UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The objective of this study is to investigate Napa soil?s potential as an alternative additive in producing Portland composite cement. The Napa soil of Tanah Datar district, West Sumatra, Indonesia is a natural material which contains SiO2 and Al2O3 as its major components. The parameters used were the fineness of the cement particles, the amount left on a 45 �m sieve, the setting time, normal consistency, loss on ignition, insoluble parts, compressive strength and chemical composition. The composition of Napa soils (% w/w) used as variables include 4, 8, 12 and 16%. Furthermore, 8% pozzolan was used as a control in this research. The results showed that the compressive strength of Napa soil cement which contained 4% Napa soil was much better compared to that of the control on the 7th and 20th day. Furthermore, all the analyzed Napa soil cements met the standard of cement as stipulated in Indonesian National Standard, SNI 7064, 2016. ? 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
References |
(2015). SNI 2049: 2015 Semen Portland., Retrieved from www.scopus.com Standard specification for slag cement for use in concrete and mortars. (2012). Standard Specification for Slag Cement for use in Concrete and Mortars, Retrieved from www.scopus.com Al-Chaar, G., Alkadi, M., Yaksic, D. A., & Kallemeyn, L. A. (2011). The use of natural pozzolan in concrete as an additive or substitute for cement. Mater.Sci, , 11-46. Retrieved from www.scopus.com Alp, I., Deveci, H., Süngün, Y. H., Yilmaz, A. O., Kesimal, A., & Yilmaz, E. (2009). Pozzolanic characteristics of a natural raw material for use in blended cements. Iranian Journal of Science and Technology, Transaction B: Engineering, 33(4), 291-300. Retrieved from www.scopus.com Aras, A., Albayrak, M., Arikan, M., & Sobolev, K. (2007). Evaluation of selected kaolins as raw materials for the turkish cement and concrete industry. Clay Minerals, 42(2), 233-244. doi:10.1180/claymin.2007.042.2.08 Arvaniti, E. C., Juenger, M. C. G., Bernal, S. A., Duchesne, J., Courard, L., Leroy, S., . . . De Belie, N. (2015). Determination of particle size, surface area, and shape of supplementary cementitious materials by different techniques. Materials and Structures/Materiaux Et Constructions, 48(11), 3687-3701. doi:10.1617/s11527-014-0431-3 Chusilp, N., Jaturapitakkul, C., & Kiattikomol, K. (2009). Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars. Construction and Building Materials, 23(12), 3523-3531. doi:10.1016/j.conbuildmat.2009.06.046 Dave, N., Misra, A. K., Srivastava, A., & Kaushik, S. K. (2017). Setting time and standard consistency of quaternary binders: The influence of cementitious material addition and mixing. International Journal of Sustainable Built Environment, 6(1), 30-36. doi:10.1016/j.ijsbe.2016.10.004 Dembovska, L., Bajare, D., Pundiene, I., & Vitola, L. (2017). Effect of pozzolanic additives on the strength development of high performance concrete. Paper presented at the Procedia Engineering, , 172 202-210. doi:10.1016/j.proeng.2017.02.050 Retrieved from www.scopus.com Gonçalves, T., Silva, R. V., De Brito, J., Fernández, J. M., & Esquinas, A. R. (2019). Hydration of reactive MgO as partial cement replacement and its influence on the macroperformance of cementitious mortars. Advances in Materials Science and Engineering, 2019 doi:10.1155/2019/9271507 Ing, D. S., Chin, S. C., Guan, T. K., & Suil, A. (2016). The use of sewage sludge ash (SSA) as partial replacement of cement in concrete. ARPN Journal of Engineering and Applied Sciences, 11(6), 3771-3775. Retrieved from www.scopus.com