UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The research aimed to determine the effective radius (r*) of a trapped polystyrene
microbead near a water-air interface and to develop a 3-dimensional piezostage control module for
optical trapping within micrometre range. This study involved the development of a control
program so called PZStage and the determination of r* near the water-air interface. PZStage was
developed on the LabVIEW platform to control laser focus location in the trapping medium. A 3 µm
bead was trapped in water at several heights towards the free space in a special design test cell.
The temporal displacement data of the trapped bead was recorded by a quadrant photodiode (QPD) and
analysed by a custom made program namely OSCal to determine r*. PZStage was well developed which
enabled precise laser focus control in 20 µm range in three mutually orthogonal directions. The
result showed that r* was constant at any focus height at fixed water thickness and laser power.
Besides, r* depended on laser power at fixed laser focus height and water thickness in the form of
exponentially decaying relation. In conclusion, PZStage was successfully developed to precisely
control laser focus toward water-air interface, and the r* was found to be dependent on laser power
rather than laser focus height within the set experimental conditions. The research implied that
the low laser power was possible for optical trapping near the water-air interface with appropriate
water thickness selection. However, consideration must be taken into account since the trap was
shifted away from the laser focus as the focus height increases due to scattering
force.
|
References |
A. Gutiérrez-Campos, R. C. (2010). Optical trapping of particles at the air / water interface for studies in Langmuir monolayers. Revista Mexicana de Física, 56(4), 339–347.http://www.scielo.org.mx/scielo.php?pid=S0035001X2010000400012&script=sci_arttext&tlng=pt Abidi, K., & Šabanovic, A. (2007). Sliding-mode control for high-precision motion of a piezostage. IEEE Transactions on Industrial Electronics, 54(1), 629–637. https://doi.org/10.1109/TIE.2006.885477 Ahlawat, S., Dasgupta, R., & Gupta, P. K. (2008). Optical trapping near a colloidal cluster formed by a weakly focused laser beam. Journal of Physics D: Applied Physics, 41(10), 105107. https://doi.org/10.1088/0022-3727/41/10/105107 Ambardekar, A. A., & Li, Y. (2005). Optical levitation and manipulation of stuck particles with pulsed optical tweezers. Optics Letters, 30(14), 1797–9. https://doi.org/10.1364/OL.30.001797 Ashkin, A. (1992). Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical Journal, 61(2), 569–582. https://doi.org/10.1016/S0006-3495(92)81860-X Ashkin, A. (1997). Optical trapping and manipulation of neutral particles, 94(May), 4853–4860. Aziz, W. N. S. W., Ayop, S. K., & Riyanto, S. (2015). The potential of optical tweezer (OT) for viscoelastivity measurement of nanocellulose solution. Jurnal Teknologi, 74(8), 45–48. https://doi.org/10.11113/jt.v74.4722 Baek, J.-H., Hwang, S., & Lee, Y.-G. (2007). Trap stiffness in optical tweezers. Asian Symposium for Precision Engineering and Nanotechnology, 685, 1100. Conteduca, D., Dell"Olio, F., Ciminelli, C., Krauss, T. F., & Armenise, M. N. (2016). Design of a high-performance optical tweezer for nanoparticle trapping. Applied Physics A: Materials Science and Processing, 122(4), 1–6. https://doi.org/10.1007/s00339-016-9894-0 Dasgupta, R., Ahlawat, S., & Gupta, P. K. (2007). Trapping of micron-sized objects at a liquid-air interface. Journal of Optics A: Pure and Applied Optics, 9(8), S189–S195. https://doi.org/10.1088/1464-4258/9/8/S11 Deufel, C., & Wang, M. D. (2006). Detection of forces and displacements along the axial direction in an optical trap. Biophysical Journal, 90(2), 657–667. https://doi.org/10.1529/biophysj.105.065458 Dholakia, K., & Lee, W. M. (2008). Optical Trapping Takes Shape: The Use of Structured Light Fields. Advances in Atomic, Molecular and Optical Physics, 56(8), 261–337. https://doi.org/10.1016/S1049-250X(08)00015-3 Dienerowitz, M., Mazilu, M., & Dholakia, K. (2008). Optical manipulation of nanoparticles: a review. Journal of Nanophotonics, 2(September), 1–32. https://doi.org/10.1117/1.2992045 Drobczynski, S., Du-Szachniewicz, K., Symonowicz, K., Glogocka, D. (2013). Spectral analysis by a video camera in a holographic optical tweezers setup. Optica Applicata, 43(4), 739–746. https://doi.org/10.5277/oa130410 Girot, A., Danné, N., Wger, A., Bickel, T., Ren, F., Loudet, J. C., & Pouligny, B. (2016). Motion of Optically Heated Spheres at the Water-Air Interface. Langmuir, 32(11), 2687–2697. https://doi.org/10.1021/acs.langmuir.6b00181 Gow, J. (2000). A Revolution in optical manipulation. Security Dialogue, 31(3), 293– 306. https://doi.org/10.2307/20047487 Hamid, M. Y., & Ayop, S. K. (2011). LabVIEW-Based Software for Optical Stiffness Determination Using Boltzmann Statistics, Equipartition Theorem and Power Spectral Density Methods. Advanced Science Letters, 4(2), 400–407. https://doi.org/10.1166/asl.2011.1261 Hamid, M. Y., Ayop, S. K., Wan Aziz, W. N. S., & Munajat, Y. (2016). Spatial Distribution of an Optically Trapped Bead in Water. Buletin Optik, 2, 1–8. Hamid, Y., Ayop, S. K., Wan Aziz, W. N. S., & Munajat, Y. (2016). Spatial Distribution of an Optically Trapped Bead in Water. Buletin Optik 2016, 2016(2), 29–36. https://doi.org/10.15011/jasma.33.330211 Hong, M. I. N. H. Z., Ang, Z. I. I. W., & I, Y. I. N. E. I. L. (2017). Oscillations of absorbing particles at the water-air interface induced by laser tweezers, 25(3), 2481– 2488. https://doi.org/10.1364/OE.25.002481 Horst, A. Van Der, & Forde, N. R. (2010). Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth. Optics Express, 18(8), 7670–7677. https://doi.org/10.1364/OE.18.007670 Instruments, N., & Gmbh, G. (1994). Graphical object-oriented programming with LabVIEW, 352, 438–441. Je., J., Petr, J., &Zem, P. (2007). Axial optical trap stiffness influenced by retro-reflected beam, 9, 251–255. https://doi.org/10.1088/1464-4258/9/8/S19 Jesacher, A., Frhapter, S., Maurer, C., Bernet, S., & Ritsch-Marte, M. (2006). Holographic optical tweezers for object manipulations at an air-liquid surface. Optics Express, 14(13), 6342–6352. https://doi.org/10.1364/OE.14.006342 Jiao, G., & Zhang, R. (2013). Modeling of micropipette aspiration and optical tweezers stretching of erythrocytes with or without Malaria parasite. Theoretical & Applied Mechanics Letters, 3(3), 61–66. https://doi.org/10.1063/2.1303401 Letters, O. (2014). Optimal beam diameter for optical tweezers, (March). https://doi.org/10.1364/OL.35.001494 Liu, Y., Chang, K., & Li, W. (2010). Model reference adaptive control for a piezopositioning system, 34, 62–69. https://doi.org/10.1016/j.precisioneng.2009.03.006 Mas, J., Farré, A., Cuadros, J., Juvells, I., & Carnicer, A. (2011). Understanding optical trapping phenomena: A simulation for undergraduates. IEEE Transactions on Education, 54(1), 133–140. https://doi.org/10.1109/TE.2010.2047107 Mat Yeng, M. S., Ayop, S. K., & Hamid, M. Y. (2017). The Determination of Laser Spot Size of an Optical Tweezers by Stuck Bead Method. Journal of Science and Technology, 9(3), 70–74. Michihata, M., Hayashi, T., & Takaya, Y. (2009). Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam, 48(32), 6143–6151. Mlenbroich, M. C., McAlinden, N., & Wright, A. J. (2013). Adaptive optics in an optical trapping system for enhanced lateral trap stiffness at depth. Journal of Optics (United Kingdom), 15(7). https://doi.org/10.1088/2040-8978/15/7/075305 Necipoglu, S., Cebeci, S. A., Basdogan, C., Has, Y. E., & Guvenc, L. (2011). Repetitive control of an XYZ piezo-stage for faster nano-scanning: Numerical simulations and experiments. Mechatronics, 21(6), 1098–1107. https://doi.org/10.1016/j.mechatronics.2011.06.004 Neuman, K. C., Abbondanzieri, E. A., & Block, S. M. (2005). Measurement of the effective focal shift in an optical trap. Optics Letters, 30(11), 1318. https://doi.org/10.1364/OL.30.001318 Neuman, K. C., & Block, S. M. (2004). Optical trapping. Review of Scientific Instruments, 75(9), 2787–2809. https://doi.org/10.1063/1.1785844 Nor, W., Wan, S., Kadri, S., Yunus, M., & Munajat, Y. (2016). Simple Determination of the Stiffness of an Optical Trap Using Video Microscopy and Particle Tracking. Buletin Optik 2016, 1(2), 1–6. Perz, P., Malujda, I., Wilczynski, D., & Tarkowski, P. (2017). Methods of Controlling a Hybrid Positioning System Using LabVIEW. Procedia Engineering, 177, 339–346. https://doi.org/10.1016/j.proeng.2017.02.235 Sánchez-Alvarez, A., Luna-Moreno, D., Hernández-Morales, J. A., Zaragoza-Zambrano, J. O., & Castillo-Guerrero, D. H. (2018). Control of Stepper Motor Rotary Stages applied to optical sensing technique using LabView. Optik, 164, 65–71. https://doi.org/10.1016/j.ijleo.2018.02.115 Sugiyama, T., Adachi, T., & Masuhara, H. (2007). Crystallization of Glycine by Photon Pressure of a Focused CW Laser Beam. Chemistry Letters, 36(12), 1480–1481. https://doi.org/10.1246/cl.2007.1480 Tiernan, P. (2010). Enhancing the learning experience of undergraduate technology students with LabVIEWTM software. Computers and Education, 55(4), 1579–1588. https://doi.org/10.1016/j.compedu.2010.07.001 Vermeulen, K. C., Wuite, G. J. L., Stienen, G. J. M., & Schmidt, C. F. (2006). Optical trap stiffness in the presence and absence of spherical aberrations. Applied Optics, 45(8), 1812–1819. https://doi.org/10.1364/AO.45.001812 Wagner, C., Armenta, S., & Lendl, B. (2010). Developing automated analytical methods for scientific environments using LabVIEW. Talanta, 80(3), 1081–1087. https://doi.org/10.1016/j.talanta.2009.08.018 Wan Aziz, W. N. S., Ayop, S. K., Hamid, M. Y., & Munajat, Y. (2016). Simple Determination of the Stiffness of an Optical Trap Using Video Microscopy and Particle Tracking. Buletin Optik, 2, 1–6. Wurlitzer, S., Lautz, C., Liley, M., & Duschl, C. (2007). Micromanipulation of Langmuir-Monolayers with Optical Tweezers, 182–187. Xu, Q., & Wong, P. K. (2011). Hysteresis modeling and compensation of a piezostage using least squares support vector machines. Mechatronics, 21(7), 1239–1251. https://doi.org/10.1016/j.mechatronics.2011.08.006 Yeng, M. S. M., Ayop, S. K., & Mustapa, I. R. (2018). Depth -Dependent Optical Stiffness Toward Water -Air Interface. International Journal of Engineering and Technology, 7, 80–84. Zhong, M., Wang, X., Zhou, J., Wang, Z., & Li, Y. (2014). Optimal beam diameter for lateral optical forces on microspheres at a water-air interface. Chin. Opt. Lett., 12(1), 011403-. https://doi.org/10.3788/COL201412.011403.Optical Zhong, M., Wang, Z., & Li, Y. (2017). Laser-accelerated self-assembly of colloidal particles at the water – air interface. Chinese Optics Letters, 15(5), 1–5. https://doi.org/10.3788/COL201715.051401.Colloidal
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |