UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :2077-0375
Main Author :Mohd Hafiz Dzarfan Othman
Additional Authors :Suriani Abu Bakar
Title :Optimization of a high-performance poly (Diallyl dimethylammonium chloride)-alumina-perfluorooctanoate intercalated ultrafiltration membrane for treating emulsified oily wastewater via response surface methodology approach
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Membranes
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
This research aimed to investigate the ultrafiltration of water from emulsified oily wastewater through the application of surface-functionalized ceramic membrane to enhance its water permeability based on optimized parameters using a cross-flow filtration system. The interactive effects of feed concentration (10?1000 ppm), pH (4?10), and pressure (0?3 bar) on the water flux and oil rejection were investigated. Central composite design (CCD) from response surface methodology (RSM) was employed for statistical analysis, modeling, and optimization of operating conditions. The analysis of variance (ANOVA) results showed that the oil rejection and water flux models were significant with p-values of 0.0001 and 0.0075, respectively. In addition, good correlation coefficients of 0.997 and 0.863 were obtained for the oil rejection and water flux models, respectively. The optimum conditions for pressure, pH, and feed concentration were found to be 1.5 bar, pH 8.97, and 10 ppm, respectively with water flux and oil rejection maintained at 152 L/m2�h and 98.72%, respectively. Hence, the functionalized ultrafiltration ceramic membrane enables the separation efficiency of the emulsified oil in water to be achieved. ? 2021 by the authors. Licensee MDPI, Basel, Switzerland.

References

Abadi, S. R. H., Sebzari, M. R., Hemati, M., Rekabdar, F., & Mohammadi, T. (2011). Ceramic membrane performance in microfiltration of oily wastewater. Desalination, 265(1-3), 222-228. doi:10.1016/j.desal.2010.07.055

Abd Aziz, M. H., Othman, M. H. D., Hashim, N. A., Adam, M. R., & Mustafa, A. (2019). Fabrication and characterization of mullite ceramic hollow fiber membrane from natural occurring ball clay. Applied Clay Science, 177, 51-62. doi:10.1016/j.clay.2019.05.003

Adam, M. R., Othman, M. H. D., Sheikh Abdul Kadir, S. H., Puteh, M. H., Jamalludin, M. R., Md Nordin, N. A. H., . . . Jaafar, J. (2021). Fabrication, performance evaluation, and optimisation of adsorptive ammonia removal using hollow fibre ceramic membrane: Response surface methodology approach. Microporous and Mesoporous Materials, 316 doi:10.1016/j.micromeso.2021.110932

Ahmad, A. L., Otitoju, T. A., & Ooi, B. S. (0000). Optimization of a high performance 3-aminopropyltriethoxysilane-silica impregnated polyethersulfone membrane using response surface methodology for ultrafiltration of synthetic oil-water emulsion. J.Taiwan Inst., Retrieved from www.scopus.com

Ahmad, T., Guria, C., & Mandal, A. (2020). A review of oily wastewater treatment using ultrafiltration membrane: A parametric study to enhance the membrane performance. Journal of Water Process Engineering, 36 doi:10.1016/j.jwpe.2020.101289

Almojjly, A., Johnson, D. J., Mandale, S., & Hilal, N. (2019). Optimisation of the removal of oil in water emulsion by using ceramic microfiltration membrane and hybrid coagulation/sand filter-MF. Journal of Water Process Engineering, 27, 15-23. doi:10.1016/j.jwpe.2018.11.007

Aloulou, H., Aloulou, W., Daramola, M. O., & Ben Amar, R. (2021). Silane-grafted sand membrane for the treatment of oily wastewater via air gap membrane distillation: Study of the efficiency in comparison with microfiltration and ultrafiltration ceramic membranes. Materials Chemistry and Physics, 261 doi:10.1016/j.matchemphys.2020.124186

Bandaru, V. V. R., Somalanka, S. R., Mendu, D. R., Madicherla, N. R., & Chityala, A. (2006). Optimization of fermentation conditions for the production of ethanol from sago starch by co-immobilized amyloglucosidase and cells of zymomonas mobilis using response surface methodology. Enzyme and Microbial Technology, 38(1-2), 209-214. doi:10.1016/j.enzmictec.2005.06.002

Banik, A., Biswal, S. K., & Bandyopadhyay, T. K. (2020). Development of box behnken design to predict the optimum operating condition of rectangular sheet membrane to increase permeate flux. Handbook of research on smart technology models for business and industry (pp. 399-413) doi:10.4018/978-1-7998-3645-2.ch017 Retrieved from www.scopus.com

Belgada, A., Charik, F. Z., Achiou, B., Ntambwe Kambuyi, T., Alami Younssi, S., Beniazza, R., . . . Ouammou, M. (2021). Optimization of phosphate/kaolinite microfiltration membrane using box-behnken design for treatment of industrial wastewater. Journal of Environmental Chemical Engineering, 9(1) doi:10.1016/j.jece.2020.104972

Cao, E. (2009). Heat transfer in process engineering. Heat Transfer in Process Engineering, Retrieved from www.scopus.com

Cheryan, M., & Rajagopalan, N. (1998). Membrane processing of oily streams. wastewater treatment and waste reduction. Journal of Membrane Science, 151(1), 13-28. doi:10.1016/S0376-7388(98)00190-2

Das, B., Chakrabarty, B., & Barkakati, P. (2017). Separation of oil from oily wastewater using low cost ceramic membrane. Korean Journal of Chemical Engineering, 34(10), 2559-2569. doi:10.1007/s11814-017-0185-z

Du, X., You, S., Wang, X., Wang, Q., & Lu, J. (2017). Switchable and simultaneous oil/water separation induced by prewetting with a superamphiphilic self-cleaning mesh. Chemical Engineering Journal, 313, 398-403. doi:10.1016/j.cej.2016.12.092

Dunderdale, G. J., England, M. W., Sato, T., Urata, C., & Hozumi, A. (2016). Programmable Oil/Water separation meshes: Water or oil selectivity using contact angle hysteresis. Macromolecular Materials and Engineering, 301(9), 1032-1036. doi:10.1002/mame.201600061

Ebrahimi, M., Ashaghi, K. S., Engel, L., Willershausen, D., Mund, P., Bolduan, P., & Czermak, P. (2009). Characterization and application of different ceramic membranes for the oil-field produced water treatment. Desalination, 245(1-3), 533-540. doi:10.1016/j.desal.2009.02.017

Elomari, H., Achiou, B., Karim, A., Ouammou, M., Albizane, A., Bennazha, J., . . . Elamrani, I. (2017). Influence of starch content on the properties of low cost microfiltration membranes. Journal of Asian Ceramic Societies, 5(3), 313-319. doi:10.1016/j.jascer.2017.06.004

Gunst, R. F. (1996). Response surface methodology: Process and product optimization using designed experiments. Technometrics, 38(3), 284-286. Retrieved from www.scopus.com

Gupta, R. K., Dunderdale, G. J., England, M. W., & Hozumi, A. (2017). Oil/water separation techniques: A review of recent progresses and future directions. Journal of Materials Chemistry A, 5(31), 16025-16058. doi:10.1039/c7ta02070h

Gutiérrez, G., Lobo, A., Allende, D., Cambiella, A., Pazos, C., Coca, J., & Benito, J. M. (2008). Influence of coagulant salt addition on the treatment of oil-in-water emulsions by centrifugation, ultrafiltration, and vacuum evaporation. Separation Science and Technology, 43(7), 1884-1895. doi:10.1080/01496390801973953

He, J., Li, J., Ma, L., Pang, Y., Liu, L., Liu, Q., . . . Qu, M. (2021). High-flux oil–water separation with superhydrophilicity and underwater superoleophobicity ZIF-67@Cu(OH)2 nanowire membrane. Journal of Materials Science, 56(4), 3140-3154. doi:10.1007/s10853-020-05474-w

Hua, F. L., Tsang, Y. F., Wang, Y. J., Chan, S. Y., Chua, H., & Sin, S. N. (2007). Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chemical Engineering Journal, 128(2-3), 169-175. doi:10.1016/j.cej.2006.10.017

Hubadillah, S. K., Othman, M. H. D., Rahman, M. A., Ismail, A. F., & Jaafar, J. (2020). Preparation and characterization of inexpensive kaolin hollow fibre membrane (KHFM) prepared using phase inversion/sintering technique for the efficient separation of real oily wastewater. Arabian Journal of Chemistry, 13(1), 2349-2367. doi:10.1016/j.arabjc.2018.04.018

Jamalludin, M. R., Hubadillah, S. K., Harun, Z., Othman, M. H. D., & Yunos, M. Z. (2019). Novel superhydrophobic and superoleophilic sugarcane green ceramic hollow fibre membrane as hybrid oil sorbent-separator of real oil and water mixture. Materials Letters, 240, 136-139. doi:10.1016/j.matlet.2018.12.111

Li, J., Long, Y., Xu, C., Tian, H., Wu, Y., & Zha, F. (2018). Continuous, high-flux and efficient oil/water separation assisted by an integrated system with opposite wettability. Applied Surface Science, 433, 374-380. doi:10.1016/j.apsusc.2017.10.056

Lobo, A., Cambiella, A., Benito, J. M., Pazos, C., & Coca, J. (2006). Ultrafiltration of oil-in-water emulsions with ceramic membranes: Influence of pH and crossflow velocity. Journal of Membrane Science, 278(1-2), 328-334. doi:10.1016/j.memsci.2005.11.016

Lu, D., Zhang, T., & Ma, J. (2015). Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets. Environmental Science and Technology, 49(7), 4235-4244. doi:10.1021/es505572y

Matos, M., Gutiérrez, G., Lobo, A., Coca, J., Pazos, C., & Benito, J. M. (2016). Surfactant effect on the ultrafiltration of oil-in-water emulsions using ceramic membranes. Journal of Membrane Science, 520, 749-759. doi:10.1016/j.memsci.2016.08.037

Milić, J. K., Petrinić, I., Goršek, A., & Simonič, M. (2014). Ultrafiltration of oil-in-water emulsion by using ceramic membrane: Taguchi experimental design approach. Central European Journal of Chemistry, 12(2), 242-249. doi:10.2478/s11532-013-0373-6

Padaki, M., Surya Murali, R., Abdullah, M. S., Misdan, N., Moslehyani, A., Kassim, M. A., . . . Ismail, A. F. (2015). Membrane technology enhancement in oil-water separation. A review. Desalination, 357, 197-207. doi:10.1016/j.desal.2014.11.023

Raji, Y. O., Othman, M. H. D., Nordin, N. A. H. S. M., Kurniawan, T. A., Ismail, A. F., Rahman, M. A., . . . Farag, T. M. (2021). Wettability improvement of ceramic membrane by intercalating nano-Al2O3 for oil and water separation. Surfaces and Interfaces, 25 doi:10.1016/j.surfin.2021.101178

Raji, Y. O., Othman, M. H. D., Nordin, N. A. H. S. M., ShengTai, Z., Usman, J., Mamah, S. C., . . . Jaafar, J. (2020). Fabrication of magnesium bentonite hollow fibre ceramic membrane for oil-water separation. Arabian Journal of Chemistry, 13(7), 5996-6008. doi:10.1016/j.arabjc.2020.05.001

Raji, Y. O., Othman, M. H. D., Sapiaa Md Nordin, N. A. H., Adam, M. R., Mohd Said, K. A., Ismail, A. F., . . . Alftessi, S. A. (2021). Synthesis and characterization of superoleophobic fumed alumina nanocomposite coated via the sol-gel process onto ceramic-based hollow fibre membrane for oil-water separation. Ceramics International, 47(18), 25883-25894. doi:10.1016/j.ceramint.2021.05.319

Rubio, J., Souza, M. L., & Smith, R. W. (2002). Overview of flotation as a wastewater treatment technique. Minerals Engineering, 15(3), 139-155. doi:10.1016/S0892-6875(01)00216-3

Saja, S., Bouazizi, A., Achiou, B., Ouaddari, H., Karim, A., Ouammou, M., . . . Alami Younssi, S. (2020). Fabrication of low-cost ceramic ultrafiltration membrane made from bentonite clay and its application for soluble dyes removal. Journal of the European Ceramic Society, 40(6), 2453-2462. doi:10.1016/j.jeurceramsoc.2020.01.057

Samaei, S. M., Gato-Trinidad, S., & Altaee, A. (2018). The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters – A review. Separation and Purification Technology, 200, 198-220. doi:10.1016/j.seppur.2018.02.041

Sheikhi, M., Arzani, M., Mahdavi, H. R., & Mohammadi, T. (2019). Kaolinitic clay-based ceramic microfiltration membrane for oily wastewater treatment: Assessment of coagulant addition. Ceramics International, 45(14), 17826-17836. doi:10.1016/j.ceramint.2019.05.354

Shen, Z., Chen, W., Xu, H., Yang, W., Kong, Q., Wang, A., . . . Shang, J. (2019). Fabrication of a novel antifouling polysulfone membrane with in situ embedment of mxene nanosheets. International Journal of Environmental Research and Public Health, 16(23) doi:10.3390/ijerph16234659

Sondhi, R., & Bhave, R. (2001). Role of backpulsing in fouling minimization in crossflow filtration with ceramic membranes. Journal of Membrane Science, 186(1), 41-52. doi:10.1016/S0376-7388(00)00663-3

Srijaroonrat, P., Julien, E., & Aurelle, Y. (1999). Unstable secondary oil/water emulsion treatment using ultrafiltration: Fouling control by backflushing. Journal of Membrane Science, 159(1-2), 11-20. doi:10.1016/S0376-7388(99)00044-7

Su, B., Tian, Y., & Jiang, L. (2016). Bioinspired interfaces with superwettability: From materials to chemistry. Journal of the American Chemical Society, 138(6), 1727-1748. doi:10.1021/jacs.5b12728

Suresh, K., Pugazhenthi, G., & Uppaluri, R. (2016). Fly ash based ceramic microfiltration membranes for oil-water emulsion treatment: Parametric optimization using response surface methodology. Journal of Water Process Engineering, 13, 27-43. doi:10.1016/j.jwpe.2016.07.008

Tai, Z. S., Hubadillah, S. K., Othman, M. H. D., Dzahir, M. I. H. M., Koo, K. N., Tendot, N. I. S. T. I., . . . Aziz, M. H. A. (2019). Influence of pre-treatment temperature of palm oil fuel ash on the properties and performance of green ceramic hollow fiber membranes towards oil/water separation application. Separation and Purification Technology, 222, 264-277. doi:10.1016/j.seppur.2019.04.046

Tanudjaja, H. J., Hejase, C. A., Tarabara, V. V., Fane, A. G., & Chew, J. W. (2019). Membrane-based separation for oily wastewater: A practical perspective. Water Research, 156, 347-365. doi:10.1016/j.watres.2019.03.021

Tian, Y., Su, B., & Jiang, L. (2014). Interfacial material system exhibiting superwettability. Advanced Materials, 26(40), 6872-6897. doi:10.1002/adma.201400883

Tomczak, W., & Gryta, M. (2021). Application of ultrafiltration ceramic membrane for separation of oily wastewater generated by maritime transportation. Separation and Purification Technology, 261 doi:10.1016/j.seppur.2020.118259

Vatanpour, V., Madaeni, S. S., Moradian, R., Zinadini, S., & Astinchap, B. (2012). Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO 2 coated multiwalled carbon nanotubes. Separation and Purification Technology, 90, 69-82. doi:10.1016/j.seppur.2012.02.014

Wang, B., & Guo, Z. (2013). pH-responsive bidirectional oil-water separation material. Chemical Communications, 49(82), 9416-9418. doi:10.1039/c3cc45566a

Wang, B., & Guo, Z. (2013). Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Applied Physics Letters, 103(6) doi:10.1063/1.4817922

Wang, Y., & Gong, X. (2017). Special oleophobic and hydrophilic surfaces: Approaches, mechanisms, and applications. Journal of Materials Chemistry A, 5(8), 3759-3773. doi:10.1039/C6TA10474F

Xing, W. -. (2017). Ceramic membranes. Membrane-based separations in metallurgy: Principles and applications (pp. 357-370) doi:10.1016/B978-0-12-803410-1.00014-1 Retrieved from www.scopus.com

Yang, J., Yin, L., Tang, H., Song, H., Gao, X., Liang, K., & Li, C. (2015). Polyelectrolyte-fluorosurfactant complex-based meshes with superhydrophilicity and superoleophobicity for oil/water separation. Chemical Engineering Journal, 268, 245-250. doi:10.1016/j.cej.2015.01.073

Zhang, D., Wang, G., Zhi, S., Xu, K., Zhu, L., Li, W., . . . Xue, Q. (2018). Superhydrophilicity and underwater superoleophobicity TiO 2 /Al 2 O 3 composite membrane with ultra low oil adhesion for highly efficient oil-in-water emulsions separation. Applied Surface Science, 458, 157-165. doi:10.1016/j.apsusc.2018.07.052

Zhang, D. -., Abadikhah, H., Wang, J. -., Hao, L. -., Xu, X., & Agathopoulos, S. (2019). β-SiAlON ceramic membranes modified with SiO2 nanoparticles with high rejection rate in oil-water emulsion separation. Ceramics International, 45(4), 4237-4242. doi:10.1016/j.ceramint.2018.11.095

Zou, D., Fan, W., Xu, J., Drioli, E., Chen, X., Qiu, M., & Fan, Y. (2021). One-step engineering of low-cost kaolin/fly ash ceramic membranes for efficient separation of oil-water emulsions. Journal of Membrane Science, 621 doi:10.1016/j.memsci.2020.118954


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.