UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The reinforcement effect of nanofiller in polymer enhanced the thermal stability, physical and mechanical properties of poly(lactic acid) (PLA) composites with good reinforcing capabilities for bio-based polymers. In this paper, the effect of reinforcement of titanium dioxide (TiO2) nanofiller on the mechanical properties and thermal behavior of PLA matrix are reported. PLA/TiO2 nanocomposites with different percentages of 2.0, 3.5, 5.0 and 7.0 % w/w were prepared by using solvent casting and thermocompression method. TiO2 were dispersed in PLA matrix using mechanical mixer and ultrasonication technique. The thermomechanical properties and thermal behavior of PLA nanocomposites were characterized using dynamic mechanical analysis (DMA) and differential scanning calorimeter (DSC). The increased in storage modulus by the addition of nanofiller with the highest increment provided by 2.0 % w/w TiO2 indicated a strong influence and better interfacial bonding between nanofiller and PLA matrix. An increased in storage modulus started at 100 �C that linked to the cold crystallization (Tcc) of PLA composites is in agreement with DSC result. The Tcc shifted to higher temperature as the content of nanofiller increased and this result were observed at 2.0 % w/w of the nanofiller content. Reinforcement of nanofiller increased the melting temperature from lower filler loading until 5.0 % w/w. The incorporation of TiO2 nanofiller as the reinforcement agent for PLA has a potential in biopolymer medical engineering and packaging industry, a highly competitive application with a great demand of cost and performance. ? 2021 Trans Tech Publications Ltd, Switzerland. |
References |
Adeosun, S. O., Lawal, G. I., Balogun, S. A., & Akpan, E. I. (2012). Review of green polymer nanocomposites. J.Miner.Mater.Charact.Eng., 11(4), 385-416. Retrieved from www.scopus.com Ali, F. B., Awale, R. J., Fakhruldin, H., & Anuar, H. (2016). Plasticizing poly(lactic acid) using epoxidized palm oil for environmental friendly packaging material. [Peningkatan fleksibiliti poli(laktik asid) menggunakan minyak kelapa sawit terepoksi untuk aplikasi pembungkus mesra alam] Malaysian Journal of Analytical Sciences, 20(5), 1153-1158. doi:10.17576/mjas-2016-2005-22 Anuar, H., Nur Fatin Izzati, A. B., Sharifah Nurul Inani, S. M., Siti Nur E’zzati, M. A., Siti Munirah Salimah, A. B., Ali, F. B., & Manshor, M. R. (2017). Impregnation of cinnamon essential oil into plasticised polylactic acid biocomposite film for active food packaging. Journal of Packaging Technology and Research, 1(3), 149-156. Retrieved from www.scopus.com Arrieta, M. P., Fortunati, E., Dominici, F., Rayón, E., López, J., & Kenny, J. M. (2014). PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 107, 139-149. doi:10.1016/j.polymdegradstab.2014.05.010 Avella, M., Buzarovska, A., Errico, M. E., Gentile, G., & Grozdanov, A. (2009). Eco-challenges of bio-based polymer composites. Materials, 2(3), 911-925. doi:10.3390/ma2030911 Avérous, L., Fringant, C., & Moro, L. (2001). Starch-based biodegradable materials suitable for thermoforming packaging. Starch/Staerke, 53(8), 368-371. doi:10.1002/1521-379X(200108)53:8<368::AID-STAR368>3.0.CO;2-W Azeredo, H. M. C. d. (2009). Nanocomposites for food packaging applications. Food Research International, 42(9), 1240-1253. doi:10.1016/j.foodres.2009.03.019 Azeredo, H. M. C. d. (2009). Nanocomposites for food packaging applications. Food Research International, 42(9), 1240-1253. doi:10.1016/j.foodres.2009.03.019 Baek, N., Kim, Y. T., Marcy, J. E., Duncan, S. E., & O'Keefe, S. F. (2018). Physical properties of nanocomposite polylactic acid films prepared with oleic acid modified titanium dioxide. Food Packaging and Shelf Life, 17, 30-38. doi:10.1016/j.fpsl.2018.05.004 Buzarovska, A., & Grozdanov, A. (2012). Biodegradable poly(L -lactic acid)/TiO2 nanocomposites: Thermal properties and degradation. Journal of Applied Polymer Science, 123(4), 2187-2193. doi:10.1002/app.34729 Cargnello, M., Gordon, T. R., & Murray, C. B. (2014). Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chemical Reviews, 114(19), 9319-9345. doi:10.1021/cr500170p Chen, C., Lv, G., Pan, C., Song, M., Wu, C., Guo, D., . . . Gu, Z. (2007). Poly(lactic acid) (PLA) based nanocomposites - A novel way of drug-releasing. Biomedical Materials, 2(4), L1-L4. doi:10.1088/1748-6041/2/4/L01 Chen, L., & Dou, Q. (2019). Influence of the combination of nucleating agent and plasticizer on the nonisothermal crystallization kinetics and activation energies of poly (lactic acid). J.Therm.Anal.Calorim, , 1-22. Retrieved from www.scopus.com Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chemical Reviews, 107(7), 2891-2959. doi:10.1021/cr0500535 Costa, R. G. F., Brichi, G. S., Ribeiro, C., & Mattoso, L. H. C. (2016). Nanocomposite fibers of poly(lactic acid)/titanium dioxide prepared by solution blow spinning. Polymer Bulletin, 73(11), 2973-2985. doi:10.1007/s00289-016-1635-1 Costa, R. G. F., Ribeiro, C., & Mattoso, L. H. C. (2010). Morphological and photocatalytic properties of PVA/TiO 2 nanocomposite fibers produced by electrospinning. Journal of Nanoscience and Nanotechnology, 10(8), 5144-5152. doi:10.1166/jnn.2010.2405 Costa, R. G. F., Ribeiro, C., & Mattoso, L. H. C. (2013). Study of the effect of rutile/anatase TiO2 nanoparticles synthesized by hydrothermal route in electrospun PVA/TiO2 nanocomposites. Journal of Applied Polymer Science, 127(6), 4463-4469. doi:10.1002/app.38031 Daud, N., & Shanks, R. A. (2014). Highly-filled hybrid composites prepared using centrifugal deposition. Journal of Polymer Engineering, 34(9), 875-881. doi:10.1515/polyeng-2013-0160 Fan, C., Plaxco, K. W., & Heeger, A. J. (2002). High-efficiency fluorescence quenching of conjugated polymers by proteins. Journal of the American Chemical Society, 124(20), 5642-5643. doi:10.1021/ja025899u Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21. doi:10.1016/S1389-5567(00)00002-2 Gumiero, M., Peressini, D., Pizzariello, A., Sensidoni, A., Iacumin, L., Comi, G., & Toniolo, R. (2013). Effect of TiO2 photocatalytic activity in a HDPE-based food packaging on the structural and microbiological stability of a short-ripened cheese. Food Chemistry, 138(2-3), 1633-1640. doi:10.1016/j.foodchem.2012.10.139 Henton, D. E., Gruber, P., Lunt, J., & Randall, J. (2005). Polylactic acid technology. Natural fibers, biopolymers, and biocomposites (pp. 527-577) Retrieved from www.scopus.com Kelnar, I., Kratochvíl, J., Kaprálková, L., Zhigunov, A., & Nevoralová, M. (2017). Graphite nanoplatelets-modified PLA/PCL: Effect of blend ratio and nanofiller localization on structure and properties. Journal of the Mechanical Behavior of Biomedical Materials, 71, 271-278. doi:10.1016/j.jmbbm.2017.03.028 Lagarón, J. -. (2011). Polylactic acid (PLA) nanocomposites for food packaging applications. Multifunctional and nanoreinforced polymers for food packaging (pp. 485-497) doi:10.1533/9780857092786 Retrieved from www.scopus.com Lim, L. -., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science (Oxford), 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004 Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R., & Fernandez, A. (2012). Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science and Technology, 24(1), 19-29. doi:10.1016/j.tifs.2011.10.001 Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092 Marra, A., Silvestre, C., Kujundziski, A. P., Chamovska, D., & Duraccio, D. (2017). Preparation and characterization of nanocomposites based on PLA and TiO2 nanoparticles functionalized with fluorocarbons. Polymer Bulletin, 74(8), 3027-3041. doi:10.1007/s00289-016-1881-2 Mhlanga, N., & Ray, S. S. (2014). Characterisation and thermal properties of titanium dioxide nanoparticles-containing biodegradable polylactide composites synthesized by sol-gel method. Journal of Nanoscience and Nanotechnology, 14(6), 4269-4277. doi:10.1166/jnn.2014.8271 Mo, S. -., & Ching, W. Y. (1995). Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B, 51(19), 13023-13032. doi:10.1103/PhysRevB.51.13023 Mustapa, I. R., Chandran, S., Shanks, R. A., & Kong, I. (2014). "Non-isothermal crystallization of poly (lactic acid)-hemp-silica nanocomposites plasticized with tributyl citrate.". In 37th Annual Condensed Matter and Materials Meeting, , 33-36. Retrieved from www.scopus.com Mustapa, I. R., Czajka, M., Chandran, S., Daud, N., Kong, I., & Shanks, R. A. (2016). Crystallization behavior of plasticized poly(lactic acid)-hemp nanocomposites. polymer research journal, suppl. Special Issue:Icapm 2013, Hauppauge, 10(4), 199-209. Retrieved from www.scopus.com Mustapa, I. R., & Shanks, R. A. (2012). Dynamic mechanical properties and melting behaviour of poly(lactic acid)-hemp-nanosilica hybrid composites. Paper presented at the ECCM 2012 - Composites at Venice, Proceedings of the 15th European Conference on Composite Materials, Retrieved from www.scopus.com Mustapa, I. R., Shanks, R. A., & Kong, I. (2014). Multiple melting behavior of poly(lactic acid)-hemp-silica composites using modulated-temperature differential scanning calorimetry. Journal of Polymer Engineering, 34(9), 895-903. doi:10.1515/polyeng-2013-0161 Mustapa, I. R., Shanks, R. A., & Kong, I. (2013). Poly(lactic acid)-hemp-nanosilica hybrid composites: Thermomechanical, thermal behavior and morphological properties. Int.J.Adv.Sci.Eng.Technol., 3(1), 192-199. Retrieved from www.scopus.com Nomai, J., Suksut, B., & Schlarb, A. K. (2015). Crystallization behavior of poly(lactic acid)/Titanium dioxide nano-composites. KMUTNB Int J Appl Sci Technol, 8, 251-258. Retrieved from www.scopus.com Raquez, J. -., Habibi, Y., Murariu, M., & Dubois, P. (2013). Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 38(10-11), 1504-1542. doi:10.1016/j.progpolymsci.2013.05.014 Rhim, J. -., Hong, S. -., & Ha, C. -. (2009). Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT, 42(2), 612-617. doi:10.1016/j.lwt.2008.02.015 Rhim, J. -., Park, H. -., & Ha, C. -. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. doi:10.1016/j.progpolymsci.2013.05.008 Scheirs, J., Camino, G., & Tumiatti, W. (2001). Overview of water evolution during the thermal degradation of cellulose. European Polymer Journal, 37(5), 933-942. doi:10.1016/S0014-3057(00)00211-1 Smijs, T. G., & Pavel, S. (2011). Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnology, Science and Applications, 4(1), 95-112. doi:10.2147/nsa.s19419 Song, M., Pan, C., Li, J., Wang, X., & Gu, Z. (2006). Electrochemical study on synergistic effect of the blending of nano TiO2 and PLA polymer on the interaction of antitumor drug with DNA. Electroanalysis, 18(19-20), 1995-2000. doi:10.1002/elan.200603613 Sullivan, E. M., Karimineghlani, P., Naraghi, M., Gerhardt, R. A., & Kalaitzidou, K. (2016). The effect of nanofiller geometry and compounding method on polylactic acid nanocomposite films. European Polymer Journal, 77, 31-42. doi:10.1016/j.eurpolymj.2016.02.009 Wang, G., Zhang, J., & Murray, R. W. (2002). DNA binding of an ethidium intercalator attached to a monolayer-protected gold cluster. Analytical Chemistry, 74(17), 4320-4327. doi:10.1021/ac0257804 Yang, C. -., Chang, C. -., Tsai, P. -., Chen, W. -., Tseng, F. -., & Lo, L. -. (2004). Nanoparticle-based in vivo investigation on blood-brain barrier permeability following ischemia and reperfusion. Analytical Chemistry, 76(15), 4465-4471. doi:10.1021/ac035491v Yasuniwa, M., Sakamo, K., Ono, Y., & Kawahara, W. (2008). Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer, 49(7), 1943-1951. doi:10.1016/j.polymer.2008.02.034 Yasuniwa, M., Tsubakihara, S., Sugimoto, Y., & Nakafuku, C. (2004). Thermal analysis of the double-melting behavior of poly(L-lactic acid). Journal of Polymer Science, Part B: Polymer Physics, 42(1), 25-32. doi:10.1002/polb.10674 Zhao, Y. -., Cheung, H. -., Lau, K. -., Xu, C. -., Zhao, D. -., & Li, H. -. (2010). Silkworm silk/poly(lactic acid) biocomposites: Dynamic mechanical, thermal and biodegradable properties. Polymer Degradation and Stability, 95(10), 1978-1987. doi:10.1016/j.polymdegradstab.2010.07.015 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |