UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :0272-8842
Main Author :Saad Aliyu Umar
Additional Authors :Mohd Azlan Nafiah
Title :Oxide ion/electronic polarizability, optical basicity and linear dielectric susceptibility of TeO2 - B2O3 - SiO2 glasses
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Ceramics International
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
A system of bio-silica borotellurite glasses was fabricated based on the chemical formula [(TeO2)0.7 (B2O3)0.3]1-x (SiO2)x with x = 0.1, 0.2, 0.3, and 0.4 using the melt-quenching technique using silica (98.548% SiO2, from rice husk), TeO2 (Alfar Aeser, 99.9%) and B2O3 (Alfar Aeser, 99.9%). Measurements and characterizations such as density and molar volume measurements, XRD analysis, FTIR, and UV?Vis spectroscopes were performed on the studied glasses. The objective was to determine the glasses? applicability in optoelectronics, non-linear optics, and laser technologies through polarizability, linear electric susceptibility, and optical basicity study. Apart from confirming the amorphous nature of the glasses, the XRD analysis identified the presence of a crystalline phase of tellurium oxide (?-TeO2) formed. The FTIR spectral study revealed the presence of TeO3, BO3, and SiO4 structural units in the studied glasses. The refractive index (2.3026 ? 2.2651), molar polarizability (8.0696 ? 9.4334 �3), oxide ion polarizability (3.2970 ? 3.6202 �3), electronic polarizability (0.2296 ? 0.2335 �3), dielectric constant (5.1307 ? 5.3019), optical basicity (0.6719 ? 0.7998), metallization criterion (0.410853 ? 0.420714) and electric susceptibility (0.3286 ? 0.3422 esu) of the glasses were presented. With the high refractive index and favourable electronic/oxide ion polarizability as well as good electric susceptibility, the glasses have shown great potential for optical fibre and laser applications. Metallization criterion value falls in the range of glasses with great potentials for non-linear optical application. The dielectric value suggests the glasses represent wideband semiconducting glasses believed to be good for application in microelectronic substrates fabrication. ? 2021 Elsevier Ltd and Techna Group S.r.l.

References

Afef, B., Alqahtani, M. M., Hegazy, H. H., Yousef, E., Damak, K., & Maâlej, R. (2018). Green and near infrared emission of Er3+ doped PZS and PZC glasses. Journal of Luminescence, 194, 706-712. doi:10.1016/j.jlumin.2017.09.040

Alazoumi, S. H., Aziz, S. A., El-Mallawany, R., Aliyu, U. S., Kamari, H. M., Zaid, M. H. M. M., . . . Ushah, A. (2018). Optical properties of zinc lead tellurite glasses. Results in Physics, 9, 1371-1376. doi:10.1016/j.rinp.2018.04.041

Ali, A. A., Rammah, Y. S., & Shaaban, M. H. (2019). The influence of TiO 2 on structural, physical and optical properties of B 2 O 3 –TeO 2 – na 2 O – CaO glasses. Journal of Non-Crystalline Solids, 514, 52-59. doi:10.1016/j.jnoncrysol.2019.03.030

Anand Pandarinath, M., Upender, G., Narasimha Rao, K., & Suresh Babu, D. (2016). Thermal, optical and spectroscopic studies of boro-tellurite glass system containing ZnO. Journal of Non-Crystalline Solids, 433, 60-67. doi:10.1016/j.jnoncrysol.2015.11.028

Awshah, A. A. A., Kamari, H. M., Tim, C. K., Shah, N. M., Alazoumi, S. H., Aliyu, U. S., & Abd Azis, M. N. (2017). Effect of neodymium nanoparticles on elastic properties of zinc-tellurite glass system. Advances in Materials Science and Engineering, 2017 doi:10.1155/2017/6790635

Awshah, A. A. A., Kamari, H. M., Tim, C. K., Shah, N. M., Alazoumi, S. H., Aliyu, U. S., & Abd Azis, M. N. (2017). Effect of neodymium nanoparticles on elastic properties of zinc-tellurite glass system. Advances in Materials Science and Engineering, 2017 doi:10.1155/2017/6790635

Azlan, M. N., Halimah, M. K., Hajer, S. S., Suriani, A. B., Azlina, Y., & Umar, S. A. (2019). Enhanced optical performance of tellurite glass doped with samarium nanoparticles for fiber optics application. Chalcogenide Letters, 16(5), 215-229. Retrieved from www.scopus.com

Azlan, M. N., Halimah, M. K., Shafinas, S. Z., & Daud, W. M. (2015). Electronic polarizability of zinc borotellurite glass system containing erbium nanoparticles. Materials Express, 5(3), 211-218. doi:10.1166/mex.2015.1236

Azlan, M. N., Halimah, M. K., Suriani, A. B., Azlina, Y., Umar, S. A., & El-Mallawany, R. (2019). Upconversion properties of erbium nanoparticles doped tellurite glasses for high efficient laser glass. Optics Communications, 448, 82-88. doi:10.1016/j.optcom.2019.05.022

Azlan, M. N., Halimah, M. K., Umar, S. A., Azlina, Y., El‐Mallawany, R., & Najmi, G. (2018). Linear and nonlinear optical efficiency of novel neodymium nanoparticles doped tellurite glass for advanced laser glass. Educ.JSMT, 5(2), 47-66. Retrieved from www.scopus.com

Bakar, R. A., Yahya, R., & Gan, S. N. (2016). Production of high purity amorphous silica from rice husk. Procedia Chemistry, 19, 189-195. Retrieved from www.scopus.com

Battisha, I., & El Nahrawy, A. (2012). Physical properties of nano-composite silica-phosphate thin film prepared by sol gel technique. New J.Glass Ceram., 2(1), 17-22. Retrieved from www.scopus.com

Berwal, N., Dhankhar, S., Sharma, P., Kundu, R. S., Punia, R., & Kishore, N. (2017). Physical, structural and optical characterization of silicate modified bismuth-borate-tellurite glasses. Journal of Molecular Structure, 1127, 636-644. doi:10.1016/j.molstruc.2016.08.033

Bhatia, B., Meena, S. L., Parihar, V., & Poonia, M. (2015). Optical basicity and polarizability of Nd3+-doped bismuth borate glasses. New J.Glass Ceram., 5(3), 44-52. Retrieved from www.scopus.com

Dimitrov, V., Komatsu, T., & Sato, R. (1999). Polarizability, optical basicity and O1s binding energy of simple oxides. Journal of the Ceramic Society of Japan, 107(1), 21-26. doi:10.2109/jcersj.107.21

Dousti, M. R. (2017). Enhanced luminescence properties of Nd3+ doped boro-tellurite glasses via silver additive. Optik, 136, 553-557. doi:10.1016/j.ijleo.2017.02.073

Elkhoshkhany, N., & Syala, E. (2018). Kinetics characterization of erbium-doped tellurite glass. Ceramics International, 44(6), 6829-6835. doi:10.1016/j.ceramint.2018.01.106

El-Mallawany, R. (2005). “Module 5 – optical properties,” in an introduction to tellurite glasses., 1-47. Retrieved from www.scopus.com

El-Mallawany, R. A. (2011). Tellurite glasses handbook: Physical properties and data. Tellurite Glasses Handbook: Physical Properties and Data, Retrieved from www.scopus.com

Fahad Ahmad, A., Abbas, Z., Shaari, A. H., J. Obaiys, S., & Sa'ad Aliyu, U. (2019). Synthesis, thermal, dielectric, and microwave reflection loss properties of nickel oxide filler with natural fiber-reinforced polymer composite. Journal of Applied Polymer Science, 136(7) doi:10.1002/app.46998

Gayathri Pavani, P., Sadhana, K., & Chandra Mouli, V. (2011). Optical, physical and structural studies of boro-zinc tellurite glasses. Physica B: Condensed Matter, 406(6-7), 1242-1247. doi:10.1016/j.physb.2011.01.006

Halimah, M. K., Awshah, A. A., Hamza, A. M., Chan, K. T., Umar, S. A., & Alazoumi, S. H. (2020). Effect of neodymium nanoparticles on optical properties of zinc tellurite glass system. Journal of Materials Science: Materials in Electronics, 31(5), 3785-3794. doi:10.1007/s10854-020-02907-9

Halimah, M. K., Hamza, A. M., Muhammad, F. D., Chan, K. T., Umar, S. A., Umaru, I., & Geidam, I. G. (2019). Effect of erbium nanoparticles on structural and spectroscopic properties of bio-silica borotellurite glasses containing silver oxide. Materials Chemistry and Physics, 236 doi:10.1016/j.matchemphys.2019.121795

Halimah, M. K., Umar, S. A., Chan, K. T., Latif, A. A., Azlan, M. N., Abubakar, A. I., & Hamza, A. M. (2019). Study of rice husk silicate effects on the elastic, physical and structural properties of borotellurite glasses. Materials Chemistry and Physics, 238 doi:10.1016/j.matchemphys.2019.121891

Hamza, A. M., Halimah, M. K., Muhammad, F. D., & Chan, K. T. (2019). Physical properties, ligand field and judd-ofelt intensity parameters of bio-silicate borotellurite glass system doped with erbium oxide. Journal of Luminescence, 207, 497-506. doi:10.1016/j.jlumin.2018.11.038

Han, F. (2013). A modern course in the quantum theory of solid state, I (edis.). A Modern Course in the Quantum Theory of Solids, Retrieved from www.scopus.com

Hossain, T., Sarker, S. K., & Basak, B. C. (2011). Utilization potential of rice husk ash as a construction material in rural areas. J Civil Eng, 39(2), 175-188. Retrieved from www.scopus.com

Janek, J., Sołtys, M., Żur, L., Pietrasik, E., Pisarska, J., & Pisarski, W. A. (2016). Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, sr, ba). Materials Chemistry and Physics, 180, 237-243. doi:10.1016/j.matchemphys.2016.06.001

Kaky, K. M., Lakshminarayana, G., Baki, S. O., Lira, A., Caldiño, U., Meza-Rocha, A. N., . . . Mahdi, M. A. (2017). Structural and optical studies of Er3+-doped alkali/alkaline oxide containing zinc boro-aluminosilicate glasses for 1.5 μm optical amplifier applications. Optical Materials, 69, 401-419. doi:10.1016/j.optmat.2017.04.006

Kaur, A., Khanna, A., González, F., Pesquera, C., & Chen, B. (2016). Structural, optical, dielectric and thermal properties of molybdenum tellurite and borotellurite glasses. Journal of Non-Crystalline Solids, 444, 1-10. doi:10.1016/j.jnoncrysol.2016.04.033

Komatsu, T., Ito, N., Honma, T., & Dimitrov, V. (2012). Temperature dependence of refractive index and electronic polarizability of RO-TeO 2 glasses (R=Mg, ba, zn). Solid State Sciences, 14(10), 1419-1425. doi:10.1016/j.solidstatesciences.2012.08.005

Kumar, S., Sangwan, P., Dhankhar, R., Mor, V., & Bidra, S. (2013). Utilization of rice husk and their ash: A review. Res.J.Chem.Environ.Sci., 1(5), 126-129. Retrieved from www.scopus.com

Lakshminarayana, G., Kaky, K. M., Baki, S. O., Lira, A., Nayar, P., Kityk, I. V., & Mahdi, M. A. (2017). Physical, structural, thermal, and optical spectroscopy studies of TeO2–B2O3–MoO3–ZnO–R2O (R = Li, na, and K)/MO (M = Mg, ca, and pb) glasses. Journal of Alloys and Compounds, 690, 799-816. doi:10.1016/j.jallcom.2016.08.180

Lee, C. S., Matori, K. A., Ab Aziz, S. H., Kamari, H. M., Ismail, I., & Zaid, M. H. M. (2017). Fabrication and characterization of glass and glass-ceramic from rice husk ash as a potent material for opto-electronic applications. Journal of Materials Science: Materials in Electronics, 28(23), 17611-17621. doi:10.1007/s10854-017-7699-3

Linda, D., Duclére, J. -., Hayakawa, T., Dutreilh-Colas, M., Cardinal, T., Mirgorodsky, A., . . . Thomas, P. (2013). Optical properties of tellurite glasses elaborated within the TeO 2-Tl2O-Ag2O and TeO2-ZnO-ag 2O ternary systems. Journal of Alloys and Compounds, 561, 151-160. doi:10.1016/j.jallcom.2013.01.172

Maheshvaran, K., Linganna, K., & Marimuthu, K. (2011). Composition dependent structural and optical properties of Sm3+ doped boro-tellurite glasses. Journal of Luminescence, 131(12), 2746-2753. doi:10.1016/j.jlumin.2011.06.047

Meena, S. L., & Bhatia, B. (2016). Polarizability and optical basicity of Er3 + ions doped zinc lithium bismuth borate glasses. J.Pure Appl.Ind.Phys., 6(10), 175-183. Retrieved from www.scopus.com

Mo, Z. X., Guo, H. W., Liu, P., Shen, Y. D., & Gao, D. N. (2016). Luminescence properties of magneto-optical glasses containing Tb3+ ions. Journal of Alloys and Compounds, 658, 967-972. doi:10.1016/j.jallcom.2015.10.236

Munoz-Martín, D., Villegas, M. A., Gonzalo, J., & Fernández-Navarro, J. M. (2009). Characterisation of glasses in the TeO2-WO3-PbO system. Journal of the European Ceramic Society, 29(14), 2903-2913. doi:10.1016/j.jeurceramsoc.2009.04.018

Mustafa, I. S., Ain, N., Razali, N., Ibrahim, A. R., Yahaya, Z., & Kamari, H. M. (2015). From rice husk to transparent radiation protection material. J.Intelek, 9(2), 1-6. Retrieved from www.scopus.com

Owen, T. (1996). Fundamentals of modern UV-visible spectroscopy. A primer. Fundamentals of UV-Visible Spectroscopy, Retrieved from www.scopus.com

Pal, I., Agarwal, A., & Sanghi, S. (2012). Spectral analysis and structure of cu 2+-doped cadmium bismuth borate glasses. Indian Journal of Pure and Applied Physics, 50(4), 237-244. Retrieved from www.scopus.com

Reddy, R. R., Nazeer Ahammed, Y., Abdul Azeem, P., Rama Gopal, K., & Rao, T. V. R. (2001). Electronic polarizability and optical basicity properties of oxide glasses through average electronegativity. Journal of Non-Crystalline Solids, 286(3), 169-180. doi:10.1016/S0022-3093(01)00481-1

Rodriguez, O., Curran, D. J., Papini, M., Placek, L. M., Wren, A. W., Schemitsch, E. H., . . . Towler, M. R. (2016). Characterization of silica-based and borate-based, titanium-containing bioactive glasses for coating metallic implants. Journal of Non-Crystalline Solids, 433, 95-102. doi:10.1016/j.jnoncrysol.2015.09.026

Sayyed, M. I. (2016). Bismuth modified shielding properties of zinc boro-tellurite glasses. Journal of Alloys and Compounds, 688, 111-117. doi:10.1016/j.jallcom.2016.07.153

Sidkey, M. A., El-Mallawany, R., Nakhla, R. I., & Abd El-Moneim, A. (1997). Ultrasonic attenuation at low temperature of TeO2-V2O5 glasses. Physica Status Solidi (A) Applied Research, 159(2), 397-404. doi:10.1002/1521-396X(199702)159:2<397::AID-PSSA397>3.0.CO;2-0

Sudevan, S., Tilak, T., Mukherjee, R., Rajiv, A., & Reddy, M. S. (2015). Optical properties of lithium-zinc–boro-molybdate glass doped with rare earth oxides. Int.J.Chem.Phys.Sci., 4(6), 28-36. Retrieved from www.scopus.com

Tafida, R. A., Halimah, M. K., Muhammad, F. D., Chan, K. T., Onimisi, M. Y., Usman, A., . . . Umar, S. A. (2020). Structural, optical and elastic properties of silver oxide incorporated zinc tellurite glass system doped with Sm3+ ions. Materials Chemistry and Physics, 246 doi:10.1016/j.matchemphys.2020.122801

Tanner, D. B. (2013). Optical effects in solids. Optical Effects in Solids, Retrieved from www.scopus.com

Umar, S. A., Halimah, M. K., Azlan, M. N., Grema, L. U., Ibrahim, G. G., Ahmad, A. F., . . . Dihom, M. M. (2020). Structural, elastic and thermo-physical properties of Er2O3 nanoparticles doped bio-silicate borotellurite glasses. SN Applied Sciences, 2(2) doi:10.1007/s42452-020-2112-x

Umar, S. A., Halimah, M. K., Chan, K. T., Amirah, A. A., Azlan, M. N., Grema, L. U., . . . Ibrahim, G. G. (2019). Optical and structural properties of rice husk silicate incorporated borotellurite glasses doped with erbium oxide nanoparticles. Journal of Materials Science: Materials in Electronics, 30(20), 18606-18616. doi:10.1007/s10854-019-02213-z

Umar, S. A., Halimah, M. K., Chan, K. T., & Latif, A. A. (2017). Polarizability, optical basicity and electric susceptibility of Er3 + doped silicate borotellurite glasses. Journal of Non-Crystalline Solids, 471, 101-109. doi:10.1016/j.jnoncrysol.2017.05.018

Umar, S. A., Halimah, M. K., Hamza, A. M., & Abdulbaset, A. A. (2018). The structural, physical and optical properties of borotellurite glasses incorporated with silica from rice husk. J.Sci.Math.Lett., 6(2018), 32-46. Retrieved from www.scopus.com

Umar, S. A., & Ibrahim, G. G. (2020). Theoretical elastic moduli of TeO2 – B2O3 – SiO2 glasses. Educ.JSMT, 7(2), 18-30. Retrieved from www.scopus.com

Usman, A., Halimah, M. K., Latif, A. A., Muhammad, F. D., & Abubakar, A. I. (2018). Influence of Ho3 + ions on structural and optical properties of zinc borotellurite glass system. Journal of Non-Crystalline Solids, 483, 18-25. doi:10.1016/j.jnoncrysol.2017.12.040

Varshneya, A. K., & Mauro, J. C. (2019). Fundamentals of inorganic glasses. Fundamentals of inorganic glasses (pp. 1-735) doi:10.1016/C2017-0-04281-7 Retrieved from www.scopus.com


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.