UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :2289-7879
Main Author :Shahrul Kadri Ayop
Additional Authors :Rosazley Ramly
Title :Temperature and concentration dependent viscosity of microcrystalline cellulose in water
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
The viscosity of cellulose behaves differently and uniquely in various conditions. In this paper, we aim to report the viscosity measurement and related properties of low concentration of microcrystalline cellulose (MCC) in water using a magnetic bearing rheometer. Dynamic viscosities for MCC diluted in water at varying concentrations were measured using the standard rheometry technique. The viscosity of the MCC solution was found highly dependent on its concentration and the experiment temperature. This varieties behaviour and properties offers benefits to the current growing rapidly technology applications such as in food, pharmaceutical cosmetics and textile. ? 2021, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. All Rights Reserved.

References

Trache, Djalal, M. Hazwan Hussin, Caryn Tan Hui Chuin, Sumiyyah Sabar, MR Nurul Fazita, Owolabi FA Taiwo, T. M. Hassan, and MK Mohamad Haafiz. "Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review." International Journal of Biological Macromolecules 93 (2016): 789-804. https://doi.org/10.1016/j.ijbiomac.2016.09.056.

Vigo, Tyrone L., and Barbara J. Kinzig, eds. Composite applications: the role of matrix, fiber, and interface. VCH, 1992.

Cataldi, Annalisa, Andrea Dorigato, Flavio Deflorian, and Alessandro Pegoretti. "Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration." Journal of materials science 49, no. 5 (2014): 2035-2044. https://doi.org/10.1007/s10853-013-7892-6.

Rafiee, Zahra, and Valiollah Keshavarz. "Synthesis and characterization of polyurethane/microcrystalline cellulose bionanocomposites." Progress in Organic Coatings 86 (2015): 190-193. https://doi.org/10.1016/j.porgcoat.2015.05.013.

Cataldi, Annalisa, Andrea Dorigato, Flavio Deflorian, and Alessandro Pegoretti. "Innovative microcrystalline cellulose composites as lining adhesives for canvas." Polymer Engineering & Science 55, no. 6 (2015): 1349-1354. https://doi.org/10.1002/pen.24074.

Hoyos, Catalina Gómez, Emilien Cristia, and Analía Vázquez. "Effect of cellulose microcrystalline particles on properties of cement based composites." Materials & Design 51 (2013): 810-818. https://doi.org/10.1016/j.matdes.2013.04.060.

Bai, Wen, and Kaichang Li. "Partial replacement of silica with microcrystalline cellulose in rubber composites." Composites Part A: Applied Science and Manufacturing 40, no. 10 (2009): 1597-1605. https://doi.org/10.1016/j.compositesa.2009.07.006.

Choe, Deokyeong, Young Min Kim, Jae Eun Nam, Keonwook Nam, Chul Soo Shin, and Young Hoon Roh. "Synthesis of high-strength microcrystalline cellulose hydrogel by viscosity adjustment." Carbohydrate Polymers 180 (2018): 231-237. https://doi.org/10.1016/j.carbpol.2017.10.017.

Peppas, Nicholas A., J. Zach Hilt, Ali Khademhosseini, and Robert Langer. "Hydrogels in biology and medicine: from molecular principles to bionanotechnology." Advanced Materials 18, no. 11 (2006): 1345-1360. https://doi.org/10.1002/adma.200501612.

Seliktar, Dror. "Designing cell-compatible hydrogels for biomedical applications." Science 336, no. 6085 (2012): 1124-1128. https://doi.org/10.1126/science.1214804.

Sun, Jeong-Yun, Xuanhe Zhao, Widusha RK Illeperuma, Ovijit Chaudhuri, Kyu Hwan Oh, David J. Mooney, Joost J. Vlassak, and Zhigang Suo. "Highly stretchable and tough hydrogels." Nature 489, no. 7414 (2012): 133-136. https://doi.org/10.1038/nature11409.

Zhao, Xuanhe. "Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks." Soft Matter 10, no. 5 (2014): 672-687. https://doi.org/10.1039/C3SM52272E.

Kamata, Hiroyuki, Yuki Akagi, Yuko Kayasuga-Kariya, Ung-il Chung, and Takamasa Sakai. "Nonswellable" hydrogel without mechanical hysteresis." Science 343, no. 6173 (2014): 873-875. https://doi.org/10.1126/science.1247811.

Zhang, Xiaoqing, Xiaolin Wu, Dachao Gao, and Kenong Xia. "Bulk cellulose plastic materials from processing cellulose powder using back pressure-equal channel angular pressing." Carbohydrate Polymers 87, no. 4 (2012): 2470-2476. https://doi.org/10.1016/j.carbpol.2011.11.019.

Scatolino, Mário Vanoli, Danillo Wisky Silva, Lina Bufalino, Gustavo Henrique Denzin Tonoli, and Lourival Marin Mendes. "Influence of cellulose viscosity and residual lignin on water absorption of nanofibril films." Procedia Engineering 200 (2017): 155-161. https://doi.org/10.1016/j.proeng.2017.07.023.

Pouyet, Frédéric, Dominique Lachenal, Satyajit Das, and Christine Chirat. "Minimizing viscosity loss during totally chlorine-free bleaching of hardwood kraft pulp." BioResources 8, no. 1 (2013): 238-249. https://doi.org/10.15376/biores.8.1.238-249.

Sukamta, Sukamta. "Computational fluid dynamics (CFD) and experimental study of two-phase flow patterns gasliquid with low viscosity in a horizontal capillary pipe." CFD Letters 11, no. 8 (2019): 16-23.

Maksom, Mohammad Syahadan, Nurul Fitriah Nasir, Norzelawati Asmuin, Muhammad Faqhrurrazi Abd Rahman, and Riyadhthusollehan Khairulfuaad. “Biodiesel Composition Effects on Density and Viscosity of Diesel-Biodiesel Blend A CFD Study." CFD Letters 12, no. 4 (2020): 100–109. https://doi.org/10.37934/cfdl.12.4.100109.

Benjumea, Pedro, John Agudelo, and Andres Agudelo. "Basic properties of palm oil biodiesel–diesel blends." Fuel 87, no. 10-11 (2008): 2069-2075. https://doi.org/10.1016/j.fuel.2007.11.004.

Caulfield, Daniel F., Rodney E. Jacobson, Karl D. Sears, and John H. Underwood. "Woodpulp fibres as reinforcements for high-melting engineering thermoplastics for ‘under-the-hood’automotive applications." The Polymer Processing. Montreal, Canada: The Polymer Processing Society (2001): 1-10.

Kiziltas, Alper, Douglas J. Gardner, Yousoo Han, and Han-Seung Yang. "Mechanical properties of microcrystalline cellulose (MCC) filled engineering thermoplastic composites." Journal of Polymers and the Environment 22, no. 3 (2014): 365-372. https://doi.org/10.1007/s10924-014-0676-5.

Aziz, Wan Nor Suhaila Wan, Shahrul Kadri Ayop, and Sugeng Riyanto. "The Potential Of Optical Tweezer (OT) For Viscoelastivity Measurement of Nanocellulose Solution." Jurnal Teknologi 74, no. 8 (2015). https://doi.org/10.11113/jt.v74.4722.

Wehrman, Matthew D., Seth Lindberg, and Kelly M. Schultz. "Quantifying the dynamic transition of hydrogenated castor oil gels measured via multiple particle tracking microrheology." Soft Matter 12, no. 30 (2016): 6463-6472. https://doi.org/10.1039/C6SM00978F.

Barnes, Howard A. "A handbook of elementary rheology. Institute of Non-Newtonian Fluid Mechanics." University of Wales (2000).

Vajjha, Ravikanth S., Debendra K. Das, and Godwin A. Chukwu. "An experimental determination of the viscosity of propylene glycol/water based nanofluids and development of new correlations." Journal of Fluids Engineering 137, no. 8 (2015). https://doi.org/10.1115/1.4029928.

Qiao, Congde, Guangxin Chen, Jianlong Zhang, and Jinshui Yao. "Structure and rheological properties of cellulose nanocrystals suspension." Food Hydrocolloids 55 (2016): 19-25. https://doi.org/10.1016/j.foodhyd.2015.11.005.

Rudraraju, Varma S., and Christy M. Wyandt. "Rheological characterization of Microcrystalline Cellulose/Sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part I." International Journal of Pharmaceutics 292, no. 1-2 (2005): 53-61. https://doi.org/10.1016/j.ijpharm.2004.10.011.

Jianan, Chen, Yan Shaoqiong, and Ruan Jinyue. "A study on the preparation, structure, and properties of microcrystalline cellulose." Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 33, no. 12 (1996): 1851-1862. https://doi.org/10.1080/10601329608011011.

Romero, Carmen M., and Alejandro Beltrán. "Effect of Temperature and Concentration on The Viscosity of Aqueous Solutions of 3-Aminopropanoic Acid, 4-Aminobutanoic Acid, 5-Aminopentanoic Acid, 6-Aminohexanoic." Revista Colombiana de Química 41, no. 1 (2012): 123-131.

Watanabe, Akihiko, Shigeaki Morita, and Yukihiro Ozaki. "Temperature-dependent structural changes in hydrogen bonds in microcrystalline cellulose studied by infrared and near-infrared spectroscopy with perturbationcorrelation moving-window two-dimensional correlation analysis." Applied Spectroscopy 60, no. 6 (2006): 611- 618. https://doi.org/10.1366/000370206777670549


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.