt.2008.05.007 Graham, W. V., Bonito-Oliva, A., & Sakmar, T. P. (2017). Update on alzheimer's disease therapy and prevention strategies doi:10.1146/annurev-med-042915-103753 Retrieved from www.scopus.com Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: Lessons from the alzheimer's amyloid β-peptide. Nature Reviews Molecular Cell Biology, 8(2), 101-112. doi:10.1038/nrm2101 Karmakar, A., Ambure, P., Mallick, T., Das, S., Roy, K., & Begum, N. A. (2019). Exploration of synthetic antioxidant flavonoid analogs as acetylcholinesterase inhibitors: An approach towards finding their quantitative structure–activity relationship. Medicinal Chemistry Research, 28(5), 723-741. doi:10.1007/s00044-019-02330-8 Kassim, N. K., Rahmani, M., Ismail, A., & Abdullah, A. (2012). , 31-35. Retrieved from www.scopus.com Kassim, N. K., Rahmani, M., Ismail, A., Sukari, M. A., Ee, G. C. L., Nasir, N. M., & Awang, K. (2013). Antioxidant activity-guided separation of coumarins and lignan from melicope glabra (rutaceae). Food Chemistry, 139(1-4), 87-92. doi:10.1016/j.foodchem.2013.01.108 Kim, J. Y., Wang, Y., Song, Y. H., Uddin, Z., Li, Z. P., Ban, Y. J., & Park, K. H. (2018). Antioxidant activities of phenolic metabolites from flemingia philippinensis merr. et rolfe and their application to DNA damage protection. Molecules, 23(4) doi:10.3390/molecules23040816 Lee, B. -., Park, J. -., Ha, T. K. Q., Pham, H. T. T., An, J. -., Noh, J. -., . . . Oh, W. -. (2019). Constituents of the edible leaves of melicope pteleifolia with potential analgesic activity. Journal of Natural Products, 82(8), 2201-2210. doi:10.1021/acs.jnatprod.9b00224 Lesjak, M., Beara, I., Simin, N., Pintać, D., Majkić, T., Bekvalac, K., . . . Mimica-Dukić, N. (2018). Antioxidant and anti-inflammatory activities of quercetin and its derivatives. Journal of Functional Foods, 40, 68-75. doi:10.1016/j.jff.2017.10.047 Liu, Z., Zhang, A., Sun, H., Han, Y., Kong, L., & Wang, X. (2017). Two decades of new drug discovery and development for alzheimer's disease. RSC Advances, 7(10), 6046-6058. doi:10.1039/c6ra26737h Papadopoulou, A., Green, R. J., & Frazier, R. A. (2005). Interaction of flavonoids with bovine serum albumin: A fluorescence quenching study. Journal of Agricultural and Food Chemistry, 53(1), 158-163. doi:10.1021/jf048693g Pisoschi, A. M., Pop, A., Iordache, F., Stanca, L., Predoi, G., & Serban, A. I. (2021). Oxidative stress mitigation by antioxidants - an overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, 209 doi:10.1016/j.ejmech.2020.112891 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. doi:10.1016/S0891-5849(98)00315-3 Ryu, H. W., Curtis-Long, M. J., Jung, S., Jeong, I. Y., Kim, D. S., Kang, K. Y., & Park, K. H. (2012). Anticholinesterase potential of flavonols from paper mulberry (broussonetia papyrifera) and their kinetic studies. Food Chemistry, 132(3), 1244-1250. doi:10.1016/j.foodchem.2011.11.093 Saputri, R. D., Tjahjandarie, T. S., & Tanjung, M. (2018). Meliglabrin, a new flavonol derivative from the leaves of melicope glabra (blume) T.G. hartley. Natural Product Sciences, 24(3), 155-158. doi:10.20307/nps.2018.24.3.155 Shuib, N. H., Shaari, K., Khatib, A., Maulidiani, Kneer, R., Zareen, S., . . . Neto, V. (2011). Discrimination of young and mature leaves of melicope ptelefolia using 1H NMR and multivariate data analysis. Food Chemistry, 126(2), 640-645. doi:10.1016/j.foodchem.2010.10.043 Silalahi, M., Nisyawati, & Pandiangan, D. (2019). Medicinal plants used by the batak toba tribe in peadundung village, north sumatra, indonesia. Biodiversitas, 20(2), 510-525. doi:10.13057/biodiv/d200230 Smith, M. A., Harris, P. L. R., Sayre, L. M., & Perry, G. (1997). Iron accumulation in alzheimer disease is a source of redox-generated free radicals. Proceedings of the National Academy of Sciences of the United States of America, 94(18), 9866-9868. doi:10.1073/pnas.94.18.9866 Tahmasebinia, F., & Emadi, S. (2017). Effect of metal chelators on the aggregation of beta-amyloid peptides in the presence of copper and iron. BioMetals, 30(2), 285-293. doi:10.1007/s10534-017-0005-2 Tjahjandarie, T. S., Saputri, R. D., Hasanah, U., Rachmadiarti, F., & Tanjung, M. (2018). 5,7-dihydroxy-3,6-dimethoxy-3/,4'-methylendioxyflavone. MolBank, 2018(3) doi:10.3390/M1007 Vaknine, S., & Soreq, H. (2020). Central and peripheral anti-inflammatory effects of acetylcholinesterase inhibitors. Neuropharmacology, 168 doi:10.1016/j.neuropharm.2020.108020 Willem, M., Lammich, S., & Haass, C. (2009). Function, regulation and therapeutic properties of β-secretase (BACE1). Seminars in Cell and Developmental Biology, 20(2), 175-182. doi:10.1016/j.semcdb.2009.01.003 Wojdyło, A., & Nowicka, P. (2019). Anticholinergic effects of actinidia arguta fruits and their polyphenol content determined by liquid chromatography-photodiode array detector-quadrupole/time of flight-mass spectrometry (LC-MS-PDA-Q/TOF). Food Chemistry, 271, 216-223. doi:10.1016/j.foodchem.2018.07.084 Yao, Q., Gao, Y., Lai, C., Wu, C., Zhao, C. -., Wu, J. -., & Tang, D. -. (2020). The phytochemistry, pharmacology and applications of melicope pteleifolia: A review. Journal of Ethnopharmacology, 251 doi:10.1016/j.jep.2020.112546 Zhang, P., Xu, S., Zhu, Z., & Xu, J. (2019). Multi-target design strategies for the improved treatment of alzheimer's disease. European Journal of Medicinal Chemistry, 176, 228-247. doi:10.1016/j.ejmech.2019.05.020 Zhumanova, K., Lee, G., Baiseitova, A., Shah, A. B., Kim, J. H., Kim, J. Y., . . . Park, K. H. (2021). Inhibitory mechanism of O-methylated quercetins, highly potent β-secretase inhibitors isolated from caragana balchaschensis (kom.) pojark. Journal of Ethnopharmacology, 272 doi:10.1016/j.jep.2021.113935 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |