UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :thesis
Subject :TP Chemical technology
Main Author :Muhammad Safuan Mat Yeng@Mat Zin
Title :The determination of an effective radius of an optically trapped polystyrene microbead distribution near a water air interface
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2019
Notes :with cd
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
The research aimed to determine the effective radius (r*) of a trapped polystyrene microbead near a water-air interface and to develop a 3-dimensional piezostage control module  for   optical  trapping  within  micrometre  range.  This  study involved  the development of a control  program so called PZStage and the determination of r* near the water-air interface. PZStage was  developed on the LabVIEW platform to control laser focus location in the trapping medium. A 3 µm  bead was trapped in water at several heights towards the free space in a special design test cell.  The temporal displacement data of the trapped bead was recorded by a quadrant photodiode (QPD) and  analysed by a custom made program namely OSCal to determine r*. PZStage was well developed which  enabled precise laser focus control in 20 µm range in three mutually orthogonal directions. The  result showed that r* was constant at any focus height at fixed water thickness and laser power.  Besides, r* depended on laser power at fixed laser focus height and water thickness in the form of  exponentially decaying relation. In conclusion, PZStage was successfully developed to precisely  control laser focus toward water-air interface, and the r* was found to be dependent on laser power  rather than laser focus height within the set experimental conditions. The research implied that  the low laser power was possible for optical trapping near the water-air interface with appropriate  water thickness selection. However, consideration must be taken into account since the trap was  shifted away from the laser focus as the focus height increases due to scattering force.  

References

A. Gutiérrez-Campos, R. C. (2010). Optical trapping of particles at the air / water interface for studies in Langmuir monolayers. Revista Mexicana de Física, 56(4), 339–347.http://www.scielo.org.mx/scielo.php?pid=S0035­001X2010000400012&script=sci_arttext&tlng=pt 

Abidi, K., & Šabanovic, A. (2007). Sliding-mode control for high-precision motion of a piezostage. IEEE Transactions on Industrial Electronics, 54(1), 629–637. https://doi.org/10.1109/TIE.2006.885477 

Ahlawat, S., Dasgupta, R., & Gupta, P. K. (2008). Optical trapping near a colloidal cluster formed by a weakly focused laser beam. Journal of Physics D: Applied Physics, 41(10), 105107. https://doi.org/10.1088/0022-3727/41/10/105107 

Ambardekar, A. A., & Li, Y. (2005). Optical levitation and manipulation of stuck particles with pulsed optical tweezers. Optics Letters, 30(14), 1797–9. https://doi.org/10.1364/OL.30.001797 

Ashkin, A. (1992). Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical Journal, 61(2), 569–582. https://doi.org/10.1016/S0006-3495(92)81860-X 

Ashkin, A. (1997). Optical trapping and manipulation of neutral particles, 94(May), 4853–4860. 

Aziz, W. N. S. W., Ayop, S. K., & Riyanto, S. (2015). The potential of optical tweezer (OT) for viscoelastivity measurement of nanocellulose solution. Jurnal Teknologi, 74(8), 45–48. https://doi.org/10.11113/jt.v74.4722 

Baek, J.-H., Hwang, S., & Lee, Y.-G. (2007). Trap stiffness in optical tweezers. Asian Symposium for Precision Engineering and Nanotechnology, 685, 1100. 

Conteduca, D., Dell"Olio, F., Ciminelli, C., Krauss, T. F., & Armenise, M. N. (2016). Design of a high-performance optical tweezer for nanoparticle trapping. Applied Physics A: Materials Science and Processing, 122(4), 1–6. https://doi.org/10.1007/s00339-016-9894-0 

Dasgupta, R., Ahlawat, S., & Gupta, P. K. (2007). Trapping of micron-sized objects at a liquid-air interface. Journal of Optics A: Pure and Applied Optics, 9(8), S189–S195. https://doi.org/10.1088/1464-4258/9/8/S11 

Deufel, C., & Wang, M. D. (2006). Detection of forces and displacements along the axial direction in an optical trap. Biophysical Journal, 90(2), 657–667. https://doi.org/10.1529/biophysj.105.065458 

Dholakia, K., & Lee, W. M. (2008). Optical Trapping Takes Shape: The Use of Structured Light Fields. Advances in Atomic, Molecular and Optical Physics, 56(8), 261–337. https://doi.org/10.1016/S1049-250X(08)00015-3 

Dienerowitz, M., Mazilu, M., & Dholakia, K. (2008). Optical manipulation of nanoparticles: a review. Journal of Nanophotonics, 2(September), 1–32. https://doi.org/10.1117/1.2992045 

Drobczynski, S., Du-Szachniewicz, K., Symonowicz, K., Glogocka, D. (2013). Spectral analysis by a video camera in a holographic optical tweezers setup. Optica Applicata, 43(4), 739–746. https://doi.org/10.5277/oa130410 

Girot, A., Danné, N., Wger, A., Bickel, T., Ren, F., Loudet, J. C., & Pouligny, B. (2016). Motion of Optically Heated Spheres at the Water-Air Interface. Langmuir, 32(11), 2687–2697. https://doi.org/10.1021/acs.langmuir.6b00181 

Gow, J. (2000). A Revolution in optical manipulation. Security Dialogue, 31(3), 293– 306. https://doi.org/10.2307/20047487 

Hamid, M. Y., & Ayop, S. K. (2011). LabVIEW-Based Software for Optical Stiffness Determination Using Boltzmann Statistics, Equipartition Theorem and Power Spectral Density Methods. Advanced Science Letters, 4(2), 400–407. https://doi.org/10.1166/asl.2011.1261 

Hamid, M. Y., Ayop, S. K., Wan Aziz, W. N. S., & Munajat, Y. (2016). Spatial Distribution of an Optically Trapped Bead in Water. Buletin Optik, 2, 1–8. 

Hamid, Y., Ayop, S. K., Wan Aziz, W. N. S., & Munajat, Y. (2016). Spatial Distribution of an Optically Trapped Bead in Water. Buletin Optik 2016, 2016(2), 29–36. https://doi.org/10.15011/jasma.33.330211 

Hong, M. I. N. H. Z., Ang, Z. I. I. W., & I, Y. I. N. E. I. L. (2017). Oscillations of absorbing particles at the water-air interface induced by laser tweezers, 25(3), 2481– 2488. https://doi.org/10.1364/OE.25.002481 

Horst, A. Van Der, & Forde, N. R. (2010). Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth. Optics Express, 18(8), 7670–7677. https://doi.org/10.1364/OE.18.007670 

Instruments, N., & Gmbh, G. (1994). Graphical object-oriented programming with LabVIEW, 352, 438–441. 

Je., J., Petr, J., &Zem, P. (2007). Axial optical trap stiffness influenced by retro-reflected beam, 9, 251–255. https://doi.org/10.1088/1464-4258/9/8/S19 

Jesacher, A., Frhapter, S., Maurer, C., Bernet, S., & Ritsch-Marte, M. (2006). Holographic optical tweezers for object manipulations at an air-liquid surface. Optics Express, 14(13), 6342–6352. https://doi.org/10.1364/OE.14.006342 

Jiao, G., & Zhang, R. (2013). Modeling of micropipette aspiration and optical tweezers stretching of erythrocytes with or without Malaria parasite. Theoretical & Applied Mechanics Letters, 3(3), 61–66. https://doi.org/10.1063/2.1303401 

Letters, O. (2014). Optimal beam diameter for optical tweezers, (March). https://doi.org/10.1364/OL.35.001494 

Liu, Y., Chang, K., & Li, W. (2010). Model reference adaptive control for a piezo­positioning system, 34, 62–69. https://doi.org/10.1016/j.precisioneng.2009.03.006 

Mas, J., Farré, A., Cuadros, J., Juvells, I., & Carnicer, A. (2011). Understanding optical trapping phenomena: A simulation for undergraduates. IEEE Transactions on Education, 54(1), 133–140. https://doi.org/10.1109/TE.2010.2047107 

Mat Yeng, M. S., Ayop, S. K., & Hamid, M. Y. (2017). The Determination of Laser Spot Size of an Optical Tweezers by Stuck Bead Method. Journal of Science and Technology, 9(3), 70–74. 

Michihata, M., Hayashi, T., & Takaya, Y. (2009). Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam, 48(32), 6143–6151. 

Mlenbroich, M. C., McAlinden, N., & Wright, A. J. (2013). Adaptive optics in an optical trapping system for enhanced lateral trap stiffness at depth. Journal of Optics (United Kingdom), 15(7). https://doi.org/10.1088/2040-8978/15/7/075305 

Necipoglu, S., Cebeci, S. A., Basdogan, C., Has, Y. E., & Guvenc, L. (2011). Repetitive control of an XYZ piezo-stage for faster nano-scanning: Numerical simulations and experiments. Mechatronics, 21(6), 1098–1107. https://doi.org/10.1016/j.mechatronics.2011.06.004 

Neuman, K. C., Abbondanzieri, E. A., & Block, S. M. (2005). Measurement of the effective focal shift in an optical trap. Optics Letters, 30(11), 1318. https://doi.org/10.1364/OL.30.001318 

Neuman, K. C., & Block, S. M. (2004). Optical trapping. Review of Scientific Instruments, 75(9), 2787–2809. https://doi.org/10.1063/1.1785844 

Nor, W., Wan, S., Kadri, S., Yunus, M., & Munajat, Y. (2016). Simple Determination of the Stiffness of an Optical Trap Using Video Microscopy and Particle Tracking. Buletin Optik 2016, 1(2), 1–6. 

Perz, P., Malujda, I., Wilczynski, D., & Tarkowski, P. (2017). Methods of Controlling a Hybrid Positioning System Using LabVIEW. Procedia Engineering, 177, 339–346. https://doi.org/10.1016/j.proeng.2017.02.235 

Sánchez-Alvarez, A., Luna-Moreno, D., Hernández-Morales, J. A., Zaragoza-Zambrano, 

J. O., & Castillo-Guerrero, D. H. (2018). Control of Stepper Motor Rotary Stages applied to optical sensing technique using LabView. Optik, 164, 65–71. https://doi.org/10.1016/j.ijleo.2018.02.115 

Sugiyama, T., Adachi, T., & Masuhara, H. (2007). Crystallization of Glycine by Photon Pressure of a Focused CW Laser Beam. Chemistry Letters, 36(12), 1480–1481. https://doi.org/10.1246/cl.2007.1480 

Tiernan, P. (2010). Enhancing the learning experience of undergraduate technology students with LabVIEWTM software. Computers and Education, 55(4), 1579–1588. https://doi.org/10.1016/j.compedu.2010.07.001 

Vermeulen, K. C., Wuite, G. J. L., Stienen, G. J. M., & Schmidt, C. F. (2006). Optical trap stiffness in the presence and absence of spherical aberrations. Applied Optics, 45(8), 1812–1819. https://doi.org/10.1364/AO.45.001812 

Wagner, C., Armenta, S., & Lendl, B. (2010). Developing automated analytical methods for scientific environments using LabVIEW. Talanta, 80(3), 1081–1087. https://doi.org/10.1016/j.talanta.2009.08.018 

Wan Aziz, W. N. S., Ayop, S. K., Hamid, M. Y., & Munajat, Y. (2016). Simple Determination of the Stiffness of an Optical Trap Using Video Microscopy and Particle Tracking. Buletin Optik, 2, 1–6. 

Wurlitzer, S., Lautz, C., Liley, M., & Duschl, C. (2007). Micromanipulation of Langmuir-Monolayers with Optical Tweezers, 182–187. 

Xu, Q., & Wong, P. K. (2011). Hysteresis modeling and compensation of a piezostage using least squares support vector machines. Mechatronics, 21(7), 1239–1251. https://doi.org/10.1016/j.mechatronics.2011.08.006 

Yeng, M. S. M., Ayop, S. K., & Mustapa, I. R. (2018). Depth -Dependent Optical Stiffness Toward Water -Air Interface. International Journal of Engineering and Technology, 7, 80–84. 

Zhong, M., Wang, X., Zhou, J., Wang, Z., & Li, Y. (2014). Optimal beam diameter for lateral optical forces on microspheres at a water-air interface. Chin. Opt. Lett., 12(1), 011403-. https://doi.org/10.3788/COL201412.011403.Optical 

Zhong, M., Wang, Z., & Li, Y. (2017). Laser-accelerated self-assembly of colloidal particles at the water – air interface. Chinese Optics Letters, 15(5), 1–5. https://doi.org/10.3788/COL201715.051401.Colloidal 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)