UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Microalgae are known as an alternative source of biomass energy to replace fossil fuels. The aim of the present study is to optimise the growth conditions and increase the lipid, carbohydrate and biomass productivity of Tetradesmus obliquus UPSI-JRM02 using response surface methodology with Design Expert software. Four variables (nitrogen concentration, temperature, pH, and light intensity) were optimised to enhance T. obliquus productivity. The highest lipid (33 � 1.2mg/L/day), carbohydrate (51 � 1.5 mg/L/day) and biomass (115 � 1.4 mg/L/day) productivity were produced at a nitrogen concentration of 400 mg/L NO3? at 36 �C with pH of 9.8, and light intensity of 23500 lux. The fatty acid methyl ester contains polyunsaturated fatty acid (C18:2, C18:3) and saturated fatty acid (C16:0). These results demonstrate the potential of T. obliquus to produce promising feedstock for biofuel production. ? 2019 Informa UK Limited, trading as Taylor & Francis Group. |
References |
Brennan, L., & Owende, P. (2013). Biofuels from microalgae: Towards meeting advanced fuel standards. Advanced biofuels and bioproducts (pp. 553-599) doi:10.1007/978-1-4614-3348-4_24 Retrieved from www.scopus.com Chellamboli, C., & Perumalsamy, M. (2014). Application of response surface methodology for optimization of growth and lipids in scenedesmus abundans using batch culture system. RSC Advances, 4(42), 22129-22140. doi:10.1039/c4ra01179a Chen, C. -., Zhao, X. -., Yen, H. -., Ho, S. -., Cheng, C. -., Lee, D. -., . . . Chang, J. -. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1-10. doi:10.1016/j.bej.2013.03.006 Cheng, D., & He, Q. (2014). Assessment of environmental stresses for enhanced microalgal biofuel production - an overview. Frontiers in Energy Research, 2(JUL) doi:10.3389/fenrg.2014.00026 Chu, W. -. (2017). Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. European Journal of Phycology, 52(4), 419-437. doi:10.1080/09670262.2017.1379100 Cuellar-Bermudez, S. P., Romero-Ogawa, M. A., Vannela, R., Lai, Y. S., Rittmann, B. E., & Parra-Saldivar, R. (2015). Effects of light intensity and carbon dioxide on lipids and fatty acids produced by synechocystis sp. PCC6803 during continuous flow. Algal Research, 12, 10-16. doi:10.1016/j.algal.2015.07.018 Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology, 36(2), 269-274. doi:10.1007/s10295-008-0495-6 Grahovac, J., Dodić, J., Jokić, A., Dodić, S., & Popov, S. (2012). Optimization of ethanol production from thick juice: A response surface methodology approach. Fuel, 93, 221-228. doi:10.1016/j.fuel.2011.10.019 Gris, B., Morosinotto, T., Giacometti, G. M., Bertucco, A., & Sforza, E. (2014). Cultivation of scenedesmus obliquus in photobioreactors: Effects of light intensities and light-dark cycles on growth, productivity, and biochemical composition. Applied Biochemistry and Biotechnology, 172(5), 2377-2389. doi:10.1007/s12010-013-0679-z Jia, Q., Xiang, W., Yang, F., Hu, Q., Tang, M., Chen, C., . . . Wu, H. (2016). Low-cost cultivation of scenedesmus sp. with filtered anaerobically digested piggery wastewater: Biofuel production and pollutant remediation. Journal of Applied Phycology, 28(2), 727-736. doi:10.1007/s10811-015-0610-9 Knothe, G. (2008). "Designer" biodiesel: Optimizing fatty ester composition to improve fuel properties. Energy and Fuels, 22(2), 1358-1364. doi:10.1021/ef700639e Knothe, G. (2009). Improving biodiesel fuel properties by modifying fatty ester composition. Energy and Environmental Science, 2(7), 759-766. doi:10.1039/b903941d Lee, O. K., Seong, D. H., Lee, C. G., & Lee, E. Y. (2015). Sustainable production of liquid biofuels from renewable microalgae biomass. Journal of Industrial and Engineering Chemistry, 29, 24-31. doi:10.1016/j.jiec.2015.04.016 Li, L., Cui, J., Liu, Q., Ding, Y., & Liu, J. (2015). Screening and phylogenetic analysis of lipid-rich microalgae. Algal Research, 11, 381-386. doi:10.1016/j.algal.2015.02.028 Liu, J., Yuan, C., Hu, G., & Li, F. (2012). Effects of light intensity on the growth and lipid accumulation of microalga scenedesmus sp. 11-1 under nitrogen limitation. Applied Biochemistry and Biotechnology, 166(8), 2127-2137. doi:10.1007/s12010-012-9639-2 Mandal, S., & Mallick, N. (2009). Microalga scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84(2), 281-291. doi:10.1007/s00253-009-1935-6 Mandenius, C. -., & Brundin, A. (2008). Bioprocess optimization using design-of-experiments methodology. Biotechnology Progress, 24(6), 1191-1203. doi:10.1002/btpr.67 Markou, G., Angelidaki, I., & Georgakakis, D. (2012). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631-645. doi:10.1007/s00253-012-4398-0 Markou, G., & Nerantzis, E. (2013). Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnology Advances, 31(8), 1532-1542. doi:10.1016/j.biotechadv.2013.07.011 Milano, J., Ong, H. C., Masjuki, H. H., Chong, W. T., Lam, M. K., Loh, P. K., & Vellayan, V. (2016). Microalgae biofuels as an alternative to fossil fuel for power generation. Renewable and Sustainable Energy Reviews, 58, 180-197. doi:10.1016/j.rser.2015.12.150 Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578-597. doi:10.1016/j.rser.2009.10.003 Nordin, N., Yusof, N., & Samsudin, S. (2017). Biomass production of chlorella sp., scenedesmus sp., and oscillatoria sp. in nitrified landfill leachate. Waste and Biomass Valorization, 8(7), 2301-2311. doi:10.1007/s12649-016-9709-8 Nordin, N., Yusof, N., & Samsudin, S. (2014). Microalgae biomass production and nitrate removal from landfill leachate. Proceeding of International Conference on Research, Implementation and Education of Mathematics and Sciences, , 73-82. Retrieved from www.scopus.com Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae scenedesmus sp. CCNM 1077. Bioresource Technology, 156, 146-154. doi:10.1016/j.biortech.2014.01.025 Ramaraj, S., Hemaiswarya, S., Raja, R., Ganesan, V., Anbazhagan, C., Carvalho, I. S., & Juntawong, N. (2015). Microalgae as an attractive source for biofuel production. Environmental sustainability: Role of green technologies (pp. 129-158) doi:10.1007/978-81-322-2056-5_8 Retrieved from www.scopus.com Rasdi, Z., Abdul Rahman, N. A., Abd Aziz, S., Mohd Yusoff, M. Z., Chong, M. L., & Hassan, M. A. (2009). Statistical optimization of biohydrogen production from palm oil mill effluent by natural microflora. Open Biotechnol J, 3(1), 79-86. Retrieved from www.scopus.com Sarkar, D., & Shimizu, K. (2015). An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. Bioresources and Bioprocessing, 2(1) doi:10.1186/s40643-015-0045-9 Scaife, M. A., Merkx-Jacques, A., Woodhall, D. L., & Armenta, R. E. (2015). Algal biofuels in canada: Status and potential. Renewable and Sustainable Energy Reviews, 44, 620-642. doi:10.1016/j.rser.2014.12.024 Singh, P., Guldhe, A., Kumari, S., Rawat, I., & Bux, F. (2015). Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae ankistrodesmus falcatus KJ671624 using response surface methodology. Biochemical Engineering Journal, 94, 22-29. doi:10.1016/j.bej.2014.10.019 Sun, X., Cao, Y., Xu, H., Liu, Y., Sun, J., Qiao, D., & Cao, Y. (2014). Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of neochloris oleoabundans HK-129 by a two-stage process. Bioresource Technology, 155, 204-212. doi:10.1016/j.biortech.2013.12.109 Voloshin, R. A., Rodionova, M. V., Zharmukhamedov, S. K., Nejat Veziroglu, T., & Allakhverdiev, S. I. (2016). Review: Biofuel production from plant and algal biomass. International Journal of Hydrogen Energy, 41(39), 17257-17273. doi:10.1016/j.ijhydene.2016.07.084 WU, Y. -., YU, Y., & HU, H. -. (2014). Effects of initial phosphorus concentration and light intensity on biomass yield per phosphorus and lipid accumulation of scenedesmus sp. LX1. Bioenergy Research, 7(3), 927-934. doi:10.1007/s12155-014-9411-2 Xia, L., Song, S., & Hu, C. (2016). High temperature enhances lipid accumulation in nitrogen-deprived scenedesmus obtusus XJ-15. Journal of Applied Phycology, 28(2), 831-837. doi:10.1007/s10811-015-0636-z Xin, L., Hong-ying, H., & Yu-ping, Z. (2011). Growth and lipid accumulation properties of a freshwater microalga scenedesmus sp. under different cultivation temperature. Bioresource Technology, 102(3), 3098-3102. doi:10.1016/j.biortech.2010.10.055 Yang, F., Long, L., Sun, X., Wu, H., Li, T., & Xiang, W. (2014). Optimization of medium using response surface methodology for lipid production by scenedesmus sp. Marine Drugs, 12(3), 1245-1257. doi:10.3390/md12031245 Zhu, L. D., Li, Z. H., & Hiltunen, E. (2016). Strategies for lipid production improvement in microalgae as a biodiesel feedstock. BioMed Research International, 2016 doi:10.1155/2016/8792548 Zhu, S., Huang, W., Xu, J., Wang, Z., Xu, J., & Yuan, Z. (2014). Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga chlorella zofingiensis. Bioresource Technology, 152, 292-298. doi:10.1016/j.biortech.2013.10.092 Zhu, S., Wang, Y., Huang, W., Xu, J., Wang, Z., Xu, J., & Yuan, Z. (2014). Enhanced accumulation of carbohydrate and starch in chlorella zofingiensis induced by nitrogen starvation. Applied Biochemistry and Biotechnology, 174(7), 2435-2445. doi:10.1007/s12010-014-1183-9 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |