UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :thesis
Subject :Q Science
Main Author :Shan, Wei Chen
Title :An optimized convolutional neural network for arrhythmia classification
Place of Production :Tanjong Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2022
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
Electrocardiogram (ECG) is a practical medical test to diagnose arrhythmia. As a crucial computational application in clinical practice, ECG automatic classification can effectively detect the possible occurrence of cardiovascular disease. At present, the main problems in the automated classification of ECG are due to (1) the complexity of algorithms to capture heartbeats, (2) the complex changes of irregular heartbeats in rhythm or morphology leading to difficulties in the ECG feature recognition, and (3) the needs of large training samples and training time for a machine learning to achieve the ideal recognition accuracy. Given the problems in ECG automatic classification, this study proposes an effective automated classification approach for arrhythmia based on a representative convolution neural network that can decode ECG source files and identify heartbeats accurately based on the detection of QRS waveform from the ECG records. A one-dimensional convolutional neural network (1D-CNN) is proposed to accurately classify different types of arrhythmias by automatically extracting the morphological features of ECG. The initial connection weights of 1D-CNN are optimized based on differential evolution to improve its ECG classification. The optimized 1D-CNN is evaluated against two arrhythmia databases, namely the MITBIH and SCDH arrhythmia databases. Besides, a comparison is made between the optimized and unoptimized 1D-CNN. The results show that the proposed model has higher accuracy in heartbeat classification. Compared to the unoptimized 1D-CNN, the accuracy improves by 0.6% and 3.1%, respectively. Besides, the optimized 1D-CNN requires less training time, 9.22 seconds less with MIT-BIH and 10.35 seconds less with SCDH based on ReLU active function and 10 epochs, as compared to the unoptimized 1D-CNN based on the same parameter settings. The training time of the optimized 1DCNN decreased by 67.2% and 64.2% with MIT-BIH and SCDH, respectively.

References

Acharya, U. R., Fujita, H., Lih, O. S., Adam, M., Tan, J. H., & Chua, C. K. (2017). Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network. Knowledge-Based Systems, 132, 62–71. https://doi.org/10.1016/j.knosys.2017.06.003 

Acharya, U. R., Fujita, H., Lih, O. S., Hagiwara, Y., Tan, J. H., & Adam, M. (2017). Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Information Sciences, 405, 81–90. https://doi.org/10.1016/j.ins.2017.04.012 

Acharya, U. R., Fujita, H., Oh, S. L., Hagiwara, Y., Tan, J. H., & Adam, M. (2017). Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences, 415–416, 190–198. https://doi.org/10.1016/j.ins.2017.06.027 

Acharya, U. R., Fujita, H., Oh, S. L., Raghavendra, U., Tan, J. H., Adam, M., Gertych, A., & Hagiwara, Y. (2018). Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Future Generation Computer Systems, 79, 952–959. https://doi.org/10.1016/j.future.2017.08.039 

Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adam, M., Gertych, A., & Tan, R. S. (2017). A deep convolutional neural network model to classify heartbeats. Computers in Biology and Medicine, 89, 389–396. https://doi.org/10.1016/j.compbiomed.2017.08.022 

Afonso, V. X., Tompkins, W. J., Nguyen, T. Q., & Luo, S. (1999). ECG beat detection using filter banks. IEEE Transactions on Biomedical Engineering, 46(2), 192–202. https://doi.org/10.1109/10.740882 

Altan, G., Kutlu, Y., & Yeniad, M. (2019). ECG based human identification using Second Order Difference Plots. Computer Methods and Programs in Biomedicine, 170, 81–93. https://doi.org/10.1016/j.cmpb.2019.01.010 

Ansari, S., Gryak, J., & Najarian, K. (2018). Noise Detection in Electrocardiography Signal for Robust Heart Rate Variability Analysis: A Deep Learning Approach. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2018-July, 5632–5635. https://doi.org/10.1109/EMBC.2018.8513537 

Arel, I., Rose, D. C., & Karnowski, T. P. (2010). Deep machine learning-a new frontier in artificial intelligence research. IEEE Computational Intelligence Magazine, 5(4), 13–18. 

Attia, Z. I., Kapa, S., Yao, X., Lopez-Jimenez, F., Mohan, T. L., Pellikka, P. A., Carter, R. E., Shah, N. D., Friedman, P. A., & Noseworthy, P. A. (2019). Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction. Journal of Cardiovascular Electrophysiology, 30(5), 668–674. https://doi.org/10.1111/jce.13889 

Azimi-Sadjadi, M. R., Citrin, S., & S. S. (1990). Supervised learning process of mufti-layer perceptron neural networks using fast least squares. Acoustics, Speech, and Signal Processing. 1990 International Conference on. IEEE., 1990. 

