UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :1675-3402
Main Author :Mohamad Nurul Azmi
Additional Authors :Mohd Azlan Nafiah
Title :Synthesis of Indolostilbenes via FeCl3-promoted Oxidative Cyclisation and their Biological Effects on NG108-15 Cell Viability and H2O2-induced Cytotoxicity
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Journal of Physical Science
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
A convenient and simple radical cation cyclisation of 3,5-dimethoxystilbene was developed using the commercially available FeCl3under mild condition. It enabled the construction of a new class of indolostilbenes (i.e., indole-stilbene hybrid). Various parameters were investigated to obtain better yields (more than 42%) compared with the previously reported. The synthesised indolostilbenes were characterised, and their mechanism of formation was discussed. The synthesised compounds were submitted for biological assay on NG108-15 cell viability and H2O2-induced cytotoxicity. The result showed that two indolostilbenes have promising protective activity against H2O2. ? Penerbit Universiti Sains Malaysia, 2021. This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/).

References

Feigin, V. et al. (2019). Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 18(5), 459–480. https://doi.org/10.1016/S1474- 4422(18)30499-X.

Liu, Z. et al. (2017). Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid. Med. Cell. Long., Article ID 2525967. https://doi.org/10.1155/2017/2525967.

Elfawy, H. A. & Das, B. (2019). Crosstalk between mitochondrial dysfunction, oxidative stress, and age-related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci., 218, 165–184. https://doi.org/10.1016/j. lfs.2018.12.029.

Chong, J., Poutaraud, A. & Hugueney, P. (2009). Metabolism and roles of stilbenes in plants. Plant Sci., 177(3), 143–155. https://doi.org/10.1016/j.plantsci.2009.05.012.

Tellone, E. et al. (2019). Resveratrol. In (Eds.) Nabavi, S. M. & Silva, A. S., Nonvitamin and nonmineral nutritional supplements. New York: Academic Press, 107–110. https://doi.org/10.1016/B978-0-12-812491-8.00014-X.

Azmi, M. N. et al. (2013). Design, synthesis, and cytotoxic evaluation of o-carboxamido stilbene analogues. Int. J. Mol. Sci., 14(12), 23369–23389. https:// doi.org/10.3390/ijms141223369.

Romero-Pérez, A. I. et al. (1999). Piceid, the major resveratrol derivative in grape juices. J. Agric. Food Chem., 47(4), 1533–1536. https://doi.org/10.1021/jf981024g.

Seyed, M. A. et al. (2016). A comprehensive review on the chemotherapeutic potential of piceatannol for cancer treatment, with mechanistic insights. J. Agric. Food Chem., 64(4), 725–737. https://doi.org/10.1021/acs.jafc.5b05993.

Fauconneau, B. et al. (1997). Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests. Life Sci., 61(21), 2103–2110. https://doi.org/10.1016/S0024- 3205(97)00883-7.

Chang, J. et al. (2012). Low dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol. Aging, 33(9), 2062– 2071. https://doi.org/10.1016/j.neurobiolaging.2011.08.015.

McCormack, D. & McFadden, D. (2012). Pterostilbene and cancer: Current review. J. Surg. Res., 173(2), e53–e61. https://doi.org/10.1016/j.jss.2011.09.054.

Zghonda, N. et al. (2012). ε-Viniferin is more effective than its monomer resveratrol in improving the functions of vascular endothelial cells and the heart. Biosci., Biotechnol., Biochem., 76(5), 954–960. https://doi.org/10.1271/bbb.110975.

Empl, M. T. et al. (2014). The growth of the canine glioblastoma cell line D-GBM and the canine histiocytic sarcoma cell line DH82 is inhibited by the resveratrol oligomers hopeaphenol and r2-viniferin. Vet. Comp. Oncol., 12(2), 149–159. https://doi.org/10.1111/j.1476-5829.2012.00349.x

Matsuura, B. S. et al. (2015). A scalable biomimetic synthesis of resveratrol dimers and systematic evaluation of their antioxidant activities. Angew. Chem., Int. Ed., 127(12), 3825–3828. https://doi.org/10.1002/anie.201409773.

Mora-Pale, M. et al. (2015). Antimicrobial mechanism of resveratrol-transdihydrodimer produced from peroxidase-catalysed oxidation of resveratrol. Biotechnol. Bioeng., 112(12), 2417–2428. https://doi.org/10.1002/bit.25686.

Atun, S. et al. (2008). Resveratrol derivatives from stem bark of Hopea and their biological activity test. J. Phys. Sci., 19(2), 7–21.

Dilshara, M. G. et al. (2014). Anti-inflammatory mechanism of α-viniferin regulates lipopolysaccharide-induced release of proinflammatory mediators in BV2 microglial cells. Cell. Immunol., 290(1), 21–29. https://doi.org/10.1016/j. cellimm.2014.04.009.

Shirinzadeh, H. et al. (2016). Novel indole-based melatonin analogues substituted with triazole, thiadiazole and carbothioamides: Studies on their antioxidant, chemopreventive and cytotoxic activities. J. Enz. Inhib. Med. Chem., 31(6), 1312– 1321. https://doi.org/10.3109/14756366.2015.1132209.

Ahmad, K. et al. (2009). A FeCl3-promoted highly atropodiastereoselective cascade reaction: synthetic utility of radical cations in indolostilbene construction. Tetrahed., 65(7), 1504–1516. https://doi.org/10.1016/j.tet.2008.11.100.

Tan, D. et al. (2005). Chemical and physical properties and potential mechanisms: melatonin as a broad-spectrum antioxidant and free radical scavenger. Curr. Top. Med. Chem., 2(2), 181–197. https://doi.org/10.2174/1568026023394443.

Bozkayaa, P. et al. (2006). Determination and investigation of electrochemical behavior of 2-phenylindole derivatives: discussion on possible mechanistic pathways. Can. J. Anal. Sci. Spectrosc., 51(3), 125–139. https://doi. org/20.500.12575/70709.

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4.

Thomas, N. F. et al. (2008). The subtle co-catalytic intervention of benzophenone in radical cation mediated cyclisation - An improved synthesis of 2-(3’, 4’-dimethoxyphenyl)indoline. Heteroc., 75(5), 1097–1108. https://doi.org/10.3987/ COM-07-11280.

Kee, C. H. et al. (2011). Cyclisation vs. cyclisation/dimerisation in o-amidostilbene radical cation cascade reactions: the amide question. Mol., 16(9), 7267–7287. https://doi.org/10.3390/molecules16097267.

Kamarudin, M. N. A. et al. (2014). (R)-(+)-α-lipoic acid protected NG108-15 cells against H2O2-induced cell death through PI3K-Akt/GSK-3β pathway and suppression of NF-κβ-cytokines. Drug Des., Dev. Ther., 8, 1765–1780. https://doi. org/10.2147/DDDT.S67980.

Hamprecht, B. et al. (1985). Methods in enzymology. London: Academic Press. https://doi.org/10.1016/0076-6879(85)09096-6 27. Wong, K. H. et al. (2007). Activity of aqueous extracts of lion’s mane mushroom Hericium erinaceus (Bull.: Fr.) Pers. (Aphyllophoromycetideae) on the neural cell line NG108-15. Int. J. Med. Mush., 9(1), 57–65. https://doi.org/10.1615/ IntJMedMushr.v9.i1.70.

Kasai, H. (1992). Voltage‐and time‐dependent inhibition of neuronal calcium channels by a GTP‐binding protein in a mammalian cell line. J. Physiol., 448(1), 189–209. https://doi.org/10.1113/jphysiol.1992.sp019036.

Higashida, H. (1988). Acetylcholine release by bradykinin, inositol 1,4,5‐ trisphosphate and phorbol dibutyrate in rodent neuroblastoma cells. J. Physiol., 397(1), 209–222. https://doi.org/10.1113/jphysiol.1988.sp016996.

Nelson, T. E. & Gruol, D. L. (2004). The chemokine CXCL10 modulates excitatory activity and intracellular calcium signaling in cultured hippocampal neurons. J. Neuroimmunol., 156(1–2), 74–87. https://doi.org/10.1016/j.jneuroim.2004.07.009.

Mahakunakorn, P. et al. (2003). Cytoprotective and cytotoxic effects of curcumin: Dual action on H2O2-induced oxidative cell damage in NG108-15 cells. Biol. Pharm. Bull., 26(5), 725–728. https://doi.org/10.1248/bpb.26.725.

Wong, D. Z. H., Kadir, H. A. & Ling, S. K. (2012). Bioassay-guided isolation of neuroprotective compounds from Loranthus parasiticus against H2O2-induced oxidative damage in NG108-15 cells. J. Ethnopharmacol., 139(1), 256–264. https://doi.org/10.1016/j.jep.2011.11.010.

Guimond, M. O., Roberge, C. & Gallo-Payet, N. (2010). Fyn is involved in angiotensin II type 2 receptor-induced neurite outgrowth, but not in p42/p44mapk in NG108-15 cells. Mol. Cell. Neurosci., 45(3), 201–212. https://doi.org/10.1016/j. mcn.2010.06.011.

Jin, E. & Sano, M. (2008). Neurite outgrowth of NG108‐15 cells induced by heat shock protein 90 inhibitors. Cell Biochem. Funct., 26(8), 825–832. https://doi.org/10.1002/cbf.1458.

Lozano, A. M., Schmidt, M. & Roach, A. (1995). A convenient in vitro assay for the inhibition of neurite outgrowth by adult mammalian CNS myelin using immortalised neuronal cells. J. Neurosci. Meth., 63(1–2), 23–28. https://doi. org/10.1016/0165-0270(95)00081-X.

Tsuji, T. et al. (2011). Ect2, an ortholog of Drosophila’s pebble, negatively regulates neurite outgrowth in neuroblastoma × glioma hybrid NG108-15 cells. Cell. Mol. Neurobiol., 31(5), 663–668. https://doi.org/10.1007/s10571-011-9668-3.

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.