UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :1823-7010
Main Author :Che Nor Aiza Jaafar
Additional Authors :Ismail Zainol
Title :Post-coating treatment effects on the physicomechanical and corrosion resistance of plasma-sprayed hydroxyapatite (FSHA) on TI-13NB-13ZR alloy for biomedical applications
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Malaysian Journal of Microscopy
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
? titanium alloys are widely used in orthopaedic applications as an alternative to the high modulus ? + ? titanium alloys which leads to aseptic loosening of implants as a result of the mismatch of the modulus to that of human bone. Hydroxyapatite (HA) coating has been used to enhance the biological properties of Ti alloys. The present study determined the effect of heat treatment on the properties of plasma-sprayed low modulus Ti-13Nb-13Zr alloy using a natural and economical HA derived from fish scales (FsHA) and FsHA-doped yttria stabilized zirconia (YSZ). The microstructure was examined by SEM-EDS and the hardness was determined using Vickers hardness tester whereas the corrosion resistance was studied using potentiodynamic polarization method. The SEM micrograph of the as-coated FsHA revealed micro pores and cracks with partially melted and unmelted FsHA particles while the as-coated FsHA/YSZ samples developed denser coatings, lesser number of pores with increased number of melted FsHA particles, fine micro cracks and evenly dispersed ZrO2 particles. On the other hand, the post-coating treatment led to a much denser and finer lamellar morphology with more cracks as well as a significant increase in the microhardness as the heat-treated FsHA and FsHA/YSZ coatings had 514.7 and 566.9 Hv respectively, compared to their non-heat-treated values of 467.8 and 492.5 Hv. However, heat treatment recorded a slight increase in corrosion rate as the as-coated FsHA and FsHA/YSZ samples had 44.54 and 22.72 mmpy while their heat-treated counterparts recorded 83.7 and 73.88 mmpy respectively. ? Malaysian Journal of Microscopy (2021). All rights reserved.

References

Aherwar, A., Singh, A. K., & Patnaik, A. (2016). Cobalt based alloy: A better choice biomaterial for hip implants. Trends in Biomaterials and Artificial Organs, 30(1), 50-55. Retrieved from www.scopus.com

Akram, M., Ahmed, R., Shakir, I., Ibrahim, W. A. W., & Hussain, R. (2014). Extracting hydroxyapatite and its precursors from natural resources. Journal of Materials Science, 49(4), 1461-1475. doi:10.1007/s10853-013-7864-x

Burnat, B., Walkowiak-Przybyło, M., Błaszczyk, T., & Klimek, L. (2013). Corrosion behaviour of polished and sandblasted titanium alloys in PBS solution. Acta of Bioengineering and Biomechanics, 15, 1-9. Retrieved from www.scopus.com

de Bruijn, J. D., van Blitterswijk, C. A., & Davies, J. E. (1995). Initial bone matrix formation at the hydroxyapatite interface in vivo. Journal of Biomedical Materials Research, 29(1), 89-99. doi:10.1002/jbm.820290113

De Grootl, K., Wolke, J. G. C., & Jansen, J. A. (1998). Calcium phosphate coatings for medical implants. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 212(2), 137-147. doi:10.1243/0954411981533917

El-Zayat, B. F., Ruchholtz, S., Efe, T., Paletta, J., Kreslo, D., & Zettl, R. (2013). Results of titanium locking plate and stainless steel cerclage wire combination in femoral fractures. Indian Journal of Orthopaedics, 47(5), 454-458. doi:10.4103/0019-5413.118200

Fernández, J., Gaona, M., & Guilemany, J. M. (2004). Tribological study of plasma hydroxyapatite coatings Retrieved from www.scopus.com

Fu, L., Khor, K. A., & Lim, J. P. (2002). Effects of yttria-stabilized zirconia on plasma-sprayed hydroxyapatite/yttria-stabilized zirconia composite coatings. Journal of the American Ceramic Society, 85(4), 800-806. doi:10.1111/j.1151-2916.2002.tb00175.x

Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Progress in Materials Science, 54(3), 397-425. doi:10.1016/j.pmatsci.2008.06.004

Ghosh, S., Sanghavi, S., & Sancheti, P. (2018). Metallic biomaterial for bone support and replacement. Fundamental biomaterials: Metals (pp. 139-165) doi:10.1016/B978-0-08-102205-4.00006-4 Retrieved from www.scopus.com

Langer, R., & Peppas, N. A. (2003). Advances in biomaterials, drug delivery, and bionanotechnology. AIChE Journal, 49(12), 2990-3006. doi:10.1002/aic.690491202

Park, J. B., & Bronzino, J. D. (2002). Biomaterials: Principles and applications. Biomaterials: Principles and applications (pp. 1-250) Retrieved from www.scopus.com

Rao, S., Ushida, T., Tateishi, T., Okazaki, Y., & Asao, S. (1996). Effect of ti, al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Bio-Medical Materials and Engineering, 6(2), 79-86. doi:10.3233/bme-1996-6202

Renganathan, G., Tanneru, N., & Madurai, S. L. (2018). Orthopedical and biomedical applications of titanium and zirconium metals. Fundamental biomaterials: Metals (pp. 211-241) doi:10.1016/B978-0-08-102205-4.00010-6 Retrieved from www.scopus.com

Singh, G., Singh, H., & Sidhu, B. S. (2013). Corrosion behavior of plasma sprayed hydroxyapatite and hydroxyapatite-silicon oxide coatings on AISI 304 for biomedical application. Applied Surface Science, 284, 811-818. doi:10.1016/j.apsusc.2013.08.013

Singh, R., & Dahotre, N. B. (2007). Corrosion degradation and prevention by surface modification of biometallic materials. Journal of Materials Science: Materials in Medicine, 18(5), 725-751. doi:10.1007/s10856-006-0016-y

Suchanek, W., & Yoshimura, M. (1998). Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research, 13(1), 94-117. doi:10.1557/JMR.1998.0015

Surmenev, R. A., Surmeneva, M. A., & Ivanova, A. A. (2014). Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis - A review. Acta Biomaterialia, 10(2), 557-579. doi:10.1016/j.actbio.2013.10.036

Yang, Y., Kim, K. -., & Ong, J. L. (2005). A review on calcium phosphate coatings produced using a sputtering process - an alternative to plasma spraying. Biomaterials, 26(3), 327-337. doi:10.1016/j.biomaterials.2004.02.029

Zaffe, D., Bertoldi, C., & Consolo, U. (2004). Accumulation of aluminium in lamellar bone after implantation of titanium plates, ti-6Al-4V screws, hydroxyapatite granules. Biomaterials, 25(17), 3837-3844. doi:10.1016/j.biomaterials.2003.10.020

Zainol, I., Adenan, N. H., Rahim, N. A., & Aiza Jaafar, C. N. (2019). Extraction of natural hydroxyapatite from tilapia fish scales using alkaline treatment. Paper presented at the Materials Today: Proceedings, , 16 1942-1948. doi:10.1016/j.matpr.2019.06.072 Retrieved from www.scopus.com


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.