UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :research_report
Subject :TK Electrical engineering. Electronics Nuclear engineering
Main Author :Azmi Mohamed
Additional Authors :Noorazlan Abdul Azis
Title :Optimizing chemical structure of surfactant for graphene exfoliation method for nanoelectronic devices applications
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2019
Corporate Name :Universiti Pendidikan Sultan Idris

Abstract : Universiti Pendidikan Sultan Idris
A facile electrochemical exfoliation method was established to efficiently prepare conductive paper containing reduced graphene oxide (RGO) with the help of dodecyl anionic and cationic surfactant. For the first time the combination of ionic surfactants and cellulose was used to directly exfoliate graphite. A thorough investigation using electron microscopy and Raman spectroscopy highlights the presence of uniform graphene incorporated inside the matrix. Studies into aqueous aggregation behavior between graphene and cellulose and is responsible for the enhanced exfoliation level and stabilization of the resulting dispersion. Interestingly, the cationic surfactant DTAB proved to be more efficient for stabilization of RGO in nanofibrillated kenaf cellulose than the anionic SDS. The simple and feasible process for producing conductive paper here is attractive for the possibility of scaling-up this technique for mass production of conductive composite containing graphene or other layered materials.

References

Bergström, M., & Pedersen, J. S. (1998). Small-angle neutron scattering (SANS) study of

aggregates formed from aqueous mixtures of sodium dodecyl sulfate (SDS) and

dodecyltrimethylammonium bromide (DTAB). Langmuir, 14, 3754-3761.

 

Brown, P., Bushmelev, A., Butts, C. P., Cheng, J., Eastoe, J., Grillo, I., Heenan, R. K., & Schmidt,

A. M. (2012). Magnetic control over liquid surface properties with responsive surfactants.

Angewandte Chemie International Edition, 124, 2464-2466.

 

Kaniyoor, A., & Ramaprabhu, S. (2012). A Raman spectroscopic investigation of graphite oxide

derived graphene. AIP Advances, 2, 032183.

 

Karukstis, K. K., Suljak, S. W., Waller, P. J., Whiles, J. A., & Thompson, E. H. Z. (1996).

Fluorescence analysis of single and mixed micelle systems of SDS and DTAB. The Journal of

Physical Chemistry, 100, 11125-11132.

 

Kiziltas, E. E., Kiziltas, A., Rhodes, K., Emanetoglu, N. W., Blumentritt, M., & Gardner, D. J.

(2016). Electrically conductive nano graphite-filled bacterial cellulose composites. Carbohydrate

polymers, 136, 1144-1151.

 

Matsuo, Y., Niwa, T., & Sugie, Y. (1999). Preparation and characterization of cationic surfactantintercalated

graphite oxide. Carbon, 37, 897-901.

 

McCoy, T. M., de Campo, L., Sokolova, A. V., Grillo, I., Izgorodina, E. I., & Tabor, R. F. (2018).

Bulk properties of aqueous graphene oxide and reduced graphene oxide with surfactants and

polymers: adsorption and stability. Physical Chemistry Chemical Physics, 20, 16801-16816.

 

Mohamed, A., Ardyani, T., Abu Bakar, S., Brown, P., Hollamby, M., Sagisaka, M., & Eastoe, J.

(2016). Graphene-philic surfactants for nanocomposites in latex technology. Advances in Colloid

and Interface Science, 230, 54-69.

 

Mohamed, A., Ardyani, T., Abu Bakar, S., Sagisaka, M., Umetsu, Y., Hamon, J. J., Rahim, B. A.,

Esa, S. R., Abdul Khalil, H. P. S., Mamat, M. H., King, S., & Eastoe, J. (2018b). Rational design of

aromatic surfactants for graphene/natural rubber latex nanocomposites with enhanced electrical

conductivity. Journal of Colloid and Interface Science, 516, 34-47.

 

Mohamed, A., Ardyani, T., Abu Bakar, S., Sagisaka, M., Umetsu, Y., Hussin, M. R. M., Ahmad,

M. K., Mamat, M. H., King, S., Czajka, A., Hill, C., & Eastoe, J. (2018a). Preparation of

conductive cellulose paper through electrochemical exfoliation of graphite: The role of anionic

surfactant ionic liquids as exfoliating and stabilizing agents. Carbohydrate polymers, 201, 48-59.

 

Paria, S., Manohar, C., & Khilar, K. C. (2004). Effect of cationic surfactant on the adsorption

characteristics of anionic surfactant on cellulose surface. Colloids and Surfaces A:

Physicochemical and Engineering Aspects, 232, 139-142.

 

Quennouz, N., Hashmi, S. M., Choi, H. S., Kim, J. W., & Osuji, C. O. (2016). Rheology of

cellulose nanofibrils in the presence of surfactants. Soft Matter, 12, 157-164.

 

Smith, R. J., Lotya, M., & Coleman, J. N. (2010). The importance of repulsive potential barriers for

the dispersion of graphene using surfactants. New Journal of Physics, 12, 125008.

 

Stone, M. T., Smith, P. G., da Rocha, S. R. P., Rossky, P. J., & Johnston, K. P. (2004). Low

interfacial free volume of stubby surfactants stabilizes water-in-carbon dioxide microemulsions.

Journal of Physical Chemistry B, 108, 1962-1966.

 

Tardy, B. L., Yokota, S., Ago, M., Xiang, W., Kondo, T., Bordes, R., & Rodes, O. J. (2017).

Nanocellulose-surfactant interactions. Current Opinion in Colloid & Interface Science, 29, 57-67.

 

Vadukumpully, S., Paul, J., & Valiyaveettil, S. (2009). Cationic surfactant mediated exfoliation of

graphite into graphene flakes. Carbon, 47, 3288-3294.

 

Wang, F., Drzal, L. T., Qin, Y., & Huang, Z. (2015). Multifunctional graphene

nanoplatelets/cellulose nanocrystals composite paper. Composites Part B: Engineering, 79, 521-

529.

 

Wang, H., Zhou, W., Ho, D. L., Winey, K. I., Fischer, J. E., Glinka, C. J., & Hobbie, E. K. (2004).

Dispersing single-walled carbon nanotubes with surfactants: a small angle neutron scattering study.

Nano Letters, 4, 1789-1793.

 

Wang, Q., Han, Y., Wang, Y., Qin, Y., & Guo, Z.-X. (2008). Effect of surfactant structure on the

stability of carbon nanotubes in aqueous solution. The Journal of Physical Chemistry B, 112, 7227-

7233.

 

Wang, R., Bian, H., Ji, H., & Yang, R. (2018). Preparation of lignocellulose/graphene composite

conductive paper. Cellulose, 25, 6139-6149.

 

Wang, S., Yi, M., & Shen, Z. (2016). The effect of surfactants and their concentration on the liquid

exfoliation of graphene. RSC Advances, 6, 56705-56710.

 

Xhanari, K., Syverud, K., Chinga-Carrasco, G., Paso, K., & Stenius, P. (2011). Reduction of water

wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose, 18, 257-

270.

 

Ye, Y.-S., Zeng, H.-X., Wu, J., Dong, L.-Y., Zhu, J.-T., Xue, Z.-G., Zhou, X.-P., Xie, X.-L., &

Mai, Y.-W. (2016). Biocompatible reduced graphene oxide sheets with superior water dispersibility

stabilized by cellulose nanocrystals and their polyethylene oxide composites. Green Chemistry, 18,

1674-1683.

 

Zhou, J., & Zhang, L. (2000). Solubility of cellulose in NaOH/urea aqueous solution. Polymer

Journal, 32, 866-870.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.