Baloglu, U. B., Talo, M., Yildirim, O., Tan, R. S., & Acharya, U. R. (2019). Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recognition Letters, 122, 23–30. https://doi.org/10.1016/j.patrec.2019.02.016 

Bappy, D. M., & Jeon, I. (2016). Combination of hybrid median filter and total variation minimisation for medical X-ray image restoration. IET Image Processing, 10(4), 261–271. https://doi.org/10.1049/iet-ipr.2015.0054 

Batouche, M., & Mennour, R. (2018). Novel scalable deep learning approaches for big data analytics applied to ECG processing. International Journal of Applied Metaheuristic Computing, 9(4), 33–51. https://doi.org/10.4018/IJAMC.2018100102 

Bengio, Y. (2013). Deep learning of representations: Looking forward. International Conference on Statistical Language and Speech Processing, 1–37. 

Bernstam, E. V., Smith, J. W., & Johnson, T. R. (2010). What is biomedical informatics? Journal of Biomedical Informatics, 43(1), 104–110. https://doi.org/10.1016/j.jbi.2009.08.006 

Boureau, Y., Ponce, J., Fr, J. P., & Lecun, Y. (2010). A theoretical analysis of feature pooling in visual recognition. Proceedings of the 27th International Conference on Machine Learning, 111–118. https://www.di.ens.fr/sierra/pdfs/icml2010b.pdf 

Burbidge, R., Trotter, M., Buxton, B., & Holden, S. (2001). Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Computers and Chemistry, 26(1), 5–14. https://doi.org/10.1016/S0097-8485(01)00094-8 

Cai, J.-F., Dong, B., Osher, S., & Shen, Z. (2012). Image restoration: total variation, wavelet frames, and beyond. Journal of the American Mathematical Society, 25(4),1033–1089. 

Castaldo, R., Montesinos, L., Melillo, P., James, C., & Pecchia, L. (2019). Ultra-short term HRV features as surrogates of short term HRV: A case study on mental stress detection in real life. BMC Medical Informatics and Decision Making, 19(1), 1–13. https://doi.org/10.1186/s12911-019-0742-y 

Chandra, B. S., Sastry, C. S., & Jana, S. (2019). Robust Heartbeat Detection from Multimodal Data via CNN-Based Generalizable Information Fusion. IEEE Transactions on Biomedical Engineering, 66(3), 710–717. https://doi.org/10.1109/TBME.2018.2854899 

Changxing, Q., Yiming, B., & Yong, L. (2017). Improved BP neural network algorithm model based on chaos genetic algorithm. 2017 3rd IEEE International Conference on Control Science and Systems Engineering, ICCSSE 2017, 679–682. https://doi.org/10.1109/CCSSE.2017.8088019 

Chen, M., Wang, G., Xie, P., Sang, Z., Lv, T., Zhang, P., & Yang, H. (2018). Region Aggregation Network: Improving Convolutional Neural Network for ECG Characteristic Detection. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2018-July, 2559–2562. https://doi.org/10.1109/EMBC.2018.8512789 

Chen, T. E., Yang, S. I., Ho, L. T., Tsai, K. H., Chen, Y. H., Chang, Y. F., Lai, Y. H., Wang, S. S., Tsao, Y., & Wu, C. C. (2017). S1 and S2 heart sound recognition using deep neural networks. IEEE Transactions on Biomedical Engineering, 64(2), 372–380. https://doi.org/10.1109/TBME.2016.2559800 

Chen, W., & Shi, K. (2019). A deep learning framework for time series classification using Relative Position Matrix and Convolutional Neural Network. Neurocomputing, 359(xxxx), 384–394. https://doi.org/10.1016/j.neucom.2019.06.032 

Cornelia, G., & Romulus, R. (2005). ECG signals processing using Wavelets. University of Oradea: Electronics Department, Oradea, Romania. 

Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31. https://doi.org/10.1109/TEVC.2010.2059031 

Dhawan, A. P. (2011). Medical image analysis. John Wiley & Sons. 

Ding, S., Zhang, Y., Chen, J., & Jia, W. (2013). Research on using genetic algorithms to optimize Elman neural networks. Neural Computing and Applications, 23(2),293–297. https://doi.org/10.1007/s00521-012-0896-3 

Ehteram, M., Salih, S. Q., & Yaseen, Z. M. (2020). Efficiency evaluation of reverse osmosis desalination plant using hybridized multilayer perceptron with particle swarm optimization. Environmental Science and Pollution Research, 27(13), 15278–15291. https://doi.org/10.1007/s11356-020-08023-9 

Erdenebayar, U., Kim, H., Park, J. U., Kang, D., & Lee, K. J. (2019). Automatic prediction of atrial fibrillation based on convolutional neural network using a short-term normal electrocardiogram signal. Journal of Korean Medical Science, 34(7), 1–10. https://doi.org/10.3346/jkms.2019.34.e64 

Escalona-Morán, M. A., Soriano, M. C., Fischer, I., & Mirasso, C. R. (2015). Electrocardiogram classification using reservoir computing with logistic regression. IEEE Journal of Biomedical and Health Informatics, 19(3), 892–898. https://doi.org/10.1109/JBHI.2014.2332001 

Fan, X., Yao, Q., Cai, Y., Miao, F., Sun, F., & Li, Y. (2018). Multiscaled Fusion of Deep Convolutional Neural Networks for Screening Atrial Fibrillation from Single Lead Short ECG Recordings. IEEE Journal of Biomedical and Health Informatics, 22(6), 1744–1753. https://doi.org/10.1109/JBHI.2018.2858789 

Fujita, H., & Cimr, D. (2019). Computer Aided detection for fibrillations and flutters using deep convolutional neural network. Information Sciences, 486, 231–239. https://doi.org/10.1016/j.ins.2019.02.065 

Galloway, C. D., Valys, A. V., Shreibati, J. B., Treiman, D. L., Petterson, F. L., Gundotra, V. P., Albert, D. E., Attia, Z. I., Carter, R. E., Asirvatham, S. J., Ackerman, M. J., Noseworthy, P. A., Dillon, J. J., & Friedman, P. A. (2019). Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia from the Electrocardiogram. JAMA Cardiology, 4(5), 428–436. https://doi.org/10.1001/jamacardio.2019.0640 

Ghosh, S., Das, S., Vasilakos, A. V., & Suresh, K. (2012). On convergence of differential evolution over a class of continuous functions with unique global optimum. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(1), 107–124. https://doi.org/10.1109/TSMCB.2011.2160625 

Golrizkhatami, Z., & Acan, A. (2018). ECG classification using three-level fusion of different feature descriptors. Expert Systems with Applications, 114, 54–64. https://doi.org/10.1016/j.eswa.2018.07.030 

Grau, J., Ben-Gal, I., Posch, S., & Grosse, I. (2006). VOMBAT: Prediction of transcription factor binding sites using variable order Bayesian trees. Nucleic Acids Research, 34(WEB. SERV. ISS.), 529–533. https://doi.org/10.1093/nar/gkl212 

Greenwald, S. D. (1986). The development and analysis of a ventricular fibrillation detector. Massachusetts Institute of Technology. 

Guo, H., Tao, H., Salih, S. Q., & Yaseen, Z. M. (2020). Optimized parameter estimation of a PEMFC model based on improved Grass Fibrous Root Optimization Algorithm. Energy Reports, 6, 1510–1519. https://doi.org/10.1016/j.egyr.2020.06.001 

Hadi, S. J., Tombul, M., Salih, S. Q., Al-Ansari, N., & Yaseen, Z. M. (2020). The Capacity of the Hybridizing Wavelet Transformation Approach with Data-Driven Models for Modeling Monthly-Scale Streamflow. IEEE Access, 8, 101993–102006. https://doi.org/10.1109/ACCESS.2020.2998437 

Hamilton, P. S., & Tompkins, W. J. (1986). Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database. IEEE Transactions on Biomedical Engineering, BME-33(12), 1157–1165. https://doi.org/10.1109/TBME.1986.325695 

Hammad, M., Liu, Y., & Wang, K. (2019). Multimodal biometric authentication systems using convolution neural network based on different level fusion of ECG and fingerprint. IEEE Access, 7(c), 25527–25542. https://doi.org/10.1109/ACCESS.2018.2886573 

Hammad, M., Maher, A., Wang, K., Jiang, F., & Amrani, M. (2018). Detection of abnormal heart conditions based on characteristics of ECG signals. Measurement: Journal of the International Measurement Confederation, 125, 634–644. https://doi.org/10.1016/j.measurement.2018.05.033 

Hammad, M., & Wang, K. (2019). Parallel score fusion of ECG and fingerprint for human authentication based on convolution neural network. Computers and Security, 81, 107–122. https://doi.org/10.1016/j.cose.2018.11.003 

Hammad, M., Zhang, S., & Wang, K. (2019). A novel two-dimensional ECG feature extraction and classification algorithm based on convolution neural network for human authentication. Future Generation Computer Systems, 101, 180–196. https://doi.org/10.1016/j.future.2019.06.008 

Hanbay, K. (2019). Deep neural network based approach for ECG classification using hybrid differential features and active learning. IET Signal Processing, 13(2), 165–175. https://doi.org/10.1049/iet-spr.2018.5103 

He, J., Li, K., Liao, X., Zhang, P., & Jiang, N. (2019). Real-Time Detection of Acute Cognitive Stress Using a Convolutional Neural Network from Electrocardiographic Signal. IEEE Access, 7(c), 42710–42717. https://doi.org/10.1109/ACCESS.2019.2907076 

Holsinger, W. P., Kempner, K. M., & Miller, M. H. (1971). A QRS Preprocessor Based on Digital Differentiation. IEEE Transactions on Biomedical Engineering, BME-18(3), 212–217. https://doi.org/10.1109/TBME.1971.4502834 

Hu, Z., Xiong, S., Su, Q., & Zhang, X. (2013). Sufficient conditions for global convergence of differential evolution algorithm. Journal of Applied Mathematics, 2013. https://doi.org/10.1155/2013/193196 

Huaixuan, W., Lei, Z., Chujun, F., & Yongxia, Y. (2019). ECG Signal Denoising Based on Adaptive Wavelet Threshold Function. Computing Technology and Automation, 38(2), 2019. 

Hwang, B., You, J., Vaessen, T., Myin-Germeys, I., Park, C., & Zhang, B. T. (2018). Deep ECGNet: An optimal deep learning framework for monitoring mental stress using ultra short-term ECG signals. Telemedicine and E-Health, 24(10), 753–772. https://doi.org/10.1089/tmj.2017.0250 

Jahmunah, V., Oh, S. L., Wei, J. K. E., Ciaccio, E. J., Chua, K., San, T. R., & Acharya, U. R. (2019). Computer-aided diagnosis of congestive heart failure using ECG signals – A review. Physica Medica, 62(May), 95–104. https://doi.org/10.1016/j.ejmp.2019.05.004 

Ji, Y., Zhang, S., & Xiao, W. (2019). Electrocardiogram classification based on faster regions with convolutional neural network. Sensors (Switzerland), 19(11). https://doi.org/10.3390/s19112558 

Jiao Y., ZeFeng L., C. C. (2018). Evaluation and Analysis of ECG Signal Denoising. INFORMATION &COMMUNICATIONS, 183(3), 2018. 

Jing, W., Yaseen, Z. M., Shahid, S., Saggi, M. K., Tao, H., Kisi, O., Salih, S. Q., Al-Ansari, N., & Chau, K. W. (2019). Implementation of evolutionary computing models for reference evapotranspiration modeling: short review, assessment and possible future research directions. Engineering Applications of Computational Fluid Mechanics, 13(1), 811–823. https://doi.org/10.1080/19942060.2019.1645045 

Jolm C R. (2015). The Image Processing Handbook Seventh Edition. Boca Raton. CCR Press. 

Joseph, A. N. (2012). Biomedical computing: Digitizing Life in the United States. Johns Hopkins University Press. 

Kiranyaz, S., Ince, T., & Gabbouj, M. (2016). Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks. IEEE Transactions on Biomedical Engineering, 63(3), 664–675. https://doi.org/10.1109/TBME.2015.2468589 

Kiranyaz, S., Ince, T., Hamila, R., & Gabbouj, M. (2015). Convolutional Neural Networks for patient-specific ECG classification. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2015-Novem, 2608–2611. https://doi.org/10.1109/EMBC.2015.7318926 

Koleejan, C., Xue, B., & Zhang, M. (2015). Code coverage optimisation in genetic algorithms and particle swarm optimisation for automatic software test data generation. 2015 IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings, 1204–1211. https://doi.org/10.1109/CEC.2015.7257026 

Labati, R. D., Muñoz, E., Piuri, V., Sassi, R., & Scotti, F. (2019). Deep-ECG: Convolutional Neural Networks for ECG biometric recognition. Pattern Recognition Letters, 126, 78–85. https://doi.org/10.1016/j.patrec.2018.03.028 

Leema, N., Nehemiah, H. K., & Kannan, A. (2016). Neural network classifier optimization using Differential Evolution with Global Information and Back Propagation algorithm for clinical datasets. Applied Soft Computing Journal, 49, 834–844. https://doi.org/10.1016/j.asoc.2016.08.001 

Leonid I. Rudin 1, S. O. and E. F. 2. (1992). Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenomena, 60(1–4), 259–268. http://linkinghub.elsevier.com/retrieve/pii/016727899290242F%0Apapers3://publication/doi/10.1016/0167-2789(92)90242-F 

Lesk, A. (2019). Introduction to bioinformatics. Oxford University Press. 

Li, C., Zheng, C., & Tai, C. (1995). Detection of ECG characteristic points using wavelet transforms. IEEE Transactions on Biomedical Engineering, 42(1), 21–28. 

Li, D., Li, X., Zhao, J., & Bai, X. (2019). Automatic staging model of heart failure based on deep learning. Biomedical Signal Processing and Control, 52, 77–83. https://doi.org/10.1016/j.bspc.2019.03.009 

Li, K., Pan, W., Li, Y., Jiang, Q., & Liu, G. (2018). A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal. Neurocomputing, 294, 94–101. https://doi.org/10.1016/j.neucom.2018.03.011 

Li, Z., Feng, X., Wu, Z., Yang, C., Bai, B., & Yang, Q. (2019). Classification of atrial fibrillation recurrence based on a convolution neural network with SVM architecture. IEEE Access, 7(1), 77849–77856. https://doi.org/10.1109/ACCESS.2019.2920900 

Lipman, D. J., & Pearson, W. R. (1985). Rapid and sensitive protein similarity searches. Science, 227(4693), 1435–1441. 

Liu, S., Wu, G., Liu, H., & Zhang, X. (2017). Image restoration approach using a joint sparse representation in 3D-transform domain. Digital Signal Processing: A Review Journal, 60, 307–323. https://doi.org/10.1016/j.dsp.2016.10.008 

Liu, W., Huang, Q., Chang, S., Wang, H., & He, J. (2018). Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram. Biomedical Signal Processing and Control, 45, 22–32. https://doi.org/10.1016/j.bspc.2018.05.013 

Liu, X. (2016). Weighted total generalised variation scheme for image restoration. IET Image Processing, 10(1), 80–88. https://doi.org/10.1049/iet-ipr.2015.0013 

Mangoud, M. A., Elragal, H. M., & Alshara, M. T. (2014). Design of time modulated concentric circular and concentric hexagonal antenna array using hybrid enhanced particle swarm optimisation and differential evolution algorithm. IET Microwaves, Antennas and Propagation, 8(9), 657–665. https://doi.org/10.1049/iet-map.2013.0132 

Marinho, L. B., Nascimento, N. de M. M., Souza, J. W. M., Gurgel, M. V., Rebouças Filho, P. P., & de Albuquerque, V. H. C. (2019). A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification. Future Generation Computer Systems, 97, 564–577. https://doi.org/10.1016/j.future.2019.03.025 

Martis, R. J., Acharya, U. R., & Adeli, H. (2014). Current methods in electrocardiogram characterization. Computers in Biology and Medicine, 48(1), 133–149. https://doi.org/10.1016/j.compbiomed.2014.02.012 

Mathews, S. M., Kambhamettu, C., & Barner, K. E. (2018). A novel application of deep learning for single-lead ECG classification. Computers in Biology and Medicine, 99, 53–62. https://doi.org/10.1016/j.compbiomed.2018.05.013 

Meertens, H., Van Herk, M., & Weeda, J. (1988). An inverse filter for digital restoration of portal images. Physics in Medicine and Biology, 33(6), 687–702. https://doi.org/10.1088/0031-9155/33/6/003 

Osher, S., Burger, M., Goldfarb, D., Xu, J., & Yin, W. (2005). An iterative regularization method for total variation-based image restoration. Multiscale Modeling and Simulation, 4(2), 460–489. https://doi.org/10.1137/040605412 

Pal, S., & Mitra, M. (2012). Increasing the accuracy of ECG based biometric analysis by data modelling. Measurement: Journal of the International Measurement Confederation, 45(7), 1927–1932. https://doi.org/10.1016/j.measurement.2012.03.005 

Papyan, V., & Elad, M. (2016). Multi-scale patch-based image restoration. IEEE Transactions on Image Processing, 25(1), 249–261. https://doi.org/10.1109/TIP.2015.2499698 

Penghui, L., Ewees, A. A., Beyaztas, B. H., Qi, C., Salih, S. Q., Al-Ansari, N., Bhagat, S. K., Yaseen, Z. M., & Singh, V. P. (2020). Metaheuristic optimization algorithms hybridized with artificial intelligence model for soil temperature prediction: Novel model. IEEE Access, 8, 51884–51904. https://doi.org/10.1109/ACCESS.2020.2979822 

Poh, M. Z., Poh, Y. C., Chan, P. H., Wong, C. K., Pun, L., Leung, W. W. C., Wong, Y. F., Wong, M. M. Y., Chu, D. W. S., & Siu, C. W. (2018). Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms. Heart, 1–8. https://doi.org/10.1136/heartjnl-2018-313147 

Polat, K., & Günes, S. (2007). Detection of ECG Arrhythmia using a differential expert system approach based on principal component analysis and least square support vector machine. Applied Mathematics and Computation, 186(1), 898–906. https://doi.org/10.1016/j.amc.2006.08.020 

Pourbabaee, B., Roshtkhari, M. J., & Khorasani, K. (2018). Deep Convolutional Neural Networks and Learning ECG Features for Screening Paroxysmal Atrial Fibrillation Patients. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(12), 2095–2104. https://doi.org/10.1109/TSMC.2017.2705582 

Qiao Li et al. (2018). Deep learning in the cross-time-frequency domain for sleep staging from a single lead electrocardiogram. Physiological Measurement, 111, 0–13. 

R. Storn, K. P. (1997). Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(3), 341–359. https://doi.org/10.1071/AP09004 

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., & Shpanskaya, K. (2017). Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. ArXiv Preprint ArXiv:1711.05225. 

Ribas Ripoll, V. J., Wojdel, A., Romero, E., Ramos, P., & Brugada, J. (2016). ECG assessment based on neural networks with pretraining. Applied Soft Computing Journal, 49, 399–406. https://doi.org/10.1016/j.asoc.2016.08.013 

Rubin, J., Parvaneh, S., Rahman, A., Conroy, B., & Babaeizadeh, S. (2018). Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings. Journal of Electrocardiology, 51(6), S18–S21. https://doi.org/10.1016/j.jelectrocard.2018.08.008 

Sadrawi, M., Lin, C. H., Lin, Y. T., Hsieh, Y., Kuo, C. C., Chien, J. C., Haraikawa, K., Abbod, M. F., & Shieh, J. S. (2017). Arrhythmia evaluation in wearable ECG devices. Sensors (Switzerland), 17(11), 1–14. https://doi.org/10.3390/s17112445 

Sahoo, S., Kanungo, B., Behera, S., & Sabut, S. (2017). Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement: Journal of the International Measurement Confederation, 108, 55–66. https://doi.org/10.1016/j.measurement.2017.05.022 

Salem, M., Taheri, S., & Yuan, J. S. (2018). ECG Arrhythmia Classification Using Transfer Learning from 2- Dimensional Deep CNN Features. 2018 IEEE Biomedical Circuits and Systems Conference, BioCAS 2018 - Proceedings, 1–4. https://doi.org/10.1109/BIOCAS.2018.8584808 

Salih, S. Q., & Alsewari, A. R. A. (2020). A new algorithm for normal and large-scale optimization problems: Nomadic People Optimizer. Neural Computing and Applications, 32(14), 10359–10386. https://doi.org/10.1007/s00521-019-04575-1 

Savalia, S., & Emamian, V. (2018). Cardiac arrhythmia classification by multi-layer perceptron and convolution neural networks. Bioengineering, 5(2). https://doi.org/10.3390/bioengineering5020035 

Sayadi, O., & Shamsollahi, M. B. (2007). Multiadaptive bionic wavelet transform: Application to ECG denoising and baseline wandering reduction. Eurasip Journal on Advances in Signal Processing, 2007(c). https://doi.org/10.1155/2007/41274 

Sayantan, G., Kien, K. P., & Kadambari, V. K. (2018). Classification of ECG beats using deep belief network and active learning. Medical and Biological Engineering and Computing, 56(10), 1887–1898. https://doi.org/10.1007/s11517-018-1815-2 

Shahbazi, F., & Asl, B. M. (2015). Generalized discriminant analysis for congestive heart failure risk assessment based on long-term heart rate variability. Computer Methods and Programs in Biomedicine, 122(2), 191–198. https://doi.org/10.1016/j.cmpb.2015.08.007 

Shen, Z., & Cheng, L. (2016). Coupled image restoration model with non-convex non-smooth lp wavelet frame and total variation regularisation. IET Image Processing, 10(11), 926–935. https://doi.org/10.1049/iet-ipr.2015.0787 

Shepoval’nikov, R. A., Nemirko, A. P., Kalinichenko, A. N., & Abramchenko, V. V. (2006). Investigation of time, amplitude, and frequency parameters of a direct fetal ECG signal during labor and delivery. Pattern Recognition and Image Analysis, 16(1), 74–76. https://doi.org/10.1134/S1054661806010238 

Shiyovich, A., Wolak, A., Yacobovich, L., Grosbard, A., & Katz, A. (2010). Accuracy of diagnosing atrial flutter and atrial fibrillation from a surface electrocardiogram by hospital physicians: Analysis of data from internal medicine departments. American Journal of the Medical Sciences, 340(4), 271–275. https://doi.org/10.1097/MAJ.0b013e3181e73fcf 

Shortliffe, E. H., Cimino, & J. J. (2014). Biomedical informatics: computer applications in health care and biomedicine. In Springer. 

Singh, S., Pandey, S. K., Pawar, U., & Janghel, R. R. (2018). Classification of ECG Arrhythmia using Recurrent Neural Networks. Procedia Computer Science, 132(Iccids), 1290–1297. https://doi.org/10.1016/j.procs.2018.05.045 

Smith, S. W., Walsh, B., Grauer, K., Wang, K., Rapin, J., Li, J., Fennell, W., & Taboulet, P. (2019). A deep neural network learning algorithm outperforms a conventional algorithm for emergency department electrocardiogram interpretation. Journal of Electrocardiology, 52, 88–95. https://doi.org/10.1016/j.jelectrocard.2018.11.013 

SONG Xi-guo, D. Q. (2004). ON the Format of MIT-BIH Arrhythmia Database. Chinese Journal of Medical Physics, 53(9), 1689–1699. 

Sufi, F., & Khalil, I. (2011). Diagnosis of cardiovascular abnormalities from compressed ECG: A data mining-based approach. IEEE Transactions on Information Technology in Biomedicine, 15(1), 33–39. https://doi.org/10.1109/TITB.2010.2094197 

Swapna, G., Soman, K. P., & Vinayakumar, R. (2018a). Automated detection of cardiac arrhythmia using deep learning techniques. Procedia Computer Science, 132, 1192–1201. https://doi.org/10.1016/j.procs.2018.05.034 

Swapna, G., Soman, K. P., & Vinayakumar, R. (2018b). Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals. Procedia Computer Science, 132(Iccids), 1253–1262. https://doi.org/10.1016/j.procs.2018.05.041 

Swapna, G., Vinayakumar, R., & Soman, K. P. (2018). Diabetes detection using deep learning algorithms. ICT Express, 4(4), 243–246. https://doi.org/10.1016/j.icte.2018.10.005 

Tan, J. H., Hagiwara, Y., Pang, W., Lim, I., Oh, S. L., Adam, M., Tan, R. S., Chen, M., & Acharya, U. R. (2018). Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Computers in Biology and Medicine, 94, 19–26. https://doi.org/10.1016/j.compbiomed.2017.12.023 

Tang L X, Zhao Y, L. J. Y. (2014). An Improved Differential Evolution Algorithm for Practical Dynamic Scheduling in Steelmaking-continuous Casting Production. IEEE Trans-Actions on Evolutionary Computation. 

Uhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E., Jonasson, K., Forsberg, M., Zwahlen, M., Kampf, C., Wester, K., Hober, S., Wernerus, H., Björling, L., & Ponten, F. (2010). Towards a knowledge-based Human Protein Atlas. Nature Biotechnology, 28(12), 1248–1250. https://doi.org/10.1038/nbt1210-1248 

Urtnasan, E., Park, J. U., & Lee, K. J. (2018). Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram. Physiological Measurement, 39(6). https://doi.org/10.1088/1361-6579/aac7b7 

Wan X., Tang, W., Zhang L., & Wu. M. (2016). An Improved Cubic Spline Electrocardiogram Baseline Drift An Improved Cubic Spline. Journal of Biomedical Engineering, 22(2), 2016. 

Wang, E. K., Xi, L., Sun, R., Wang, F., Pan, L., Cheng, C., Dimitrakopoulou-Srauss, A., Zhe, N., & Li, Y. (2019). A new deep learning model for assisted diagnosis on electrocardiogram. Mathematical Biosciences and Engineering, 16(4), 2481–2491. https://doi.org/10.3934/mbe.2019124 

Wang, Q., Gao, Q., Gao, X., & Nie, F. (2017). Angle principal component analysis. IJCAI International Joint Conference on Artificial Intelligence, 0, 2936–2942. https://doi.org/10.24963/ijcai.2017/409 

Wang, Y., Deepu, C. J., & Lian, Y. (2011). A computationally efficient QRS detection algorithm for wearable ECG sensors. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 5641–5644. https://doi.org/10.1109/IEMBS.2011.6091365 

Wolterink, J. M., Hamersvelt, R. W. va., Viergever, M. A., Leiner, T., & Išgum, I. (2019). Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier. Medical Image Analysis, 51, 46–60. https://doi.org/10.1016/j.media.2018.10.005 

Wooff D. (2004). Logistic Regression: a Self learning Text. Journal of the Royal Statistical Society: Series A (Statistics in Society), 151(1), 1–1. https://doi.org/10.1111/j.1467-985x.1988.tb00001.x 

Xia, Y., & Xie, Y. (2019). A novel wearable electrocardiogram classification system using convolutional neural networks and active learning. IEEE Access, 7(c), 7989–8001. https://doi.org/10.1109/ACCESS.2019.2890865 

Xia, Y., Zhang, J., Ye, Q., Cheng, N., Lu, Y., & Zhang, D. (2018). Evaluation of deep convolutional neural networks for detection of freezing of gait in Parkinson’s disease patients. Biomedical Signal Processing and Control, 46, 221–230. https://doi.org/10.1016/j.bspc.2018.07.015 

Xiao, B., Xu, Y., Bi, X., Zhang, J., & Ma, X. (2020). Heart sounds classification using a novel 1-D convolutional neural network with extremely low parameter consumption. Neurocomputing, 392(xxxx), 153–159. https://doi.org/10.1016/j.neucom.2018.09.101 

Xiao, R., Xu, Y., Pelter, M. M., Mortara, D. W., & Hu, X. (2018). A deep learning approach to examine ischemic ST changes in ambulatory ECG recordings. AMIA Summits on Translational Science Proceedings, 2018, 256. 

Xu, Y., & Goodacre, R. (2018). On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning. Journal of Analysis and Testing, 2(3), 249–262. https://doi.org/10.1007/s41664-018-0068-2 

Xue, Y., Zhuang, Y., Ni, T., Ni, S., & Wen, X. (2014). Self-adaptive learning based discrete differential evolution algorithm for solving CJWTA problem. Journal of Systems Engineering and Electronics, 25(1), 59–68. https://doi.org/10.1109/JSEE.2014.00007 

Yang, T., Yu, L., Jin, Q., Wu, L., & He, B. (2018). Localization of Origins of Premature Ventricular Contraction by Means of Convolutional Neural Network from 12-Lead ECG. IEEE Transactions on Biomedical Engineering, 65(7), 1662–1671. https://doi.org/10.1109/TBME.2017.2756869 

Yaseen, Z. M., Naghshara, S., Salih, S. Q., Kim, S., Malik, A., & Ghorbani, M. A. (2020). Lake water level modeling using newly developed hybrid data intelligence model. Theoretical and Applied Climatology, 141(3–4), 1285–1300. https://doi.org/10.1007/s00704-020-03263-8 

Yildirim, O., Tan, R. S., & Acharya, U. R. (2018). An efficient compression of ECG signals using deep convolutional autoencoders. Cognitive Systems Research, 52, 198–211. https://doi.org/10.1016/j.cogsys.2018.07.004 

Yin, W., Yang, X., Zhang, L., & Oki, E. (2016). ECG Monitoring System Integrated with IR-UWB Radar Based on CNN. IEEE Access, 4(c), 6344–6351. https://doi.org/10.1109/ACCESS.2016.2608777 

Yildirim, Ö., Plawiak, P., Tan, R. S., & Acharya, U. R. (2018). Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Computers in Biology and Medicine, 102, 411–420. https://doi.org/10.1016/j.compbiomed.2018.09.009 

Yoo, H.-J. (2015). Deep convolution neural networks in computer vision: a review. IEIE Transactions on Smart Processing and Computing, 4(1), 35–43. 

Zaharie, D. (2002). Critical values for the control parameters of differential evolution algorithms. Proceedings of 8th International Mendel Conference on Soft Computing, 2, 6267. 

Zhai, X., & Tin, C. (2018). Automated ECG Classification Using Dual Heartbeat Coupling Based on Convolutional Neural Network. IEEE Access, 6, 27465–27472. https://doi.org/10.1109/ACCESS.2018.2833841 

Zhang, F., & Lian, Y. (2009). QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks. IEEE Transactions on Biomedical Circuits and Systems, 3(4), 220–228. https://doi.org/10.1109/TBCAS.2009.2020093 

Zhang, Q., Zhou, D., & Zeng, X. (2017). HeartID: A Multiresolution Convolutional Neural Network for ECG-Based Biometric Human Identification in Smart Health Applications. IEEE Access, 5(c), 11805–11816. https://doi.org/10.1109/ACCESS.2017.2707460 

Zhao, Z., Wang, X., Cai, Z., Li, J., & Liu, C. (2019). Noise Rejection for Wearable ECGs Using Modified Frequency Slice Wavelet Transform and Convolutional Neural Networks. IEEE Access, 2019-Septe(1), 200. https://doi.org/10.23919/CinC49843.2019.9005872 

Zhao, Z., Zhang, Y., Deng, Y., & Zhang, X. (2018). ECG authentication system design incorporating a convolutional neural network and generalized S-Transformation. Computers in Biology and Medicine, 102(July), 168–179. https://doi.org/10.1016/j.compbiomed.2018.09.027 

Zipser, D., & Andersen, R. A. (1988). A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature, 331(6158), 679–684. 

Zubair M, Kim J, Y. C. (2016). An automated ECG beat classification system using convolutional neural networks. In IT Convergence and Security (ICITCS), 2016 6th International Conference on. IEEE. 

Zubair, M., Kim, J., & Yoon, C. (2016). An automated ECG beat classification system using convolutional neural networks. 2016 6th International Conference on IT Convergence and Security (ICITCS), 1–5. 

 

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)