UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
A facile electrochemical exfoliation method was established to efficiently prepare conductive paper
containing reduced graphene oxide (RGO) with the help of dodecyl anionic and cationic surfactant.
For the first time the combination of ionic surfactants and cellulose was used to directly exfoliate
graphite. A thorough investigation using electron microscopy and Raman spectroscopy highlights
the presence of uniform graphene incorporated inside the matrix. Studies into aqueous aggregation
behavior between graphene and cellulose and is responsible for the enhanced exfoliation level and
stabilization of the resulting dispersion. Interestingly, the cationic surfactant DTAB proved to be
more efficient for stabilization of RGO in nanofibrillated kenaf cellulose than the anionic SDS. The
simple and feasible process for producing conductive paper here is attractive for the possibility of
scaling-up this technique for mass production of conductive composite containing graphene or
other layered materials. |
References |
Bergström, M., & Pedersen, J. S. (1998). Small-angle neutron scattering (SANS) study of aggregates formed from aqueous mixtures of sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB). Langmuir, 14, 3754-3761.
Brown, P., Bushmelev, A., Butts, C. P., Cheng, J., Eastoe, J., Grillo, I., Heenan, R. K., & Schmidt, A. M. (2012). Magnetic control over liquid surface properties with responsive surfactants. Angewandte Chemie International Edition, 124, 2464-2466.
Kaniyoor, A., & Ramaprabhu, S. (2012). A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Advances, 2, 032183.
Karukstis, K. K., Suljak, S. W., Waller, P. J., Whiles, J. A., & Thompson, E. H. Z. (1996). Fluorescence analysis of single and mixed micelle systems of SDS and DTAB. The Journal of Physical Chemistry, 100, 11125-11132.
Kiziltas, E. E., Kiziltas, A., Rhodes, K., Emanetoglu, N. W., Blumentritt, M., & Gardner, D. J. (2016). Electrically conductive nano graphite-filled bacterial cellulose composites. Carbohydrate polymers, 136, 1144-1151.
Matsuo, Y., Niwa, T., & Sugie, Y. (1999). Preparation and characterization of cationic surfactantintercalated graphite oxide. Carbon, 37, 897-901.
McCoy, T. M., de Campo, L., Sokolova, A. V., Grillo, I., Izgorodina, E. I., & Tabor, R. F. (2018). Bulk properties of aqueous graphene oxide and reduced graphene oxide with surfactants and polymers: adsorption and stability. Physical Chemistry Chemical Physics, 20, 16801-16816.
Mohamed, A., Ardyani, T., Abu Bakar, S., Brown, P., Hollamby, M., Sagisaka, M., & Eastoe, J. (2016). Graphene-philic surfactants for nanocomposites in latex technology. Advances in Colloid and Interface Science, 230, 54-69.
Mohamed, A., Ardyani, T., Abu Bakar, S., Sagisaka, M., Umetsu, Y., Hamon, J. J., Rahim, B. A., Esa, S. R., Abdul Khalil, H. P. S., Mamat, M. H., King, S., & Eastoe, J. (2018b). Rational design of aromatic surfactants for graphene/natural rubber latex nanocomposites with enhanced electrical conductivity. Journal of Colloid and Interface Science, 516, 34-47.
Mohamed, A., Ardyani, T., Abu Bakar, S., Sagisaka, M., Umetsu, Y., Hussin, M. R. M., Ahmad, M. K., Mamat, M. H., King, S., Czajka, A., Hill, C., & Eastoe, J. (2018a). Preparation of conductive cellulose paper through electrochemical exfoliation of graphite: The role of anionic surfactant ionic liquids as exfoliating and stabilizing agents. Carbohydrate polymers, 201, 48-59.
Paria, S., Manohar, C., & Khilar, K. C. (2004). Effect of cationic surfactant on the adsorption characteristics of anionic surfactant on cellulose surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 232, 139-142.
Quennouz, N., Hashmi, S. M., Choi, H. S., Kim, J. W., & Osuji, C. O. (2016). Rheology of cellulose nanofibrils in the presence of surfactants. Soft Matter, 12, 157-164.
Smith, R. J., Lotya, M., & Coleman, J. N. (2010). The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New Journal of Physics, 12, 125008.
Stone, M. T., Smith, P. G., da Rocha, S. R. P., Rossky, P. J., & Johnston, K. P. (2004). Low interfacial free volume of stubby surfactants stabilizes water-in-carbon dioxide microemulsions. Journal of Physical Chemistry B, 108, 1962-1966.
Tardy, B. L., Yokota, S., Ago, M., Xiang, W., Kondo, T., Bordes, R., & Rodes, O. J. (2017). Nanocellulose-surfactant interactions. Current Opinion in Colloid & Interface Science, 29, 57-67.
Vadukumpully, S., Paul, J., & Valiyaveettil, S. (2009). Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon, 47, 3288-3294.
Wang, F., Drzal, L. T., Qin, Y., & Huang, Z. (2015). Multifunctional graphene nanoplatelets/cellulose nanocrystals composite paper. Composites Part B: Engineering, 79, 521- 529.
Wang, H., Zhou, W., Ho, D. L., Winey, K. I., Fischer, J. E., Glinka, C. J., & Hobbie, E. K. (2004). Dispersing single-walled carbon nanotubes with surfactants: a small angle neutron scattering study. Nano Letters, 4, 1789-1793.
Wang, Q., Han, Y., Wang, Y., Qin, Y., & Guo, Z.-X. (2008). Effect of surfactant structure on the stability of carbon nanotubes in aqueous solution. The Journal of Physical Chemistry B, 112, 7227- 7233.
Wang, R., Bian, H., Ji, H., & Yang, R. (2018). Preparation of lignocellulose/graphene composite conductive paper. Cellulose, 25, 6139-6149.
Wang, S., Yi, M., & Shen, Z. (2016). The effect of surfactants and their concentration on the liquid exfoliation of graphene. RSC Advances, 6, 56705-56710.
Xhanari, K., Syverud, K., Chinga-Carrasco, G., Paso, K., & Stenius, P. (2011). Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose, 18, 257- 270.
Ye, Y.-S., Zeng, H.-X., Wu, J., Dong, L.-Y., Zhu, J.-T., Xue, Z.-G., Zhou, X.-P., Xie, X.-L., & Mai, Y.-W. (2016). Biocompatible reduced graphene oxide sheets with superior water dispersibility stabilized by cellulose nanocrystals and their polyethylene oxide composites. Green Chemistry, 18, 1674-1683.
Zhou, J., & Zhang, L. (2000). Solubility of cellulose in NaOH/urea aqueous solution. Polymer Journal, 32, 866-870. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |