UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :HD Industries. Land use. Labor
Main Author :Norazela Nordin
Title :Biosynthesis of carbohydrate and lipid in Chlorella vulgaris UPSI-JRM01 for biofuel feedstock production
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2020
Notes :with CD
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
This study aims to investigate the effect of photo-autotrophic cultural conditions (light intensity, temperature, pH, CO2 and NO3-) of C. vulgaris UPSI-JRM01 and to optimise the lipid, carbohydrate and biomass productivities for high biofuel feedstock production. In addition, carbon partitioning mechanism under nitrogen stress was also elucidated. The method of single-factor experiment was used to determine the effect of each cultural condition. The optimisation process was performed using statistical method of Plackett-Burman Design and Central Composite Design. The whole transcriptome analysis of gene expression under nitrogen stress was also performed using RNA sequencing. The results indicated that the lipid and carbohydrate yields were increased 3.19-fold and 1.39-fold under nitrogen stress and 5% CO2, respectively. The highest biomass productivity was achieved at 10,500 lux, 28 oC, pH 8, 5% CO2 and 500 mg/L NO3-. Meanwhile, the highest lipid yield was achieved at 23,500 lux, 40 oC, pH 8, 0.03% CO2 and without NO3- addition. The biomass, lipid and carbohydrate productivities were optimised to 404.24 mg/L/day, 65.30 mg/L/day and 165.43 mg/L/day, respectively. The major fatty acid methyl ester components were C16:0 (33.54%) and C18:2 (30.29%), thereby producing biodiesel complied with ASTM D6751 standard. Moreover, the results of gene expression study revealed the two-stage response to nitrogen stress; i) carbohydrate accumulation, plastid protein degradation, and amino acid biosynthesis, and ii) lipid accumulation, carbohydrate degradation, and DNA damage. In conclusion, the production of biofuel feedstock from microalgae biomass was feasible. The nitrogen stress triggered high carbohydrate accumulation before the carbon partitioned into triacylglycerol (TAG) using two different pathways; chloroplastic TAG synthesis and glycerolipid metabolism. The implication of this study can be associated with the potential development of biofuel feedstock from microalgae for future application and providing insight of carbon partitioning mechanism in C. vulgaris UPSI-JRM01 under nitrogen stress.

References

Abdelaziz, A. E. M., Leite, G. B., Belhaj, M. A., & Hallenbeck, P. C. (2014). Screening microalgae native to Quebec for wastewater treatment and biodiesel production. Bioresource Technology, 157, 140–148. https://doi.org/10.1016/j.biortech.2014. 01.114 

Abdullah, B., Syed Muhammad, S. A. F., Shokravi, Z., Ismail, S., Kassim, K. A., Mahmood, A. N., & Aziz, M. M. A. (2019). Fourth generation biofuel: a review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews, 107(February), 37–50. https://doi.org/10.1016/j.rser.2019.02.018 

Adams, C., Godfrey, V., Wahlen, B., Seefeldt, L., & Bugbee, B. (2013). Understanding precision nitrogen stress to optimize the growth and lipid content trade-off in oleaginous green microalgae. Bioresource Technology, 131, 188–194. https://doi.org/10.1016/j.biortech.2012.12.143 

Aguirre, A. M., & Bassi, A. (2013). Investigation of biomass concentration, lipid production, and cellulose content in Chlorella vulgaris cultures using response surface methodology. Biotechnology and Bioengineering, 110(8), 2114–2122. https://doi.org/10.1002/bit.24871 

Allen, J. W., DiRusso, C. C., & Black, P. N. (2015). Triacylglycerol synthesis during nitrogen stress involves the prokaryotic lipid synthesis pathway and acyl chain remodeling in the microalgae Coccomyxa subellipsoidea. Algal Research, 10, 110–120. https://doi.org/10.1016/j.algal.2015.04.019 

Al-lwayzy, S. H., Yusaf, T., & Al-Juboori, R. A. (2014). Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies, 7(3), 1829–1851. https://doi.org/10.3390/en7031829 

Andersson, V., Broberg Viklund, S., Hackl, R., Karlsson, M., & Berntsson, T. (2014). Algae-based biofuel production as part of an industrial cluster. Biomass and Bioenergy, 71, 113–124. https://doi.org/10.1016/j.biombioe.2014.10.019 

Anjos, M., Fernandes, B. D., Vicente, A. A., Teixeira, J. A., & Dragone, G. (2013). Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource Technology, 139, 149–154. https://doi.org/10.1016/j.biortech.2013.04.032 

Arora, N., Patel, A., Pruthi, P. A., & Pruthi, V. (2015). Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresource Technology, 213, 79-87. https://doi.org/10.1016/j.biortech.2016.02.112 

Ashokkumar, V., Salam, Z., Tiwari, O. N., Chinnasamy, S., Mohammed, S., & Ani, F. N. (2015). An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor. Energy Conversion and Management, 101, 778–786. https://doi.org/10.1016/j.enconman.2015.06.006 

Banerjee, A., Maiti, S. K., Guria, C., & Banerjee, C. (2016). Metabolic pathways for lipid synthesis under nitrogen stress in Chlamydomonas and Nannochloropsis. Biotechnology Letters, 39(1), 1–11. https://doi.org/10.1007/s10529-016-2216-y 

Barghbani, R., Rezaei, K., & Javanshir, A. (2012). Investigating the effects of several parameters on the growth of Chlorella vulgaris using Taguchi’s experimental approach. International Journal of Biotechnology for Wellness Industries, 1, 128–133. 

Battah, M., El-Ayoty, Y., El-Fatah Abomohra, A., El-Ghany, S. A., & Esmael, A. (2013). Optimization of growth and lipid production of the Chlorophyte microalga Chlorella vulgaris as a feedstock for biodiesel production. World Applied Sciences Journal, 28(11), 1536–1543. https://doi.org/10.5829/idosi.wasj.2013.28.11.1918 

Beacham, T. A., Macia, V. M., Rooks, P., White, D. A., & Ali, S. T. (2015). Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis. Biotechnology Reports, 7, 87–94. https://doi.org/10.1016/j.btre.2015.05.007 

Bellinger, E. G., & Sigee, D. C. (2010). Freshwater Algae. Chichester, United Kingdom: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470689554 

Bellou, S., Baeshen, M. N., Elazzazy, A. M., Aggeli, D., Sayegh, F., & Aggelis, G. (2014). Microalgal lipids biochemistry and biotechnological perspectives. Biotechnology Advances, 32(8), 1476–1493. https://doi.org/10.1016/j.biotechadv.2014.10.003 

Bhola, V., Desikan, R., Santosh, S. K., Subburamu, K., Sanniyasi, E., & Bux, F. (2011). Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. Journal of Bioscience and Bioengineering, 111(3), 377–382. https://doi.org/10.1016/j.jbiosc.2010.11.006 

Bidle, K. D., & Falkowski, P. G. (2004). Cell death in planktonic photosynthetic microorganisms. Nature Reviews, 2, 643–655. https://doi.org/10.1038/nrmicro956 

Biller, P., Ross, A. B., Skill, S. C., Lea-Langton, A., Balasundaram, B., Hall, C., Llewellyn, C. A. (2012). Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Research, 1(1), 70–76. https://doi.org/10.1016/j.algal.2012.02.002 

Binnal, P., & Babu, P. N. (2017). Statistical optimization of parameters affecting lipid productivity of microalga Chlorella protothecoides cultivated in photobioreactor under nitrogen starvation. South African Journal of Chemical Engineering, 23, 26–37. https://doi.org/10.1016/j.sajce.2017.01.001 

Biondi, N., Tredici, M. R., Bassi, N., Guccione, A., Rodolfi, L., & Sampietro, G. (2014). Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnology for Biofuels, 7(1), 84. https://doi.org/10.1186/1754-6834-7-84 

Blair, M. F., Kokabian, B., & Gude, V. G. (2014). Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering, 2(1), 665–674. https://doi.org/10.1016/j.jece.2013.11.005 

Borde, V. & Lichten, M. (2014). A timeless but timely connection between replication and recombination. Cell, 158(4), 697–698. https://doi.org/10.1016/j.cell.2014.07.029 

Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., & Vítová, M. (2011). Microalgae-novel highly efficient starch producers. Biotechnology and Bioengineering, 108(4), 766–776. https://doi.org/10.1002/bit.23016 

Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2012). The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology, 124, 217–226. https://doi.org/10.1016/j.biortech.2012.08.003 

Cabanelas, I. T. D., Arbib, Z., Chinalia, F. A., Souza, C. O., Perales, J. A., Almeida, P. F., Nascimento, I. A. (2013). From waste to energy: microalgae production in wastewater and glycerol. Applied Energy, 109, 283–290. https://doi.org/10.1016/j.apenergy.2013.04.023 

Campenni’, L., Nobre, B. P., Santos, C. A., Oliveira, A. C., Aires-Barros, M. R., Palavra, A. M. F., & Gouveia, L. (2013). Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Applied Microbiology and Biotechnology, 97(3), 1383–1393. https://doi.org/10.1007/s00253-012-4570-6 

Cárdenas, C., Miller, R. A., Smith, I., Bui, T., Molgó, J., Müller, M., & Foskett, J. K. (2010). Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell, 142(2), 270–283. https://doi.org/10.1016/j.cell.2010.06.007 

Castellanos, C. S. (2013). Batch and Continuous Studies of Chlorella vulgaris in Photo-bioreactors (Master of Science dissertation). The University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/1113 

Chen, C., Zhao, X., Yen, H., Ho, S., & Cheng, C. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1–10. https://doi.org/10.1016/j.bej.2013.03.006 

Chen, G., Zhao, L., & Qi, Y. (2015). Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Applied Energy, 137, 282–291. https://doi.org/10.1016/j.apenergy.2014.10.032 

Cheng, D., Li, D., Yuan, Y., Zhou, L., Li, X., Wu, T., Sun, Y. (2017). Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. Biotechnology for Biofuels, 10(1), 1–14. https://doi.org/10.1186/s13068-017-0753-9 

Cheng, L., Zhang, L., Chen, H., & Gao, C. (2006). Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Separation and Purification Technology, 50(3), 324–329. https://doi.org/10.1016/j.seppur.2005.12.006 

Chi, X., Zhang, X., Guan, X., Ding, L., Li, Y., Wang, M., Qin, S. (2008). Fatty acid biosynthesis in eukaryotic photosynthetic microalgae: Identification of a microsomal delta 12 desaturase in Chlamydomonas reinhardtii. Journal of Microbiology, 46(2), 189–201. https://doi.org/10.1007/s12275-007-0223-3 

Chisti, Y., & Yan, J. (2011). Energy from algae: current status and future trends. Algal biofuels - a status report. Applied Energy, 88(10), 3277–3279. https://doi.org/10.1016/j.apenergy.2011.04.038 

Chu, F. F., Chu, P. N., Cai, P. J., Li, W. W., Lam, P. K. S., & Zeng, R. J. (2013). Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresource Technology, 134, 341–346. https://doi.org/10.1016/j.biortech.2013.01.131 

Chu, F. F., Chu, P. N., Shen, X. F., Lam, P. K. S., & Zeng, R. J. (2014). Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresource Technology, 152, 241–246. https://doi.org/10.1016/j.biortech.2013.11.013 

Concas, A., Antonio, G., Pisu, M., & Cao, G. (2012). Experimental analysis and novel modeling of semi-batch photobioreactors operated with Chlorella vulgaris and fed with 100% (v/v) CO2. Chemical Engineering Journal, 213, 203–213. https://doi.org/10.1016/j.cej.2012.09.119 

Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146–1151. https://doi.org/10.1016/j.cep.2009.03.006 

Costa, S. S., Miranda, A. L., Andrade, B. B., Assis, D. J., Souza, C. O., de Morais, M. G., Druzian, J. I. (2018). Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. International Journal of Biological Macromolecules, 116, 552–562. https://doi.org/10.1016/j.ijbiomac.2018.05.064 

Cuellar-Bermudez, S. P., Aleman-Nava, G. S., Chandra, R., Garcia-Perez, J. S., Contreras-Angulo, J. R., Markou, G., & Parra-Saldivar, R. (2017). Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Research, 24, 438–449. https://doi.org/10.1016/j.algal.2016.08.018 

Culture Collection of Algae and Protozoa (CCAP) (2013). Media Recipes Used by CCAP to Maintain Microalgal Strains. Retrieved from http://www.ccap.ac.uk/media/pdfrecipes.htm 

Daliry, S., Hallajisani, A., Roshandeh, J. M., Nouri, H., & Golzary, A. (2017). Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global J. Environ. Sci. Manage, 3(2), 217–230. https://doi.org/10.22034/gjesm.2017.03.02.010 

Dasgupta, C. N., Suseela, M. R., Mandotra, S. K., Kumar, P., Pandey, M. K., Toppo, K., & Lone, J. a. (2015). Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production. Applied Energy, 146, 202–208. https://doi.org/10.1016/j.apenergy.2015.01.070 

Dayananda, C., Sarada, R., Shamala, T. R., & Ravishankar, G. A. (2006). Influence of nitrogen sources on growth, hydrocarbon and fatty acid production by Botryococcus braunii. Asian Journal of Plant Sciences, 5(5), 799-804. https://doi.org/10.3923/ajps.2006.799.804 

Dayana-Priyadharshini, S., & Bakthavatsalam, A. K. (2016). Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett-Burman design and response surface methodology. Bioresource Technology, 207, 150–156. https://doi.org/10.1016/j.biortech.2016.01.138 

De Farias Silva, C. E., & Sforza, E. (2016). Carbohydrate productivity in continuous reactor under nitrogen limitation: effect of light and residence time on nutrient uptake in Chlorella vulgaris. Process Biochemistry, 51(12), 2112–2118. https://doi.org/10.1016/j.procbio.2016.09.015 

De Souza, M. P., Hoeltz, M., Gressler, P. D., Benitez, L. B., & Schneider, R. C. S. (2018). Potential of Microalgal Bioproducts: General Perspectives and Main Challenges. Waste and Biomass Valorization, 10(8), 2139–2156. https://doi.org/10.1007/s12649-018-0253-6 

Dianursanti, B. T. R., Gumelar, M. T., & Abdullah, T. H. (2014). Industrial tofu wastewater as a cultivation medium of microalgae Chlorella vulgaris. Energy Procedia, 47, 56–61. https://doi.org/10.1016/j.egypro.2014.01.196 

El-Kassas, H. Y., & Mohamed, L. A. (2014). Bioremediation of the textile waste effluent by Chlorella vulgaris. The Egyptian Journal of Aquatic Research, 40(3), 301–308. https://doi.org/10.1016/j.ejar.2014.08.003 

Enamala, M. K., Enamala, S., Chavali, M., Donepudi, J., Yadavalli, R., Kolapalli, B., & Kuppam, C. (2018). Production of biofuels from microalgae - a review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable and Sustainable Energy Reviews, 94(May 2017), 49–68. https://doi.org/10.1016/j.rser.2018.05.012 

Factsheet. (2011). Fatty Acid Methyl Esters (FAME). European Biofuels Technology Platform, 1, 1–2. 

Fan, J., Andre, C., & Xu, C. (2011). A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Letters, 585(12), 1985–1991. https://doi.org/10.1016/j.febslet.2011.05.018 

Fan, J., Cui, Y., Wan, M., Wang, W., & Li, Y. (2014a). Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels, 7(1), 17. https://doi.org/10.1186/1754-6834-7-17 

Fan, J., Cui, Y., Zhou, Y., Wan, M., Wang, W., Xie, J., & Li, Y. (2014b). The effect of nutrition pattern alteration on Chlorella pyrenoidosa growth, lipid biosynthesis-related gene transcription. Bioresource Technology, 164, 214–220. https://doi.org/10.1016/j.biortech.2014.04.087 

Fan, J., Xu, H., Luo, Y., Wan, M., Huang, J., Wang, W., & Li, Y. (2015). Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella. Applied Microbiology and Biotechnology, 99(5), 2451–2462. https://doi.org/10.1007/s00253-015-6397-4 

Fan, L., Zhang, Y., Cheng, L., Zhang, L., Tang, D., & Chen, H. (2007). Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor. Chemical Engineering and Technology, 30(8), 1094–1099. https://doi.org/10.1002/ceat.200700141 

Farooq, W., Suh, W. I., Park, M. S., & Yang, J. (2015). Water use and its recycling in microalgae cultivation for biofuel application. Bioresource Technology, 184, 73–81. https://doi.org/10.1016/j.biortech.2014.10.140 

Fung, K. S., Ngu, H. L. N., Ngee, L., Liew, E. W. T., Teng, W., & Ngu, H. L. N. (2013). Optimization of nutrient media composition for microalgae biomass production using central composite design. In: Wang L, editors. Proceeding of Chemeca 2013: Challenging Tomorrow; 2013 Sept 29-Oct 2; Barton, ACT: Engineers Australia; 2013. p. 278-282. 

Galarza, J. I., Delgado, N., & Henríquez, V. (2016). Cisgenesis and intragenesis in microalgae: promising advancements towards sustainable metabolites production. Applied Microbiology and Biotechnology, 100(24), 10225–10235. https://doi.org/10.1007/s00253-016-7948-z 

Galarza, J. I., Gimpel, J. A., Rojas, V., Arredondo-Vega, B. O., & Henríquez, V. (2018). Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering. Algal Research, 31(March 2017), 291–297. https://doi.org/10.1016/j.algal.2018.02.024 

Ganapathi, S., Shetty, V., & Mokashi, K. (2015). Enhanced lipid productivity approaches in microalgae as an alternate for fossil fuels: a review. Journal of the Energy Institute, 89(3), 1–5. https://doi.org/10.1016/j.joei.2015.03.008 

Gao, C., Wang, Y., Shen, Y., Yan, D., He, X., Dai, J., & Wu, Q. (2014). Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes. BMC Genomics, 15, 582. https://doi.org/10.1186/1471-2164-15-582 

Gardner, R. D., Lohman, E., Gerlach, R., Cooksey, K. E., & Peyton, B. M. (2013). Comparison of CO2 and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii. Biotechnology and Bioengineering, 110(1), 87–96. https://doi.org/10.1002/bit.2 4592 

Ghafari, M., Rashidi, B., & Haznedaroglu, B. Z. (2018). Effects of macro and micronutrients on neutral lipid accumulation in oleaginous microalgae. Biofuels, 9(2), 147–156. https://doi.org/10.1080/17597269.2016.1221644 

Goncalves, E. C., Johnson, J. V., & Rathinasabapathi, B. (2013). Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29. Planta, 238(5), 895–906. https://doi.org/10.1007/s00425-013-1946-5 

Goncalves, E. C., Wilkie, A. C., Kirst, M., & Rathinasabapathi, B. (2016). Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotechnology Journal, 14(8), 1–12. https://doi.org/10.1111/pbi.12523 

González-Fernández, C., & Ballesteros, M. (2012). Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnology Advances, 30(6), 1655–1661. https://doi.org/10.1016/j.biotechadv.2012.07.003 

Graham, L. E., Graham, J. M., & Wilcox, L. W. (2009). Algae (Second Edi). New York: Benjamin Cunnings. 

Griffiths, M. J., & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21(5), 493–507. https://doi.org/10.1007/s10811-008-9392-7 

Griffiths, M. J., Van Hille, R. P., & Harrison, S. T. L. (2014). The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Applied Microbiology and Biotechnology, 98(5), 2345–2356. https://doi.org/10.1007/s00253-013-5442-4 

Hadjoudja, S., Deluchat, V., & Baudu, M. (2010). Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. Journal of Colloid and Interface Science, 342(2), 293–299. https://doi.org/10.1016/j.jcis.2009.10.078 

Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: a review. Biotechnology Advances, 30(3), 709–732. https://doi.org/10.1016/j.biotechadv.2012.01.001 

Han, F., Pei, H., Hu, W., Song, M., Ma, G., & Pei, R. (2015). Optimization and lipid production enhancement of microalgae culture by efficiently changing the conditions along with the growth-state. Energy Conversion and Management, 90, 315–322. https://doi.org/10.1016/j.enconman.2014.11.032 

Han, L., Pei, H., Hu, W., Jiang, L., Ma, G., Zhang, S., & Han, F. (2015). Integrated campus sewage treatment and biomass production by Scenedesmus quadricauda SDEC-13. Bioresource Technology, 175, 262–268. https://doi.org/10.1016/j.biortech.2014.10.100 

Haynes, W. M., Lide, D. R., & Bruno, T. J. (2016). CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data (97th ed.). Bota Racon, Florida: CRC Press. 

Heidari, M., Kariminia, H. R., & Shayegan, J. (2016). Effect of culture age and initial inoculum size on lipid accumulation and productivity in a hybrid cultivation system of Chlorella vulgaris. Process Safety and Environmental Protection, 104, 111–122. https://doi.org/10.1016/j.psep.2016.07.012 

Heilmann, I. (2004). Identification of the Arabidopsis palmitoyl-monogalactosyldiacylglycerol 7-desaturase gene FAD5, and effects of plastidial retargeting of Arabidopsis desaturases on the FAD5 mutant phenotype. Plant Physiology, 136(4), 4237–4245. https://doi.org/10.1104/pp.104.052951 

Hill, J. A., Lavandero, S., & Rothermel, B. A. (2012). Autophagy in cardiac physiology and disease. Muscle (First Edition). Elsevier Inc. https://doi.org/10.1016/B978-0-12-381510-1.00030-2 

Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244–252. https://doi.org/10.1016/j.biortech.2011.11.133 

Ho, S. H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., & Chang, J. S. (2013). Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresource Technology, 135, 157–165. https://doi.org/10.1016/j.biortech.2012.10.100 

Ho, S. H., Nakanishi, A., Kato, Y., Yamasaki, H., Chang, J. S., Misawa, N., & Kondo, A. (2017). Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Scientific Reports, 7(April), 1–7. https://doi.org/10.1038/srep45471 

Hong, S. J., & Lee, C. G. (2008). Statistical optimization of culture media for production of phycobiliprotein by Synechocystis sp. PCC 6701. Biotechnology and Bioprocess Engineering, 13(4), 491–498. https://doi.org/10.1007/s12257-008-0154-9 

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 54(4), 621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x 

Hu, Q., Zeng, R., Zhang, S. X., Yang, Z. H., & Huang, H. (2014). Production of microalgal lipids as biodiesel feedstock with fixation of CO2 by Chlorella vulgaris. Food Technology and Biotechnology, 52(3), 285–291. 

Hu, X., Liu, B., Deng, Y., Bao, X., Yang, A., & Zhou, J. (2019). A novel two-stage culture strategy used to cultivate Chlorella vulgaris for increasing the lipid productivity. Separation and Purification Technology, 211(June 2018), 816–822. https://doi.org/10.1016/j.seppur.2018.10.056 

Ikaran, Z., Urreta, I., & Castañón, S. (2015). The effect of nitrogen limitation on the physiology and metabolism of Chlorella vulgaris var L3. Algal, 10, 134–144. https://doi.org/10.1016/j.algal.2015.04.023 

Islam, M. A., Ayoko, G. A., Brown, R., Stuart, D., & Heimann, K. (2013). Influence of fatty acid structure on fuel properties of algae derived biodiesel. Procedia Engineering, 56, 591–596. https://doi.org/10.1016/j.proeng.2013.03.164 

Izumo, A., Fujiwara, S., Oyama, Y., Satoh, A., Fujita, N., Nakamura, Y., & Tsuzuki, M. (2007). Physicochemical properties of starch in Chlorella change depending on the CO2 concentration during growth: comparison of structure and properties of pyrenoid and stroma starch. Plant Science, 172(6), 1138–1147. https://doi.org/10.1016/j.plantsci.2007.03.001 

Jia, J., Han, D., Gerken, H. G., Li, Y., Sommerfeld, M., Hu, Q., & Xu, J. (2015). Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under nitrogen-depletion conditions. Algal Research, 7, 66–77. https://doi.org/10.1016/j.algal.2014.11.005 

Jiang, G., Li, F., Wang, S., Sun, J., & Liu, Z. (2019). Positive correlation between lipid accumulation and gene expression of a copper-containing amine oxidase gene in Chlorella under nitrogen starvation. Algal Research, 40, 1–8. https://doi.org/10.1016/j.algal.2019.101504 

Jones, C. S., & Mayfield, S. P. (2012). Algae biofuels: versatility for the future of bioenergy. Current Opinion in Biotechnology, 23(3), 346–351. https://doi.org/10.1016/j.copbio.2011.10.013 

Kamalanathan, M., Chaisutyakorn, P., Gleadow, R., & Beardall, J. (2018). A comparison of photoautotrophic, heterotrophic, and mixotrophic growth for biomass production by the green alga Scenedesmus sp. (Chlorophyceae). Phycologia, 57(3), 309–317. https://doi.org/10.2216/17-82.1 

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2014). Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Research, 42, 199–205. https://doi.org/10.1093/nar/gkt1076 

Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44, 457–462. https://doi.org/10.1093/nar/gkv1070 

Khoeyi, Z. A., Seyfabadi, J., & Ramezanpour, Z. (2012). Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture International, 20(1), 41–49. https://doi.org/10.1007/s10499-011-9440-1 

Kim, J., & Lee, J. (2009). Growth kinetic study of Chlorella vulgaris. AIChE Annual Meeting, Conference Proceedings, 11, 2–7. Retrieved from http://www.aicheproceedings.org/2009/Fall/data/papers/Paper154015.pdf 

Kim, J., Lee, J. Y., & Lu, T. (2014). Effects of dissolved inorganic carbon and mixing on autotrophic growth of Chlorella vulgaris. Biochemical Engineering Journal, 82, 34–40. https://doi.org/10.1016/j.bej.2013.11.007 

Kirrolia, A., Bishnoi, N. R., & Singh, R. (2013). Microalgae as a boon for sustainable energy production and its future research & development aspects. Renewable and Sustainable Energy Reviews, 20, 642–656. https://doi.org/10.1016/j.rser.2012.12.003 

Klein, B. C., Bonomi, A., & Filho, R. M. (2018). Integration of microalgae production with industrial biofuel facilities: a critical review. Renewable and Sustainable Energy Reviews, 82, 1376–1392. https://doi.org/10.1016/j.rser.2017.04.063 

Kong, W. B., Hua, S. F., Cao, H., Mu, Y. W., Yang, H., Song, H., & Xia, C. G. (2012). Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by Chlorella vulgaris using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 43(3), 360–367. https://doi.org/10.1016/j.jtice.2011.11.007 

Kovács, E., Wirth, R., Maróti, G., Bagi, Z., Rákhely, G., & Kovács, K. L. (2013). Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition. PLoS ONE, 8(10), 1–18. https://doi.org/10.1371/journal.pone.0077265 

Krienitz, L., Huss, V. A. R., & Bock, C. (2015). Chlorella: 125 years of the green survivalist. Trends in Plant Science, 20(2), 67–69. https://doi.org/10.1016/j.tplants.2014.11.005 

Krisnangkura, K. (1986). A simple method for estimation of cetane index of vegetable oil methyl esters. Journal of the American Oil Chemists Society, 63(4), 552–553. https://doi.org/10.1007/BF02645752 

Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Van Langenhove, H. (2010). Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnology, 28(7), 371–380. https://doi.org/10.1016/j.tibtech.2010.04.004 

Kumar, S., Kaushik, P., Malik, A., & Kumar, V. (2013). Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnology Advances, 31(8), 1408–1425. https://doi.org/10.1016/j.biotechadv.2013.06.005 

Kyoto (KEGG) (2018). KEGG pathway maps for Chlorella variabilis. Retrieved from https://www.genome.jp/keggbin/show_organism?menu_type=pathway_maps&org=cvr. 

Lehninger, D., Nelson, D., & Cox, M. (2005). Principles of biochemistry, 4th edition. New York: W. H. Freeman 

Li, L., Cui, J., Liu, Q., Ding, Y., & Liu, J. (2015). Screening and phylogenetic analysis of lipid-rich microalgae. Algal Research, 11, 381–386. https://doi.org/10.1016/j.algal.2015.02.028 

Li, T., Gargouri, M., Feng, J., Park, J. J., Gao, D., Miao, C., Chen, S. (2015). Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Bioresource Technology, 180, 250–257. https://doi.org/10.1016/j.biortech.2015.01.005 

Li, T., Xu, J., Gao, B., Xiang, W., Li, A., & Zhang, C. (2016). Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies. Algal Research, 16, 481–491. https://doi.org/10.1016/j.algal.2016.04.008 

Li, X., Yuan, Y., Cheng, D., Gao, J., Kong, L., Zhao, Q., Sun, Y. (2018). Exploring stress tolerance mechanism of evolved freshwater strain Chlorella sp. S30 under 30 g/L salt. Bioresource Technology, 250(November 2017), 495–504. https://doi.org/10.1016/j.biortech.2017.11.072 

Li, Y., Chen, Y. F., Chen, P., Min, M., Zhou, W., Martinez, B., & Ruan, R. (2011b). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102(8), 5138–5144. https://doi.org/10.1016/j.biortech.2011.01.091 

Li, Y., Fei, X., & Deng, X. (2012). Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass and Bioenergy, 42, 199–211. https://doi.org/10.1016/j.biombioe.2012.03.010 

Li, Y., Han, D., Sommerfeld, M., & Hu, Q. (2011a). Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresource Technology, 102(1), 123–129. https://doi.org/10.1016/j.biortech.2010.06.036 

Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(7), 1043–1049. https://doi.org/10.1007/s10529-009-9975-7 

Liu, Y., Xu, Y., Yu, Y. P., Yu, R., Li, P., Qiao, D., & Cao, Y. (2014). The biodiversity of oleaginous microalgae in Northern Qinghai-Tibet Plateau. African Journal of Microbiology Research 8(1), 66–74. https://doi.org/10.5897/AJMR12.806 

Mallick, N., Mandal, S., Singh, A. K., Bishai, M., & Dash, A. (2012). Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. Journal of Chemical Technology and Biotechnology, 87(1), 137–145. https://doi.org/10.1002/jctb.2694 

Mallick, N., Mandal, S., Singh, A. K., Bishai, M., & Dash, A. (2012). Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. Journal of Chemical Technology and Biotechnology, 87(1), 137–145. https://doi.org/10.1002/jctb.2694 

Mandotra, S. K., Kumar, P., Suseela, M. R., Nayaka, S., & Ramteke, P. W. (2016). Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Bioresource Technology, 201, 222–229. https://doi.org/10.1016/j.biortech.2015.11.042 

Markou, G., & Georgakakis, D. (2011). Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Applied Energy, 88(10), 3389–3401. https://doi.org/10.1016/j.apenergy.2010.12.042 

Markou, G., Depraetere, O., Vandamme, D., & Muylaert, K. (2015). Cultivation of Chlorella vulgaris and Arthrospira platensis with recovered phosphorus from wastewater by means of zeolite sorption. International Journal of Molecular Sciences, 16(2), 4250–4264. https://doi.org/10.3390/ijms16024250 

Markou, G., Vandamme, D., & Muylaert, K. (2014). Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Research, 65, 186–202. https://doi.org/10.1016/j.watres.2014.07.025 

Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/j.rser.2009.07.020 

Md Nadzir, S., Yusof, N., Nordin, N., Abdullah, H., & Kamari, A. (2019). Optimisation of carbohydrate, lipid and biomass productivity in Tetradesmus obliquus using response surface methodology. Biofuels, Online First, 1–10. https://doi.org/10.1080/17597269.2018.1542568 

Memmola, F., Mukherjee, B., Moroney, J. V, & Giordano, M. (2014). Carbon allocation and element composition in four Chlamydomonas mutants defective in genes related to the CO2 concentrating mechanism. Photosynthesis Research, 121(2–3), 201–211. https://doi.org/10.1007/s11120-014-0005-9 

Metz, J. G., Roessler, P., Facciotti, D., Levering, C., Dittrich, F., Lassner, M., Browse, J. (2001). Production of polyunsaturated fatty acids by potyketide synthases in both prokaryotes and eukaryotes. Science, 293(5528), 290–293. https://doi.org/10.1126/science.1059593 

Milano, J., Ong, H. C., Masjuki, H. H., Chong, W. T., Lam, M. K., Loh, P. K., & Vellayan, V. (2016). Microalgae biofuels as an alternative to fossil fuel for power generation. Renewable and Sustainable Energy Reviews, 58, 180–197. https://doi.org/10.1016/j.rser.2015.12.150 

Mitra, D., Van Leeuwen, J. (Hans), & Lamsal, B. (2012). Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Research, 1(1), 40–48. https://doi.org/10.1016/j.algal.2012.03.002 

Mohammad Mirzaie, M. A., Kalbasi, M., Mousavi, S. M., & Ghobadian, B. (2016). Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Preparative Biochemistry and Biotechnology, 46(2), 150–156. https://doi.org/10.1080/10826068.2014.995812 

Mohammady, N. G. E., El-Sayed, H. S., El-Kassas, H. Y., & Elsherbiny, B. A. (2017). A preliminary study on some Chlorella spp. For biodiesel production. Biotechnologia, 98(4), 323–331. https://doi.org/10.5114/bta.2017.72294 

Mohd Yusoff, M. Z., Maeda, T., Sanchez-Torres, V., Ogawa, H. I., Shirai, Y., Hassan, M. A., & Wood, T. K. (2012). Uncharacterized Escherichia coli proteins YdjA and YhjY are related to biohydrogen production. International Journal of Hydrogen Energy, 37(23), 17778–17787. https://doi.org/10.1016/j.ijhydene.2012.08.115 

Morales-Sánchez, D., Kyndt, J., Ogden, K., & Martinez, A. (2016). Toward an understanding of lipid and starch accumulation in microalgae: A proteomic study of Neochloris oleoabundans cultivated under N-limited heterotrophic conditions. Algal Research, 20, 22–34. https://doi.org/10.1016/j.algal.2016.09.006 

Mubarak, M., Shaija, A., & Suchithra, T. V. (2018). Cost effective approach for production of Chlorella pyrenoidosa: a RSM based study. Waste and Biomass Valorization, 1-13. https://doi.org/10.1007/s12649-018-0330-x 

Mühlroth, A., Li, K., Røkke, G., Winge, P., Olsen, Y., Hohmann-Marriott, M., Bones, A. (2013). Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Marine Drugs, 11(11), 4662–4697. https://doi.org/10.3390/md11114662 

Mujtaba, G., Choi, W., Lee, C. G., & Lee, K. (2012). Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresource Technology, 123, 279–283. https://doi.org/10.1016/j.biortech.2012.07.057 

Murray, K. E., Shields, J. a., Garcia, N. D., & Healy, F. G. (2012). Productivity, carbon utilization, and energy content of mass in scalable microalgae systems. Bioresource Technology, 114, 499–506. https://doi.org/10.1016/j.biortech.2012.03.012 

Mustapa, M., Sallehudin, N. J., Mohamed, M. S., & Noor, N. M. (2016). Decontamination of chlorella sp. culture using antibiotics and antifungal cocktail treatment. ARPN Journal of Engineering and Applied Sciences, 11(1), 104–109. 

Mustapha, N. A., Sharuddin, S. S., Mohd Zainudin, M. H., Ramli, N., Shirai, Y., & Maeda, T. (2017). Inhibition of methane production by the palm oil industrial waste phospholine gum in a mimic enteric fermentation. Journal of Cleaner Production, 165, 621–629. https://doi.org/10.1016/j.jclepro.2017.07.129 

Mutlu, Y. B., Isik, O., Uslu, L., Koç, K., & Durmaz, Y. (2011). The effects of nitrogen and phosphorus deficiencies and nitrite addition on the lipid content of Chlorella 

vulgaris (Chlorophyceae). African Journal of Biotechnology, 10(3), 453–456. https://doi.org/10.5897/AJB10.1390 

Nan, Y., Liu, J., Lin, R., & Tavlarides, L. L. (2015). Production of biodiesel from microalgae oil (Chlorella protothecoides) by non-catalytic transesterification in supercritical methanol and ethanol: process optimization. The Journal of Supercritical Fluids, 97, 174–182. https://doi.org/10.1016/j.supflu.2014.08.025 

Neves, B., Jacob, L. E., & Franco, T. T. (2010). Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. Journal of Chemical Technology and Biotechnology, 85(October 2009), 395–403. https://doi.org/10.1002/jctb.2338 

Nguyen, T. D. P., Frappart, M., Jaouen, P., Pruvost, J., & Bourseau, P. (2014). Harvesting Chlorella vulgaris by natural increase in pH: effect of medium composition. Environmental Technology, 35(11), 1378–1388. https://doi.org/10.1080/09593330.2013.868531 

Nordin, N., Samsudin, S., & Yusof, N. (2019). Isolation and identification of microalgae from high nitrate landfill leachate. Jurnal Teknologi, 81(5), 61–67. https://doi.org/10.11113/jt.v81.13581 

Nordin, N., Yusof, N., & Samsudin, S. (2016). Biomass production of Chlorella sp., Scenedesmus sp., and Oscillatoria sp. in nitrified landfill leachate. Waste and Biomass Valorization, 8(7), 2301–2311. https://doi.org/10.1007/s12649-016-9709-8 

Olinares, P. D. B., Kim, J., & Van Wijk, K. J. (2011). The Clp protease system; a central component of the chloroplast protease network. Biochimica et Biophysica Acta - Bioenergetics, 1807(8), 999–1011. https://doi.org/10.1016/j.bbabio.2010.12.003 

Oo, T. T., Nway, W., Oo, N., Thu, M. K., & Oo, M. M. (2008). Optimization of oil-rich microalgae (Scenedesmus sp. and Chlorella sp.) culture for biodiesel research and development. GMSARN International Conference on Sustainable Development: Issues and Prospects for the GMS, 12-14 Nov. 2008, 2–4. 

Ördög, V., Stirk, W. A., Bálint, P., Lovász, C., Pulz, O., & Van Staden, J. (2013). Lipid productivity and fatty acid composition in Chlorella and Scenepdesmus strains grown in nitrogen-stressed conditions. Journal of Applied Phycology, 25(1), 233–243. https://doi.org/10.1007/s10811-012-9857-6 

Otondo, A., Kokabian, B., Stuart-Dahl, S., & Gude, V. G. (2018). Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris. Journal of Environmental Chemical Engineering, 6(2), 3213–3222. https://doi.org/10.1016/j.jece.2018.04.064 

Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 156, 146–154. https://doi.org/10.1016/j.biortech.2014.01.025 

Pancha, I., Chokshi, K., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2015). Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus. Bioresource Technology, 193, 315–323. https://doi.org/10.1016/j.biortech.2015.06.107 

Pires, J. C. M., Gonçalves, A. L., Martins, F. G., Alvim-Ferraz, M. C. M., & Simões, M. (2014). Effect of light supply on CO2 capture from atmosphere by Chlorella vulgaris and Pseudokirchneriella subcapitata. Mitigation and Adaptation Strategies for Global Change, 19(7), 1109–1117. https://doi.org/10.1007/s11027-013-9463-1 

Pufelski, N., Aravinthan, V., & Yusaf, T. (2010). How effective is microalgae treatment of nursery wastewater for nutrient removal? Proceedings of the 2010, November, Toowoomba, Australia, 1–8. Retrieved from http://eprints.usq.edu.au/18190 

QIAGEN. (2017). De Novo Assembly of Paired Data. Retrieved from http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=De_Novo_Assembly.html. 

Raeesossadati, M. J., Ahmadzadeh, H., McHenry, M. P., & Moheimani, N. R. (2014). CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature. Algal Research, 6, 78–85. https://doi.org/10.1016/j.algal.2014.09.007 

Raheem, A., Prinsen, P., Vuppaladadiyam, A. K., Zhao, M., & Luque, R. (2018). A review on sustainable microalgae based biofuel and bioenergy production: recent developments. Journal of Cleaner Production, 181, 42–59. https://doi.org/10.1016/j.jclepro.2018.01.125 

Rai, M. P., Gautom, T., & Sharma, N. (2015). Effect of Salinity, pH, Light Intensity on Growth and Lipid Production of Microalgae for Bioenergy Application. OnLine Journal of Biological Sciences, 15(4), 260–267. https://doi.org/10.3844/ojbsci.2015.260.267 

Ramanna, L., Guldhe, A., Rawat, I., & Bux, F. (2014). The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresource Technology, 168, 127–135. https://doi.org/10.1016/j.biortech.2014.03.064 

Ramirez-Lopez, C., Chairez, I., & Fernandez-Linares, L. (2016). A novel culture medium designed for the simultaneous enhancement of biomass and lipid production by Chlorella vulgaris UTEX 26. Bioresource Technology, 212, 207–216. https://doi.org/10.1016/j.biortech.2016.04.051 

Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., & Pérez, Á. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100(1), 261–268. https://doi.org/10.1016/j.biortech.2008.06.039 

Rawat, I., Ranjith, K. R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Applied Energy, 103, 444–467. https://doi.org/10.1016/j.apenergy.2012.10.004 

Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & de Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renewable and Sustainable Energy Reviews, 27, 622–653. https://doi.org/10.1016/j.rser.2013.05.063 

Reddy, N. R. R., Mehta, R. H., Soni, P. H., Makasana, J., Gajbhiye, N. A., Ponnuchamy, M., & Kumar, J. (2015). Next generation sequencing and transcriptome analysis predicts biosynthetic pathway of sennosides from senna (Cassia angustifolia Vahl.), a non-model plant with potent laxative properties. PLoS ONE, 10(6). https://doi.org/10.1371/journal.pone.0129422 

Ribeiro, L. A., da Silva, P. P., Mata, T. M., & Martins, A. A. (2015). Prospects of using microalgae for biofuels production: results of a Delphi study. Renewable Energy, 75, 799–804. https://doi.org/10.1016/j.renene.2014.10.065 

Roberson, C. E. (2010). Carbonate equilibria in selected natural waters. American Journal of Science, 262(1), 56–65. https://doi.org/10.2475/ajs.262.1.56 

Robles-Heredia, J. C., Sacramento-Rivero, J. C., Canedo-López, Y., Ruiz-Marín, A., & Vilchiz-Bravo, L. E. (2015). A multistage gradual nitrogenreduction strategy for increased lipid productivity and nitrogen removal in wastewater using Chlorella vulgaris and Scenedesmus obliquus. Brazilian Journal of Chemical Engineering, 32(2), 335–345. https://doi.org/10.1590/0104-6632.20150322s00003304 

Roleda, M. Y., Slocombe, S. P., Leakey, R. J. G., Day, J. G., Bell, E. M., & Stanley, M. S. (2013). Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresource Technology, 129, 439–449. https://doi.org/10.1016/j.biortech.2012.11.043 

Rottet, S., Besagni, C., & Kessler, F. (2015). The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochimica et Biophysica Acta - Bioenergetics, 1847(9), 889–899. https://doi.org/10.1016/j.bbabio.2015.02.002 

Sacasa Castellanos, C. (2013). Batch and continuous studies of Chlorella vulgaris in photo-bioreactors. Electronic Thesis and Dissertation Repository. Paper 1113. The University of Western Ontario, Canada. 

Sadhukhan, S., & Sarkar, U. (2015). Production of biodiesel from Crotalaria juncea (sunn-hemp) oil using catalytic trans-esterification: process optimisation using a factorial and Box–Behnken design. Waste and Biomass Valorization, 7(2), 343–355. https://doi.org/10.1007/s12649-015-9454-4 

Safi, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renewable and Sustainable Energy Reviews, 35, 265–278. https://doi.org/10.1016/j.rser.2014.04.007 

Sakarika, M., & Kornaros, M. (2017). Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: effect of different nutrient limitation strategies. Bioresource Technology, 243, 356–365. https://doi.org/10.1016/j.biortech.2017.06.110 

Sakarika, M., & Kornaros, M. (2019). Chlorella vulgaris as a green biofuel factory: comparison between biodiesel, biogas and combustible biomass production. Bioresource Technology, 273, 237–243. https://doi.org/10.1016/j.biortech.2018.11.017 

San Pedro, A., González-López, C. V., Acién, F. G., & Molina-Grima, E. (2013). Marine microalgae selection and culture conditions optimization for biodiesel production. Bioresource Technology, 134, 353–361. https://doi.org/10.1016/j.biortech.2013.02.032 

Sarayloo, E., Tardu, M., Unlu, Y. S., Simsek, S., Cevahir, G., Erkey, C., & Kavakli, I. H. (2017). Understanding lipid metabolism in high-lipid-producing Chlorella vulgaris mutants at the genome-wide level. Algal Research, 28(April), 244–252. https://doi.org/10.1016/j.algal.2017.11.009 

Sawaengsak, W., Silalertruksa, T., Bangviwat, A., & Gheewala, S. H. (2014). Life cycle cost of biodiesel production from microalgae in Thailand. Energy for Sustainable Development, 18(1), 67–74. https://doi.org/10.1016/j.esd.2013.12.003 

Sayan, T., Ayush, P., Vijayalakshmi, S., & Ranjitha, J. (2016). Optimization of growth and lipid production of the Chlorophyte microalga Chlorella vulgaris as a feedstock for biodiesel production. International Journal of ChemTech Research CODEN, 9(11), 54–62. 

Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C.,  Hankamer, B. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Research, 1(1), 20–43. https://doi.org/10.1007/s12155-008-9008-8 

Schultrich, B. (2018). Carbon. Springer Series in Materials Science, 263, 3–40. https://doi.org/10.1007/978-3-662-55927-7_1 

Selvarajan, R., Felföldi, T., Tauber, T., Sanniyasi, E., Sibanda, T., & Tekere, M. (2015). Screening and evaluation of some green algal strains (Chlorophyceae) isolated from freshwater and soda lakes for biofuel production. Energies, 8(7), 7502–7521. https://doi.org/10.3390/en8077502 

Serra-Maia, R., Bernard, O., Gonzalves, A., Bensalem, S., & Lopes, F. (2016). Influence of temperature on Chlorella vulgaris growth and mortality rates in a photobioreactor. Algal Research, 18, 352–359. https://doi.org/10.1016/j.algal.2016.06.016 

Sharma, A. K., Sahoo, P. K., Singhal, S., & Patel, A. (2016). Impact of various media and organic carbon sources on biofuel production potential from Chlorella sp. 3 Biotech, 6(2), 116. https://doi.org/10.1007/s13205-016-0434-6 

Sharma. C., Singh, B., & Korstad, J. (2011). A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel. Green Chemistry, 13(11), 2993. https://doi.org/10.1039/c1gc15535k 

Shekh, A. Y., Shrivastava, P., Krishnamurthi, K., Mudliar, S. N., Devi, S. S., Kanade, G. S., & Chakrabarti, T. (2016). Stress enhances poly-unsaturation rich lipid accumulation in Chlorella sp. and Chlamydomonas sp. Biomass and Bioenergy, 84, 59–66. https://doi.org/10.1016/j.biombioe.2015.11.013 

Shelest, E., Heimerl, N., Fichtner, M., & Sasso, S. (2015). Multimodular type I polyketide synthases in algae evolve by module duplications and displacement of AT domains in trans. BMC Genomics, 16(1), 1–15. https://doi.org/10.1186/s12864-015-2222-9 

Shen, Q. H., Gong, Y. P., Fang, W. Z., Bi, Z. C., Cheng, L. H., Xu, X. H., & Chen, H. L. (2015). Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency. Bioresource Technology, 193, 68–75. https://doi.org/10.1016/j.biortech.2015.06.050 

Shen, X. F., Liu, J. J., Chauhan, A. S., Hu, H., Ma, L. L., Lam, P. K. S., & Zeng, R. J. (2016). Combining nitrogen starvation with sufficient phosphorus supply for enhanced biodiesel productivity of Chlorella vulgaris fed on acetate. Algal Research, 17, 261–267. https://doi.org/10.1016/j.algal.2016.05.018 

Shinichi Goto, Oguma, M., & Chollacoop, N. (2010). Chapter 7: Current Status of Biodiesel Fuel in East-Asia and ASEAN countries. EAS-ERIA Biodiesel Fuel Trade Handbook: 2010, 7, 96–169. 

Singh, A., & Olsen, S. I. (2011). A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy, 88(10), 3548–3555. https://doi.org/10.1016/j.apenergy.2010.12.012 

Singh, P., Guldhe, A., Kumari, S., Rawat, I., & Bux, F. (2015). Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochemical Engineering Journal, 94, 22–29. https://doi.org/10.1016/j.bej.2014.10.019 

Sinha, S. K., Gupta, A., & Bharalee, R. (2016). Production of biodiesel from freshwater microalgae and evaluation of fuel properties based on fatty acid methyl ester profile. Biofuels, 7(1), 105–121. https://doi.org/10.1080/17597269.2015.1118781 

Sirikhachornkit, A., Suttangkakul, A., Vuttipongchaikij, S., & Juntawong, P. (2018). De novo transcriptome analysis and gene expression profiling of an oleaginous microalga Scenedesmus acutus TISTR8540 during nitrogen deprivation-induced lipid accumulation. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-22080-8 

Sivakumar, G., Vail, D. R., Xu, J., Burner, D. M., Lay, J. O., Ge, X., & Weathers, P. J. (2010). Bioethanol and biodiesel: alternative liquid fuels for future generations. Engineering in Life Sciences, 10(1), 8–18. https://doi.org/10.1002/elsc.200900061 

Sivashankari, S., & Shanmughavel, P. (2012). Functional annotation of hypothetical proteins – a review. Bioinformation, 1(8), 335–338. https://doi.org/10.6026/97320630001335 

Spicer, A. & Molnar, A. (2018). Gene editing of microalgae: scientific progress and regulatory challenges in Europe. Biology, 7(1), 21. https://doi.org/10.3390/biology7010021 

Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96. https://doi.org/10.1263/jbb.101.87 

Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 35(2), 171–205. https://doi.org/10.1128/mmbr.35.2.171-205.1971 

Su, Y. C., Liu, Y. A., Diaz Tovar, C. A., & Gani, R. (2011). Selection of prediction methods for thermophysical properties for process modeling and product design of biodiesel manufacturing. Industrial and Engineering Chemistry Research, 50(11), 6809–6836. https://doi.org/10.1021/ie102441u 

Sun, B., Guo, X., Fan, C., Chen, Y., Wang, J., & Hu, Z. (2018). Newly identified essential amino acids affecting Chlorella ellipsoidea dgat1 function revealed by site-directed mutagenesis. International Journal of Molecular Sciences, 19(11), 1–13. https://doi.org/10.3390/ijms19113462 

Suthar, S., Verma, R., & Kumar, K. (2018). Production of Chlorella vulgaris under varying nutrient and abiotic conditions: a potential microalga for bioenergy feedstock. Process Safety and Environmental Protection, 113, 141–148. https://doi.org/10.1016/j.psep.2017.09.018 

Taghavi, N. & Robinson, G. (2016). Improving the optimum yield and growth of Chlamydomonas reinhardtii CC125 and CW15 using various carbon sources and growth regimes. African Journal of Biotechnology, 15(23), 1083–1100. https://doi.org/10.5897/AJB2015.14789 

Takeshita, T., Ota, S., Yamazaki, T., Hirata, A., Zachleder, V., & Kawano, S. (2014). Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresource Technology, 158, 127–134. https://doi.org/10.1016/j.biortech.2014.01.135 

Tale, M., Ghosh, S., Kapadnis, B., & Kale, S. (2014). Isolation and characterization of microalgae for biodiesel production from Nisargruna biogas plant effluent. Bioresource Technology, 169, 328–335. https://doi.org/10.1016/j.biortech.2014.06.017 

Talebi, A. F., Mohtashami, S. K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini, M., Bakhtiari, S. (2013). Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Research, 2(3), 258–267. https://doi.org/10.1016/j.algal.2013.04.003 

Talebi, A. F., Tohidfar, M., Tabatabaei, M., Bagheri, A., Mohsenpor, M., & Mohtashami, S. K. (2013). Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Molecular Biology Reports, 40(7), 4421–4428. https://doi.org/10.1007/s11033-013-2532-4 

Tanabe, M., & Kanehisa, M. (2012). Using the KEGG database resource. Current Protocols in Bioinformatics, 38, 1-43. https://doi.org/10.1002/0471250953.bi0112s38 

Tetlow, I. J., Morell, M. K., & Emes, M. J. (2004). Recent developments in understanding the regulation of starch metabolism in higher plants. Journal of Experimental Botany, 55(406), 2131–2145. https://doi.org/10.1093/jxb/erh248 

Thawechai, T., Cheirsilp, B., Louhasakul, Y., Boonsawang, P., & Prasertsan, P. (2016). Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: effect of light illumination and carbon dioxide feeding strategies. Bioresource Technology, 219, 139–149. https://doi.org/10.1016/j.biortech.2016.07.109 

Thiruvenkadam, S., Izhar, S., Yoshida, H., Danquah, M. K., & Harun, R. (2015). Process application of Subcritical Water Extraction (SWE) for algal bio-products and biofuels production. Applied Energy, 154, 815–828. https://doi.org/10.1016/j.apenergy.2015.05.076 

Thomas, J., & Jayachithra, E. V. (2015). Growth kinetics of Chlorococcum humicola - a potential feedstock for biomass with biofuel properties. Ecotoxicology and Environmental Safety, 121, 1–5. https://doi.org/10.1016/j.ecoenv.2015.03.008 

Thornton, A., Weinhart, T., Bokhove, O., Kumar, K., Pisarenco, M., Rudnaya, M., Veerman, F. (2010). Modeling and optimization of algae growth. In Proceeding of 72nd European Study Group Mathematics with Industry (SWI 2010). Amsterdam, The Netherlands, January 25–29, 54–85. 

Tuantet, K., Temmink, H., Zeeman, G., & Janssen, M. (2014). Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor. Water Research, 5, 162–174. https://doi.org/10.1016/j.watres.2014.02.027 

Uslu, L., Durmaz, Y., Isik, O., Mutlu, Y., Koc, K., & Ak, B. (2013). Nitrogen limitation increases lipid content of Chlorella vulgaris at photobioreactor system. Journal of Animal and Veterinary Advances, 12(1), 52–57. https://doi.org/10.3923/javaa.2013.52.57 

Vaiciulyte, S., Padovani, G., Kostkeviciene, J., & Carlozzi, P. (2014). Batch growth of Chlorella vulgaris CCALA 896 versus semi-continuous regimen for enhancing oil-rich biomass productivity. Energies, 7(6), 3840–3857. https://doi.org/10.3390/en7063840 

Vello, V., Phang, S. M., Chu, W. L., Abdul Majid, N., Lim, P. E., & Loh, S. K. (2014). Lipid productivity and fatty acid composition-guided selection of Chlorella strains isolated from Malaysia for biodiesel production. Journal of Applied Phycology, 26(3), 1399–1413. https://doi.org/10.1007/s10811-013-0160-y 

Vishwanatha, K. S., Mains, R. E., & Eipper, B. A. (2013). Peptidylglycine Amidating Monoxygenase (PAM). Handbook of Biologically Active Peptides (Second Edi, Vol. 3). Elsevier Inc. https://doi.org/10.1016/b978-0-12-385095-9.00244-x 

Wan, M., Jin, X., Xia, J., Rosenberg, J. N., Yu, G., Nie, Z., Betenbaugh, M. J. (2014). The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana. Applied Microbiology and Biotechnology, 98(22), 9473–9481. https://doi.org/10.1007/s00253-014-6088-6 

Wan, M., Liu, P., Xia, J., Rosenberg, J. N., Oyler, G. A., Betenbaugh, M. J., Qiu, G. (2011). The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Applied Microbiology and Biotechnology, 91(3), 835–844. https://doi.org/10.1007/s00253-011-3399-8 

Wase, N., Black, P. P. N., Stanley, B. A., & Dirusso, C. C. (2014). Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. Journal of Proteome, 3(13), 1373–1396. https://doi.org/10.1021/pr400952z 

Wensel, P., Helms, G., Hiscox, B., Davis, W. C., Kirchhoff, H., Bule, M., & Chen, S. (2014). Isolation, characterization, and validation of oleaginous, multi-trophic, and haloalkaline-tolerant microalgae for two-stage cultivation. Algal Research, 4(1), 2–11. https://doi.org/10.1016/j.algal.2013.12.005 

Wong, Y. (2017). Growth medium screening for Chlorella vulgaris growth and lipid production. Journal of Aquaculture & Marine Biology, 6(1), 1–10. https://doi.org/10.15406/jamb.2017.06.00143 

Xin, L., Hong-ying, H., & Yu-ping, Z. (2011). Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technology, 102(3), 3098–3102. https://doi.org/10.1016/j.biortech.2010.10.055 

Xin, L., Hu, H., Ke, G., & Sun, Y. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14), 5494–5500. https://doi.org/10.1016/j.biortech.2010.02.016 

Yadavalli, R., Rao, S. R., & Rao, C. S. (2013). Response surface methodological approach to optimize process parameters for the biomass production of Chlorella pyrenoidosa. International Journal of Bio-Technology & Research (IJBTR), 3(1), 37–48. 

Yeesang, C., & Cheirsilp, B. (2011). Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technology, 102(3), 3034–3040. https://doi.org/10.1016/j.biortech.2010.10.013 

Yeh, K. L., Chang, J. S., & Chen, W. M. (2010). Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Engineering in Life Sciences, 10(3), 201–208. https://doi.org/10.1002/elsc.200900116 

Yu, T. S., Zeeman, S. C., Thorneycroft, D., Fulton, D. C., Dunstan, H., Lue, W. L., Smith, S. M. (2005). a-amylase is not required for breakdown of transitory starch in Arabidopsis leaves. Journal of Biological Chemistry, 280(11), 9773–9779. https://doi.org/10.1074/jbc.M413638200 

Zeeman, S. C., Delatte, T., Messerli, G., Umhang, M., Stettler, M., Mettler, T., Kötting, O. (2007). Starch breakdown: recent discoveries suggest distinct pathways and novel mechanisms. Functional Plant Biology, 34(6), 465–473. https://doi.org/10.1071/FP06313 

Zeng, X., Danquah, M. K., Chen, X. D., & Lu, Y. (2011). Microalgae bioengineering: from CO2 fixation to biofuel production. Renewable and Sustainable Energy Reviews, 15(6), 3252–3260. https://doi.org/10.1016/j.rser.2011.04.014 

Zhang, J. D., & Wiemann, S. (2009). KEGGgraph: a graph approach to KEGG pathway in R and bioconductor. Bioinformatics, 25(11), 1470–1471. https://doi.org/10.1093/bioinformatics/btp167 

Zhao, B., & Su, Y. (2014). Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renewable and Sustainable Energy Reviews, 31, 121–132. https://doi.org/10.1016/j.rser.2013.11.054 

Zhao, L., Qi, Y., & Chen, G. (2015). Isolation and characterization of microalgae for biodiesel production from seawater. Bioresource Technology, 184, 42–46. https://doi.org/10.1016/j.biortech.2014.10.063 

Zhu, L. D., Hiltunen, E., Antila, E., Zhong, J. J., Yuan, Z. H., & Wang, Z. M. (2014a). Microalgal biofuels: flexible bioenergies for sustainable development. Renewable and Sustainable Energy Reviews, 30, 1035–1046. https://doi.org/10.1016/j.rser.2013.11.003 

Zhu, S., Huang, W., Xu, J., Wang, Z., Xu, J., & Yuan, Z. (2014b). Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresource Technology, 152, 292–298. https://doi.org/10.1016/j.bi ortech.2013.10.092 

Zuo, Z., Rong, Q., Chen, K., Yang, L., Chen, Z., Peng, K., Wang, Y. (2012). Study of amino acids as nitrogen source in Chlamydomonas reinhardtii. Phycological Research, 60(3), 161–168. https://doi.org/10.1111/j.1440-1835.2012.00646.x 

Zuppini, A., Andreoli, C., & Baldan, B. (2007). Heat stress: an inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiol, 48(7), 1000–1009. https://doi.org/10.1093/pcp/pcm070


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.