Isberto, C. D., Labra, K. L., Landicho, J. M. B., & De Jesus, R. (2019). Optimized preparation of rice husk ash (RHA) as a supplementary cementitious material. International Journal of GEOMATE, 16(57), 56-61. doi:10.21660/2019.57.4628 Jing, G., Ye, Z., Lu, X., & Hou, P. (2017). Effect of graphene nanoplatelets on hydration behaviour of portland cement by thermal analysis. Advances in Cement Research, 29(2), 63-70. doi:10.1680/jadcr.16.00087 Kiattikomol, K., Jaturapitakkul, C., & Tangpagasit, J. (2000). Effect of insoluble residue on properties of portland cement. Cement and Concrete Research, 30(8), 1209-1214. doi:10.1016/S0008-8846(00)00315-X Kong, D., Du, X., Wei, S., Zhang, H., Yang, Y., & Shah, S. P. (2012). Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Construction and Building Materials, 37, 707-715. doi:10.1016/j.conbuildmat.2012.08.006 Li, Q., Lim, Y. M., Flores, K. M., Kranjc, K., & Jun, Y. -. (2015). Chemical reactions of portland cement with aqueous CO2 and their impacts on cements mechanical properties under geologic CO2 sequestration conditions. Environmental Science and Technology, 49(10), 6335-6343. doi:10.1021/es5063488 Ludwig, H. -., & Zhang, W. (2015). Research review of cement clinker chemistry. Cement and Concrete Research, 78, 24-37. doi:10.1016/j.cemconres.2015.05.018 Mawardi, Sanjaya, H., & Zainul, R. (2015). Characterization of napa soil and adsorbtion of pb (II) from aqueous solution using on column method. J.Chem.Pharm.Res., 7, 905-912. Retrieved from www.scopus.com Mehdipour, I., & Khayat, K. H. (2018). Understanding the role of particle packing characteristics in rheo-physical properties of cementitious suspensions: A literature review. Construction and Building Materials, 161, 340-353. doi:10.1016/j.conbuildmat.2017.11.147 Naganathan, S., & Linda, T. (2013). Effect of fly ash fineness on the performance of cement mortar. Jordan Journal of Civil Engineering, 7(3), 326-331. Retrieved from www.scopus.com Nežerka, V., Slížková, Z., Tesárek, P., Plachý, T., Frankeová, D., & Petráňová, V. (2014). Comprehensive study on mechanical properties of lime-based pastes with additions of metakaolin and brick dust. Cement and Concrete Research, 64, 17-29. doi:10.1016/j.cemconres.2014.06.006 Pacewska, B., & Wilińska, I. (2013). Hydration of cement composites containing large amount of waste materials. Paper presented at the Procedia Engineering, , 57 53-62. doi:10.1016/j.proeng.2013.04.009 Retrieved from www.scopus.com Saeed, K. A., Kassim, K. A., & Nur, H. (2014). Physicochemical characterization of cement treated kaolin clay. [Fizikalno-kemijska karakterizacija kaolinske gline s dodatkom cementa] Gradjevinar, 66(6), 513-521. doi:10.14256/JCE.976.2013 Teipel, U., & Winter, H. (2011). Characterization of the specific surface area with the permeation method. [Zur Charakterisierung der spezifischen Oberfläche nach dem Durchströmungsverfahren] Aufbereitungs-Technik/Mineral Processing, 52(6), 45-53. Retrieved from www.scopus.com Varma, M. B., & Gadling, P. (2016). Additive to cement - A pozzolanic material-fly ash. International Journal of Engineering Research, 3(5), 2319-68902347. Retrieved from www.scopus.com Wang, X. -., & Gupta, R. (2019). Analysis of hydration and optimal strength combinations of cement-limestone-metakaolin ternary composite. Advances in Materials Science and Engineering, 2019 doi:10.1155/2019/8361810 Wang, Y., Lu, H., Wang, J., & He, H. (2020). Effects of highly crystalized nano C-S-H particles on performances of portland cement paste and its mechanism. Crystals, 10(9), 1-17. doi:10.3390/cryst10090816 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |