UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The blending of hydrophilic materials with hydrophobic polymers has been reported with agglomeration due to their functional group immiscibility properties. In this study, the properties of PLA/CNF biocomposite were enhanced with amphiphilic chitosan produced by a substitution reaction. The substitution reaction was studied with FT-IR analysis. The amphiphilic chitosan was used as part of the matrix PLA/chitosan and reinforced with CNF to obtain PLA/chitosan/CNF biocomposite using combined melt extrusion and compression molding technique. The morphology and structural bonding of amphiphilic chitosan added in the biocomposite were studied with SEM, XRD, and FT-IR. Furthermore, the mechanical, thermal, and wettability properties of PLA/chitosan/CNF composite were studied with tensile analysis, thermogravimetry analysis, differential scanning calorimetry, water absorption, thickness swelling, and contact angle test. The preparation of the amphiphilic chitosan was successful, as observed from the FT-IR functional group analysis. The PLA/chitosan/CNF biocomposite properties showed a significant enhancement in the miscibility, mechanical, and thermal properties with no agglomeration. The wettability test also showed that the composite has a reduced hydrophobic nature compared with the neat PLA. The PLA/chitosan/CNF properties showed potential use for packaging application. ? 2021 John Wiley & Sons Ltd. |
References |
Abdul Khalil, H. P. S., Adnan, A. S., Yahya, E. B., Olaiya, N. G., Safrida, S., Hossain, M. S., . . . Pasquini, D. (2020). A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers, 12(8) doi:10.3390/polym12081759 Ahmed, J., & Varshney, S. K. (2011). Polylactides-chemistry, properties and green packaging technology: A review. International Journal of Food Properties, 14(1), 37-58. doi:10.1080/10942910903125284 Antipova, C. G., Lukanina, K. I., Krasheninnikov, S. V., Malakhov, S. N., Kamyshinsky, R. A., Grigoriev, T. E., & Chvalun, S. N. (2021). Study of highly porous poly-l-lactide-based composites with chitosan and collagen. Polymers for Advanced Technologies, 32(2), 853-860. doi:10.1002/pat.5136 Brebu, M. (2020). Environmental degradation of plastic composites with natural fillers-a review. Polymers, 12(1) doi:10.3390/polym12010165 Chen, W., Yu, H., Liu, Y., Hai, Y., Zhang, M., & Chen, P. (2011). Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose, 18(2), 433-442. doi:10.1007/s10570-011-9497-z Clarkson, C. M., El Awad Azrak, S. M., Chowdhury, R., Shuvo, S. N., Snyder, J., Schueneman, G., . . . Youngblood, J. P. (2019). Melt spinning of cellulose Nanofibril/Polylactic acid (CNF/PLA) composite fibers for high stiffness. ACS Applied Polymer Materials, 1(2), 160-168. doi:10.1021/acsapm.8b00030 Coltelli, M. -., Cinelli, P., Gigante, V., Aliotta, L., Morganti, P., Panariello, L., & Lazzeri, A. (2019). Chitin nanofibrils in poly(lactic acid) (PLA) nanocomposites: Dispersion and thermo-mechanical properties. International Journal of Molecular Sciences, 20(3) doi:10.3390/ijms20030504 da Mata Cunha, O., Lima, A. M. F., Assis, O. B. G., Tiera, M. J., & de Oliveira Tiera, V. A. (2020). Amphiphilic diethylaminoethyl chitosan of high molecular weight as an edible film. International Journal of Biological Macromolecules, 164, 3411-3420. doi:10.1016/j.ijbiomac.2020.08.145 Feng, H., & Dong, C. -. (2006). Preparation, characterization, and self-sssembled properties of biodegradable chitosan-poly(L-lactide) hybrid amphiphiles. Biomacromolecules, 7(11), 3069-3075. doi:10.1021/bm060568l García-Campo, M. J., Boronat, T., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Manufacturing and characterization of toughened poly(lactic acid) (PLA) formulations by ternary blends with biopolyesters. Polymers, 10(1) doi:10.3390/polym10010003 Ghasemi, S., Behrooz, R., Ghasemi, I., Yassar, R. S., & Long, F. (2018). Development of nanocellulose-reinforced PLA nanocomposite by using maleated PLA (PLA-g-MA). Journal of Thermoplastic Composite Materials, 31(8), 1090-1101. doi:10.1177/0892705717734600 Gupta, A., Pal, A. K., Woo, E. M., & Katiyar, V. (2018). Effects of amphiphilic chitosan on stereocomplexation and properties of poly(lactic acid) nano-biocomposite. Scientific Reports, 8(1) doi:10.1038/s41598-018-22281-1 Gupta, B., Revagade, N., & Hilborn, J. (2007). Poly(lactic acid) fiber: An overview. Progress in Polymer Science (Oxford), 32(4), 455-482. doi:10.1016/j.progpolymsci.2007.01.005 Hassan, M. M., & Koyama, K. (2020). Thermomechanical and viscoelastic properties of green composites of PLA using chitin micro-particles as fillers. Journal of Polymer Research, 27(2) doi:10.1007/s10965-019-1991-2 Khan, T., Hameed Sultan, M. T. B., & Ariffin, A. H. (2018). The challenges of natural fiber in manufacturing, material selection, and technology application: A review. Journal of Reinforced Plastics and Composites, 37(11), 770-779. doi:10.1177/0731684418756762 Kumar, K. P., & Sekaran, A. S. J. (2014). Some natural fibers used in polymer composites and their extraction processes: A review. Journal of Reinforced Plastics and Composites, 33(20), 1879-1892. doi:10.1177/0731684414548612 Le Troedec, M., Sedan, D., Peyratout, C., Bonnet, J. P., Smith, A., Guinebretiere, R., . . . Krausz, P. (2008). Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A: Applied Science and Manufacturing, 39(3), 514-522. doi:10.1016/j.compositesa.2007.12.001 Lee, S. -., Mohan, D. J., Kang, I. -., Doh, G. -., Lee, S., & Han, S. O. (2009). Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading. Fibers and Polymers, 10(1), 77-82. doi:10.1007/s12221-009-0077-x Li, G., Zhuang, Y., Mu, Q., Wang, M., & Fang, Y. (2008). Preparation, characterization and aggregation behavior of amphiphilic chitosan derivative having poly (l-lactic acid) side chains. Carbohydrate Polymers, 72(1), 60-66. doi:10.1016/j.carbpol.2007.07.042 Li, J., Li, J., Feng, D., Zhao, J., Sun, J., & Li, D. (2017). Comparative study on properties of polylactic acid nanocomposites with cellulose and chitin nanofibers extracted from different raw materials. Journal of Nanomaterials, 2017 doi:10.1155/2017/7193263 Lopes, A. C., Barcia, M. K., Veiga, T. B., Yamashita, F., Grossmann, M. V. E., & Olivato, J. B. (2021). Eco-friendly materials produced by blown-film extrusion as potential active food packaging. Polymers for Advanced Technologies, 32(2), 779-788. doi:10.1002/pat.5130 Murphy, C. A., & Collins, M. N. (2018). Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing. Polymer Composites, 39(4), 1311-1320. doi:10.1002/pc.24069 Muthuraj, R., Misra, M., & Mohanty, A. K. (2018). Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 135(24) doi:10.1002/app.45726 Nasrin, R., Biswas, S., Rashid, T. U., Afrin, S., Jahan, R. A., Haque, P., & Rahman, M. M. (2017). Preparation of chitin-PLA laminated composite for implantable application. Bioactive Materials, 2(4), 199-207. doi:10.1016/j.bioactmat.2017.09.003 Nejati, S., Karimi-Soflou, R., & Karkhaneh, A. (2021). Influence of process parameters on the characteristics of oxygen-releasing poly (lactic acid) microparticles: A multioptimization strategy. Polymers for Advanced Technologies, 32(2), 829-841. doi:10.1002/pat.5134 Nurul Atiqah, M. S., Gopakumar, D. A., Owolabi, F. A. T., Pottathara, Y. B., Rizal, S., Sri Aprilia, N. A., . . . Khalil, H. P. S. A. (2019). Extraction of cellulose nanofibers via eco-friendly supercritical carbon dioxide treatment followed by mild acid hydrolysis and the fabrication of cellulose nanopapers. Polymers, 11(11) doi:10.3390/polym11111813 Olaiya, N. G., Nuryawan, A., Oke, P. K., Khalil, H. P. S. A., Rizal, S., Mogaji, P. B., . . . Paridah, M. T. (2020). The role of two-step blending in the properties of starch/chitin/polylactic acid biodegradable composites for biomedical applications. Polymers, 12(3) doi:10.3390/polym12030592 Olaiya, N. G., Surya, I., Oke, P. K., Rizal, S., Sadiku, E. R., Ray, S. S., . . . Abdul Khalil, H. P. S. (2019). Properties and characterization of a PLA-chitin-starch biodegradable polymer composite. Polymers, 11(10) doi:10.3390/polym11101656 Pachuau, L., Vanlalfakawma, D. C., Tripathi, S. K., & Lalhlenmawia, H. (2014). Muli bamboo (melocanna baccifera) as a new source of microcrystalline cellulose. Journal of Applied Pharmaceutical Science, 4(11), 87-94. doi:10.7324/JAPS.2014.41115 Pang, X., Zhuang, X., Tang, Z., & Chen, X. (2010). Polylactic acid (PLA): Research, development and industrialization. Biotechnology Journal, 5(11), 1125-1136. doi:10.1002/biot.201000135 Philippova, O. E., & Korchagina, E. V. (2012). Chitosan and its hydrophobic derivatives: Preparation and aggregation in dilute aqueous solutions. Polymer Science - Series A, 54(7), 552-572. doi:10.1134/S0965545X12060107 Rajesh, G., Ratna Prasad, A. V., & Gupta, A. (2015). Mechanical and degradation properties of successive alkali treated completely biodegradable sisal fiber reinforced poly lactic acid composites. Journal of Reinforced Plastics and Composites, 34(12), 951-961. doi:10.1177/0731684415584784 Riaz, S., Fatima, N., Rasheed, A., Riaz, M., Anwar, F., & Khatoon, Y. (2018). Metabolic engineered biocatalyst: A solution for PLA based problems. International Journal of Biomaterials, 2018 doi:10.1155/2018/1963024 Rizal, S., Abdullah, C. K., Olaiya, N. G., Aprilia, N. A. S., Zein, I., Surya, I., & Khalil, H. P. S. A. (2020). Preparation of palm oil ash nanoparticles: Taguchi optimization method by particle size distribution and morphological studies. Applied Sciences (Switzerland), 10(3) doi:10.3390/app10030985 Saba, N., Jawaid, M., Alothman, O. Y., Paridah, M. T., & Hassan, A. (2016). Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. Journal of Reinforced Plastics and Composites, 35(6), 447-470. doi:10.1177/0731684415618459 Sanusi, O. M., Benelfellah, A., Bikiaris, D. N., & Aït Hocine, N. (2021). Effect of rigid nanoparticles and preparation techniques on the performances of poly(lactic acid) nanocomposites: A review. Polymers for Advanced Technologies, 32(2), 444-460. doi:10.1002/pat.5104 Shankar, S., & Rhim, J. -. (2016). Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydrate Polymers, 135, 18-26. doi:10.1016/j.carbpol.2015.08.082 Siakeng, R., Jawaid, M., Ariffin, H., Sapuan, S. M., Asim, M., & Saba, N. (2019). Natural fiber reinforced polylactic acid composites: A review. Polymer Composites, 40(2), 446-463. doi:10.1002/pc.24747 Soni, B., Hassan, E. B., & Mahmoud, B. (2015). Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydrate Polymers, 134, 581-589. doi:10.1016/j.carbpol.2015.08.031 Surya, I., Olaiya, N. G., Rizal, S., Zein, I., Aprilia, N. A. S., Hasan, M., . . . Khalil, H. P. S. A. (2020). Plasticizer enhancement on the miscibility and thermomechanical properties of polylactic acid-chitin-starch composites. Polymers, 12(1) doi:10.3390/polym12010115 Tham, M. W., Fazita, M. R. N., Abdul Khalil, H. P. S., Mahmud Zuhudi, N. Z., Jaafar, M., Rizal, S., & Haafiz, M. K. M. (2019). Tensile properties prediction of natural fibre composites using rule of mixtures: A review. Journal of Reinforced Plastics and Composites, 38(5), 211-248. doi:10.1177/0731684418813650 Uthaya Kumar, U. S., Abdulmadjid, S. N., Olaiya, N. G., Amirul, A. A., Rizal, S., Rahman, A. A., . . . Abdul Khalil, H. P. S. (2020). Extracted compounds from neem leaves as antimicrobial agent on the physico-chemical properties of seaweed-based biopolymer films. Polymers, 12(5) doi:10.3390/POLYM12051119 Wang, Q., Ji, C., Sun, J., Zhu, Q., & Liu, J. (2020). Structure and properties of polylactic acid biocomposite films reinforced with cellulose nanofibrils. Molecules, 25(14) doi:10.3390/molecules25143306 Wijesena, R. N., Tissera, N. D., Abeyratne, C., Bangamuwa, O. M., Ludowyke, N., Dahanayake, D., . . . de Silva, K. M. N. (2017). In-situ formation of supramolecular aggregates between chitin nanofibers and silver nanoparticles. Carbohydrate Polymers, 173, 295-304. doi:10.1016/j.carbpol.2017.05.065 Wu, Y., Zheng, Y., Yang, W., Wang, C., Hu, J., & Fu, S. (2005). Synthesis and characterization of a novel amphiphilic chitosan-polylactide graft copolymer. Carbohydrate Polymers, 59(2), 165-171. doi:10.1016/j.carbpol.2004.09.006 Yanat, M., & Schroën, K. (2021). Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive and Functional Polymers, 161 doi:10.1016/j.reactfunctpolym.2021.104849 Yang, M. -., Tseng, Y. -., Liu, K. -., Cheng, Y. -., Chen, W. -., Chen, W. -., . . . Liu, T. -. (2019). Preparation of amphiphilic chitosan-graphene oxide-cellulose nanocrystalline composite hydrogels and their biocompatibility and antibacterial properties. Applied Sciences (Switzerland), 9(15) doi:10.3390/app9153051 Yang, Z., Li, X., Si, J., Cui, Z., & Peng, K. (2019). Morphological, mechanical and thermal properties of poly(lactic acid) (PLA)/Cellulose nanofibrils (CNF) composites nanofiber for tissue engineering. Journal Wuhan University of Technology, Materials Science Edition, 34(1), 207-215. doi:10.1007/s11595-019-2037-7 Yu, H., Wang, W., Chen, X., Deng, C., & Jing, X. (2006). Synthesis and characterization of the biodegradable polycaprolactone-graft- chitosan amphiphilic copolymers. Biopolymers, 83(3), 233-242. doi:10.1002/bip.20551 Zamboulis, A., Nanaki, S., Michailidou, G., Koumentakou, I., Lazaridou, M., Ainali, N. M., . . . Bikiaris, D. N. (2020). Chitosan and its derivatives for ocular delivery formulations: Recent advances and developments. Polymers, 12(7) doi:10.3390/polym12071519 Zeng, J. -., Li, K. -., & Du, A. -. (2015). Compatibilization strategies in poly(lactic acid)-based blends. RSC Advances, 5(41), 32546-32565. doi:10.1039/c5ra01655j Zhang, Q., Lei, H., Cai, H., Han, X., Lin, X., Qian, M., . . . Mateo, W. (2020). Improvement on the properties of microcrystalline cellulose/polylactic acid composites by using activated biochar. Journal of Cleaner Production, 252 doi:10.1016/j.jclepro.2019.119898 Zhang, Y., Jia, S., Pan, H., Wang, L., Zhang, H., Yang, H., & Dong, L. (2021). Preparation, characterization and properties of biodegradable poly(butylene adipate-co-butylene terephthalate)/thermoplastic poly(propylene carbonate) polyurethane blend films. Polymers for Advanced Technologies, 32(2), 613-629. doi:10.1002/pat.5115 Zheng, D., Zhang, Y., Guo, Y., & Yue, J. (2019). Isolation and characterization of nanocellulose with a novel shape from walnut (juglans regia L.) shell agricultural waste. Polymers, 11(7) doi:10.3390/polym11071130 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |