UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Global food demand has increased in tandem with the world?s growing population, prompting calls for a new sustainable agricultural method. The scarcity of fertile soil and the world?s agricultural land have also become major concerns. Soilless and microgreen farming combined with nanotechnology may provide a revolutionary solution as well as a more sustainable and productive alternative to conventional farming. In this review, we look at the potential of nanotechnology in soilless and microgreen farming. The available but limited nanotechnology approaches in soilless farming include: (1) Nutrients nanoparticles to minimize nutrient losses and improve nutrient uptake and bioavailability in crops; (2) nano-sensing to provide real-time detection of p H, temperature, as well as quantifying the amount of the nutrient, allowing desired conditions control; and (3) incorporation of nanoparticles to improve the quality of substrate culture as crop cultivation growing medium. Meanwhile, potential nanotechnology applications in soilless and microgreen farming include: (1) Plant trait improvement against environmental disease and stress through nanomaterial application; (2) plant nanobionics to alter or improve the function of the plant tissue or organelle; and (3) extending the shelf life of microgreens by impregnating nanoparticles on the packaging or other preservation method. ? 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
References |
UN Food and Agriculture Organization (FAO). Sustainable Food and Agriculture. Available online: http://www.fao.org/sustai nability/news/detail/en/c/1274219/ (accessed on 13 April 2021). UN Food and Agriculture Organization (FAO). Land Use. Available online: http://www.fao.org/faostat/en/#data/RL/visualize (accessed on 13 April 2021). World Data Atlas. Malaysia—Agricultural Land Area. Available online: https://knoema.com/atlas/Malaysia/Agricultural-lan d-area#:~:text=In%202016%2C%20agricultural%20land%20area,Malaysia%20increased%20from%2035%2C717%20sq (accessed on 14 April 2021). United Nations. Population. Available online: https://www.un.org/en/global-issues/population#:~:text=The%20world%20pop ulation%20is%20projected,surrounding%20these%20latest%20population%20projections (accessed on 29 April 2021). Gomiero, T. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 2016, 8, 281. Scientific American. Only 60 Years of Farming Left If Soil Degradation Continues. Available online: https://www.scientificamer ican.com/article/only-60-years-of-farming-left-if-soil-degradation-continues/#:~:text=ROME%20(Thom-son%20Reuters%2 0Foundation)%20%2D,UN%20official%20said%20on%20Friday.&text=Soils%20play%20a%20key%20role,filtering%20water %2C%20the%20FAO%20reported (accessed on 14 April 2021). Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. El-Kazzaz, K.; El-Kazzaz, A. Soilless agriculture a new and advanced method for agriculture development: An introduction. Agric. Res. Technol. 2017, 3, 63–72. Priyamvada Chauhan, A.B. Analysis of soilless farming in urban agriculture. J. Pharmacogn. Phytochem. 2020, 9, 239–242. Riaz, A.; Younis, A.; Ghani, I.; Tariq, U.; Ahsan, M. Agricultural waste as growing media component for the growth and flowering of Gerbera jamesonii cv. hybrid mix. Int. J. Recycl. Org. Waste Agric. 2015, 4, 197–204. Sendi, H.; Mohamed, M.; Anwar, M.; Saud, H. Spent mushroom waste as a media replacement for peat moss in Kai-Lan (Brassica oleracea var. Alboglabra) production. Sci. World J. 2013. Zied, D.C.; de Abreu, C.G.; Alves, L.d.S.; Prado, E.P.; Pardo-Gimenez, A.; de Melo, P.C.; Dias, E.S. Influence of the production environment on the cultivation of lettuce and arugula with spent mushroom substrate. J. Environ. Manag. 2021, 281, 111799. Greco, C.; Comparetti, A.; Fascella, G.; Febo, P.; La Placa, G.; Saiano, F.; Mammano, M.M.; Orlando, S.; Laudicina, V.A. Effects of Vermicompost, Compost and Digestate as Commercial Alternative Peat-Based Substrates on Qualitative Parameters of Salvia officinalis. Agronomy 2021, 11, 98. Tavarwisa, D.M.; Govera, C.; Mutetwa, M.; Ngezimana, W. Evaluating the suitability of baobab fruit shells as substrate for growing oyster mushroom (Pleurotus ostreatus). Int. J. Agron. 2021. AlShrouf, A. Hydroponics, aeroponic and aquaponic as compared with conventional farming. Am. Sci. Res. J. Eng. Technol. Sci. ASRJETS 2017, 27, 247–255. Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S. Hydroponic solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Front. Plant Sci. 2019, 10, 923. Barbosa, G.L.; Gadelha, F.D.A.; Kublik, N.; Proctor, A.; Reichelm, L.; Weissinger, E.; Wohlleb, G.M.; Halden, R.U. Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. Int. J. Environ. Res. Public Health 2015, 12, 6879–6891. Ahmed, A.F.; Yu, H.; Yang, X.; Jiang, W. Deficit irrigation affects growth, yield, vitamin C content, and irrigation water use efficiency of hot pepper grown in soilless culture. HortScience 2014, 49, 722–728. Van Ginkel, S.W.; Igou, T.; Chen, Y. Energy, water and nutrient impacts of California-grown vegetables compared to controlled environmental agriculture systems in Atlanta, GA. Resour. Conserv. Recycl. 2017, 122, 319–325. Massa, D.; Incrocci, L.; Maggini, R.; Carmassi, G.; Campiotti, C.; Pardossi, A. Strategies to decrease water drainage and nitrate emission from soilless cultures of greenhouse tomato. Agric. Water Manag. 2010, 97, 971–980. El-Sayed, S.; Hassan, H.; Mahmoud, S. Effect of some soilless culture techniques on sweet pepper growth, production, leaves chemical contents and water consumption under greenhouse conditions. Middle East J. 2015, 4, 682–691. 22. Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Buttar, N.A. Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics. J. Plant Interact. 2018, 13, 338–352. Treftz, C.; Omaye, S.T. Nutrient analysis of soil and soilless strawberries and raspberries grown in a greenhouse. Food Nutr. Sci. 2015, 6, 805. Biesalski, H.-K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.; Schrenk, D.; Walter, P.; Weber, P. Bioactive compounds: Definition and assessment of activity. Nutrition 2009, 25, 1202–1205. Buchanan, D.N.; Omaye, S.T. Comparative study of ascorbic acid and tocopherol concentrations in hydroponic-and soil-grown lettuces. Food Nutr. Sci. 2013. Kim, J.-S.; An, C.G.; Park, J.-S.; Lim, Y.P.; Kim, S. Carotenoid profiling from 27 types of paprika (Capsicum annuum L.) with different colors, shapes, and cultivation methods. Food Chem. 2016, 201, 64–71. Parks, S. Pesticide Residues in Hydroponic Lettuce; Horticulture Australia Ltd.: Sydney, NSW, Australia, 2008. Valdez-Aguilar, L.A.; Reed, D.W. Growth and nutrition of young bean plants under high alkalinity as affected by mixtures of ammonium, potassium, and sodium. J. Plant Nutr. 2010, 33, 1472–1488. Tyson, R.V.; Simonne, E.H.; White, J.M.; Lamb, E.M. Reconciling water quality parameters impacting nitrification in aquaponics: The pH levels. In Proceedings of the Florida State Horticultural Society; Florida State Horticulture Society: Goldenrod, FL, USA, 2004; pp. 79–83. Nalwade, R.; Mote, T. Hydroponics farming. In Proceedings of the 2017 International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, India, 11–12 May 2017; pp. 645–650. Singh, H.; Bruce, D. Electrical conductivity and pH guide for hydroponics. In Oklahoma Cooperative Extension Fact Sheets, HLA-6722; OSU Extension, Division of Agricultural Sciences and Natural Resources, Oklahoma State University: Oklahoma City, OK, USA, 2016; Volume 5. Trejo-Téllez, L.I.; Gómez-Merino, F.C. Nutrient solutions for hydroponic systems. In Hydroponics—A Standard Methodology for Plant Biological Researches; BoD–Books: Norderstedt, Germany, 2012; pp. 1–22. Samarakoon, U.; Weerasinghe, P.; Weerakkody, W. Effect of electrical conductivity (EC) of the nutrient solution on nutrient uptake, growth and yield of leaf lettuce (Lactuca sativa L.) in stationary culture. Trop. Agric. Res. 2006, 18, 13–21. De Rijck, G.; Schrevens, E. Elemental bioavailability in nutrient solutions in relation to precipitation reactions. J. Plant Nutr. 1998, 21, 2103–2113. Nxawe, S.; Ndakidemi, P.A.; Laubscher, C. Possible effects of regulating hydroponic water temperature on plant growth, accumulation of nutrients and other metabolites. Afr. J. Biotechnol. 2010, 9, 9128–9134. Suzuki, N.; Mittler, R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant 2006, 126, 45–51. Calatayud, Á.; Gorbe, E.; Roca, D.; Martínez, P.F. Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4+ concentration and chlorophyll a fluorescence in rose plants. Environ. Exp. Bot. 2008, 64, 65–74. Kim, S.; Jeong, J.; Lee, Y.; Chil, C. Solution temperature effects on potato growth and mineral uptake in hydroponic system. In Proceedings of the International Symposium on Growing Media and Hydroponics 548, Kassandra, Greece, 31 August–6 September 1999; pp. 517–522. Daskalaki, A.; Burrage, S. Solution temperature and the uptake of water and nutrients by cucumber (Cucumis sativus L.) in hydroponics. In Proceedings of the International Symposium on Water Quality & Quantity-Greenhouse 458, Tenerife, Spain, 5 November 1993; pp. 317–322. Sakamoto, M.; Suzuki, T. Effect of root-zone temperature on growth and quality of hydroponically grown red leaf lettuce (Lactuca sativa L. cv. Red Wave). Am. J. Plant Sci. 2015, 6, 2350. Pramanik, M.; Nagai, M.; Asao, T.; Matsui, Y. Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. J. Chem. Ecol. 2000, 26, 1953–1967. Othman, Y.; Bataineh, K.; Al-Ajlouni, M.; Alsmairat, N.; Ayad, J.; Shiyab, S.; Al-Qarallah, B.; St Hilaire, R. Soilless culture: Management of growing substrate, water, nutrient, salinity, microorganism and product quality. Fresen. Environ. Bull. 2019, 28, 3249–3260. Dede, O.; Dede, G.; Ozdemir, S.; Abad, M. Physicochemical characterization of hazelnut husk residues with different decomposition degrees for soilless growing media preparation. J. Plant Nutr. 2011, 34, 1973–1984. Abad, M.; Fornes, F.; Carrión, C.; Noguera, V.; Noguera, P.; Maquieira, Á.; Puchades, R. Physical properties of various coconut coir dusts compared to peat. HortScience 2005, 40, 2138–2144. Asaduzzaman, M.; Kobayashi, Y.; Mondal, M.F.; Ban, T.; Matsubara, H.; Adachi, F.; Asao, T. Growing carrots hydroponically using perlite substrates. Sci. Hortic. 2013, 159, 113–121.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |