UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Kajian ini bertujuan untuk mengekstrak dan mencirikan hidroksiaptit (HA) daripada
tulang lembu dan sisik ikan menggunakan kaedah rawatan alkali pada kepekatan yang
berbeza. Spektroskopi inframerah (FTIR) dan analisis pembelauan sinar-X (XRD) telah
digunakan untuk mencirikan bahan HA daripada tulang lembu (HATL) dan sisik ikan
(HASI). Analisis FTIR terhadap sampel HATL dan HASI membuktikan kewujudan
kumpulan berfungsi fosfat dan hidroksil di dalam kedua-dua sample. Keputusan XRD
menunjukkan difragtogram HA tulang lembu dan HA sisik ikan sepadan dengan
difragtogram HA piawai. Keputusan XRD mengesahkan kehadiran fasa kedua iaitu beta
trikalsium fosfat (β-TCP) daripada HASI selepas disinter pada suhu 1200 °C. Analisis
termogravimetri (TGA) menunjukkan tulang lembu dan sisik ikan yang dirawat dengan
5M NaOH berjaya menyingkirkan bahan organik yang paling tinggi. Mikroskop
imbasan elektron (SEM) telah digunakan untuk mengkaji morfologi apatit yang
diperolehi. Analisis SEM menunjukkan size zarah HATL selepas rawatan alkali adalah
sekitar 53 nm manakala untuk HASI adalah sekitar 36 nm. Analisis tenaga serakan sinar
X (EDX) menunjukkan nisbah Ca/P adalah 1.75 dan 1.83 untuk tulang lembu dan sisik
ikan masing-masing. Ujian kelarutan menunjukkan kelarutan bahan HASI adalah lebih
tinggi berbanding dengan HATL. Kedua-dua bahan HA daripada tulang lembu dan sisik
ikan adalah berpotensi digunakan sebagai sumber kalsium untuk makanan tambahan |
References |
Abidi, S. S. A., & Murtaza, Q. (2014). Synthesis and characterization of nano- hydroxyapatite powder using wet chemical precipitation reaction. Journal of Materials Science and Technology, 30(4), 307–310. Agrawal, K., Singh, G., Puri, D., & Prakash, S. (2011). Synthesis and Characterization of Hydroxyapatite Powder by Sol-Gel Method for Biomedical Application. Journal of Minerals and Materials Characterization and Engineering, 10(8), 727– 734. Akram, M., Ahmed, R., Shakir, I., Ibrahim, W. A. W., & Hussain, R. (2014). Extracting hydroxyapatite and its precursors from natural resources. Journal of Materials Science, 49(4), 1461–1475. Baco, S., Bambang, L., Joseph, N., & Basri, N. F. (2013). Structural and Composition of Natural Hydroxyapatite (HA) at Different Sintering Temperatures. Malaysian Journal of Fundamental and Applied Sciences, 220–224. Bahrololoom, M. E., Javidi, M., Javadpour, S., & Ma, J. (2009). Characterisation of natural hydroxyapatite extracted from bovine cortical bone ash. Journal of Ceramic Processing Research, 10(2), 129–138. Balamurugan, A., Michel, J., Faur, J., Benhayoune, H., Wortham, L., Sockalingum, G., Balossier, G. (2006). Synthesis and structural analysis of SOL gel derived stoichiometric monophasic hydroxyapatite. Ceramics - Silikaty, 50(1), 27–31. Balamurugan, A. , Kannan, S., & Rajeswari, S. (2002). Bioactive sol-gel hydroxyapatite surface for biomedical applications - in vitro study. Trends Biomater. Artif. Organs, 16(1), 18–20. Barakat, N. A. M., Seob, M., Omran, A. M., Sheikh, F. A., & Yong, H. (2008). Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. Materials Processing Technology, 9(209), 3408–3415. Barakat, N. A M., Khil, M. S., Omran, A. M., Sheikh, F. A., & Kim, H. Y. (2009). Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. Journal of Materials Processing Technology, 209(7), 3408– 3415. Boskey, A. L. (2013). Natural and Synthetic Hydroxyapatites. Biomaterials Science: An Introduction to Materials: Third Edition (pp. 151–161). Elsevier Inc. Brzezińska-Miecznik, J., Haberko, K., Sitarz, M., Bućko, M. M., & Macherzyńska, B. (2015). Hydroxyapatite from animal bones – Extraction and properties. Ceramics International, 41(3), 4841–4846. Catros, S., Guillemot, F., Lebraud, E., Chanseau, C., Perez, S., Bareille, R., Fricain, J. C. (2010). Physico-chemical and biological properties of a nano-hydroxyapatite powder synthesized at room temperature. Irbm, 31(4), 226–233. Chakraborty, R., & Roy Chowdhury, D. (2013a). Fish bone derived natural hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch oleic acid esterification. Chemical Engineering Journal, 215–216, 491–499. Chakraborty, R., & Roy Chowdhury, D. (2013b). Fish bone derived natural hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch oleic acid esterification. Chemical Engineering Journal, 215–216, 491–499. Chavan, P. N., Bahir, M. M., Mene, R. U., Mahabole, M. P., & Khairnar, R. S. (2010). Study of nanobiomaterial hydroxyapatite in simulated body fluid: Formation and growth of apatite. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 168(1), 224–230. Chetty, A., Wepener, I., Marei, M. K., Kamary, Y. E., & Moussa, R. M. (2012). Hydroxyapatite : Synthesis, properties and applications. Nova SciencePublishers (pp. 91–132). Dorozhkin, S. V. (2010). Calcium Orthophosphates as Bioceramics: State of the Art. Journal of Functional Biomaterials, 1(1), 22–107. Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, F., & Figueiredo, H. (2010a). Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceramics International, 36(8), 2383–2393. Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, F., & Figueiredo, H. (2010b). Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceramics International, 36(8), 2383–2393. Figueiredo, M. M., Gamelas, J. A. F., & Martins, A. G. (2010). Characterization of Bone and Bone-Based Graft Materials Using FTIR Spectroscopy. Ceramics International, 36, 2383–2393. Fulmer, M. T., Ison, I. C., Hankermayer, C. R., Constantz, B. R., & Ross, J. (2002). Measurements of the solubilities and dissolution rates of several hydroxyapatites. Biomaterials, 23(3), 751–755. Giraldo-betancur, A. L., Espinosa-arbelaez, D. G., Real-lópez, A., & Millan-malo, B. M. (2013). Comparison of physicochemical properties of bio and commercial hydroxyapatite. Current Applied Physics, 1–8. Gumisiriza, R., Mshandete, A. M., Thomas, M. S., Kansiime, F., & Kivaisi, A. K. (2009). Nile perch fish processing waste along Lake Victoria in East Africa : Auditing and characterization. African Journal of Environmental Science and Technology, 3(January), 13–20. Huang, Y. C., Hsiao, P. C., & Chai, H. J. (2011). Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceramics International, 37(6), 1825– 1831. Ishihara, K., Arai, J., Nakabayashi, N., Morita, S., & Furuya, K. (1992). Adhesive bone cement containing hydroxyapatite particle as bone compatible filler. Journal of Biomedical Materials Research, 26(7), 937–945. Jadalannagari, S., More, S., Kowshik, M., & Ramanan, S. R. (2011). Low temperature synthesis of hydroxyapatite nano-rods by a modified sol-gel technique. Materials Science and Engineering C, 31(7), 1534–1538. Janus, A. M., Faryna, M., Haberko, K., Rakowska, A., & Panz, T. (2008). Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones. In Microchimica Acta (Vol. 161, pp. 349–353). Joschek, S., Nies, B., Krotz, R., & Göpferich, A. (2000). Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials, 21(16), 1645–1658. Kamalanathan, P., Ramesh, S., Bang, L. T., Niakan, a., Tan, C. Y., Purbolaksono, J., Teng, W. D. (2014). Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor. Ceramics International, 40(10), 16349–16359. Yousif, A. E., & M.Kareem, M. (2011). Extraction of Hydroxyapatite from Bovine Femur Bone by Thermal Decomposition Method. I-Manager’s Journal on Future Engineering & Technology, 7(2), 13–17. Kim, S.-S., Sun Park, M., Jeon, O., Yong Choi, C., & Kim, B.-S. (2006). Poly(lactide- co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials, 27(8), 1399–1409. Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., & Chanthai, S. (2013). Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution. Chemical Engineering Journal, 215–216, 522–532. Kim, J. H., Kim, S. H., Kim, H. K., Akaike, T., & Kim, S. C. (2002). Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. Journal of Biomedical Materials Research, 62(4), 600–612. Krisanapiboon, A, Buranapanitkit, B., & Oungbho, K. (2006). Biocompatability of hydroxyapatite composite as a local drug delivery system. Journal of Orthopaedic Surgery (Hong Kong), 14(3), 315–8. Kusrini, E., Pudjiastuti, A. R., Astuningsih, S., & Harjanto, S. (2012a). Preparation of Hydroxyapatite from Bovine Bone by Combination Methods of Ultrasonic and Spray Drying. International Conference on Chemical, Bio-Chemical and Environmental Sciences (ICBEE’2012), 47–51 Kusrini, E., & Sontang, M. (2012). Characterization of x-ray diffraction and electron spin resonance: Effects of sintering time and temperature on bovine hydroxyapatite. Radiation Physics and Chemistry, 81(2), 118–125. Landi, E., Celotti, G., Logroscino, G., & Tampieri, A. (2003). Carbonated hydroxyapatite as bone substitute. Journal of the European Ceramic Society, 23(15), 2931–2937. Lim, H. N., Kassim, A., & Huang, N. M. (2010). Preparation and characterization of calcium phosphate nanorods using reverse microemulsion and hydrothermal processing routes. Sains Malaysiana, 39(2), 267–273. Lombardi, M., Palmero, P., Haberko, K., Pyda, W., & Montanaro, L. (2011). Processing of a natural hydroxyapatite powder: From powder optimization to porous bodies development. Journal of the European Ceramic Society, 31(14), 2513–2518. Mobasherpour, I., Heshajin, M. S., Kazemzadeh, a., & Zakeri, M. (2007). Synthesis of nanocrystalline hydroxyapatite by using precipitation method. Journal of Alloys and Compounds, 430(1–2), 330–333. Mohandes, F., Salavati-niasari, M., Fereshteh, Z., & Fathi, M. (2014). Novel preparation of hydroxyapatite nanoparticles and nanorods with the aid of complexing agents. Ceramics International, 40(8), 12227–12233. Mondal, S., Bardhan, R., Mondal, B., & Dey, A. (2012). Synthesis , characterization and in vitro cytotoxicity assessment of hydroxyapatite from different bioresources for tissue engineering application. Bulletin of Materials Science, 35(4), 683–691. Mondal, S., Bardhan, R., Mondal, B., Dey, A., Mukhopadhyay, S. S., Roy, S., Roy, K. (2012). Synthesis, characterization and in vitro cytotoxicity assessment of hydroxyapatite from different bioresources for tissue engineering application. Bulletin of Materials Science, 35(4), 683–691. Mondal, S., Mahata, S., Kundu, S., & Mondal, B. (2010). Processing of natural resourced hydroxyapatite ceramics from fish scale. Advances in Applied Ceramics, 109(4), 234. Mondal, S., Mondal, A., Mandal, N., Mondal, B., Mukhopadhyay, S. S., Dey, A., & Singh, S. (2014). Physico-chemical characterization and biological response of Labeo rohita-derived hydroxyapatite scaffold. Bioprocess and Biosystems Engineering, 37(7), 1233–1240. Mondal, S., Mondal, B., Dey, A., & Mukhopadhyay, S. S. (2012). Studies on Processing and Characterization of Hydroxyapatite Biomaterials from Different Bio Wastes. Journal of Minerals and Materials Characterization & Engineering, 11(1), 55–67. Muralithran, G., & Ramesh, S. (2000). Effects of sintering temperature on the properties of hydroxyapatite. Ceramics International, 26(2), 221–230. Nath, N., & Krishna, P. (2014). Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold. Biomaterials, 37, 433–440. Nayak, A. K. (2010). Hydroxyapatite synthesis methodologies: An overview. International Journal of ChemTech Research, 2(2), 903–907. Niakan, A., Ramesh, S., Ganesan, P., Tan, C. Y., Purbolaksono, J., Chandran, H., Teng, W. D. (2015). Sintering behaviour of natural porous hydroxyapatite derived from bovine bone. Ceramics International, 41(2), 3024–3029. Nirmala, R., Sheikh, F. a., Kanjwal, M. a., Lee, J. H., Park, S. J., Navamathavan, R., & Kim, H. Y. (2011). Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications. Journal of Nanoparticle Research, 13(5), 1917–1927. Ooi, C. Y., Hamdi, M., & Ramesh, S. (2007). Properties of hydroxyapatite produced by annealing of bovine bone. Ceramics International, 33(7), 1171–1177. Orlovskii, V. P., Komlev, V. S., & Barinov, S. M. (2002). Hydroxyapatite and hydroxyapatite-based ceramics. Inorganic Materials, 38(10), 973–984. Panda, N. N., Pramanik, K., & Sukla, L. B. (2013). Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold. Bioprocess and Biosystems Engineering, 37(3), 433–440. Prabakaran, K., & Rajeswari, S. (2006). Development of hydroxyapatite from natural fish bone through heat treatment. In Trends in Biomaterials and Artificial Organs (Vol. 20, pp. 20–23). Prakash Parthiban, S., Elayaraja, K., Girija, E. K., Yokogawa, Y., Kesavamoorthy, R., Palanichamy, M., Narayana Kalkura, S. (2009). Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method. In Journal of Materials Science: Materials in Medicine (Vol. 20). Pramanik, S., Agarwal, A. K., & Rai, K. N. (2005). Development of high strength hydroxyapatite for hard tissue replacement. Trends in Biomaterials and Artificial Organs, 19(1), 46–51. Queiroz, A. C., Santos, J. D., Monteiro, F. J., & Prado da Silva, M. H. (2003). Dissolution studies of hydroxyapatite and glass-reinforced hydroxyapatite ceramics. In Materials Characterization(Vol. 50, pp. 197–202). Ramesh, S., Aw, K. L., Tolouei, R., Amiriyan, M., Tan, C. Y., Hamdi, M., Teng, W. D. (2012). Sintering properties of hydroxyapatite powders prepared using different methods. Ceramics International, 39, 111–119. Rigo, E. C. S., Boschi, A. O., Yoshimoto, M., Allegrini, S., Konig, B., & Carbonari, M. J. (2004). Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants. In Materials Science and Engineering C (Vol. 24, pp. 647–651). Ripamonti, U., Crooks, J., Khoali, L., & Roden, L. (2009). Biomaterials The induction of bone formation by coral-derived calcium carbonate / hydroxyapatite constructs. Biomaterials, 30(7), 1428–1439. Rujitanapanich, S., Kumpapan, P., & Wanjanoi, P. (2014). Synthesis of Hydroxyapatite from Oyster Shell via Precipitation. Energy Procedia, 56, 112–114) Ruksudjarit, A., Pengpat, K., Rujijanagul, G., & Tunkasiri, T. (2008). Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone. Current Applied Physics, 8(3–4), 270–272. Sadat-Shojai, M., Khorasani, M. T., & Jamshidi, A. (2012). Hydrothermal processing of hydroxyapatite nanoparticles - A Taguchi experimental design approach. Journal of Crystal Growth, 361(1), 73–84. Sankar, S., Sekar, S., Mohan, R., Rani, S., Sundaraseelan, J., & Sastry, T. P. (2008). Preparation and partial characterization of collagen sheet from fish (Lates calcarifer) scales. International Journal of Biological Macromolecules, 42(1), 6– 9. Shavandi, A., Bekhit, A. E.-D. a., Ali, M. A., Sun, Z., & Gould, M. (2015). Development and characterization of hydroxyapatite/β-TCP/chitosan composites for tissue engineering applications. Materials Science and Engineering: C, 56, 481–493. Shu, C., Yanwei, W., Hong, L., Zhengzheng, P., & Kangde, Y. (2005). Synthesis of carbonated hydroxyapatite nanofibers by mechanochemical methods. Ceramics International, 31(1), 135–138. Sionkowska, A., & Kozlowska, J. (2013). Fish Scales as a Biocomposite of Collagen and Calcium Salts. Key Engineering Materials, 587, 185–190. Sobczak-Kupiec, A., & Wzorek, Z. (2012). The influence of calcination parameters on free calcium oxide content in natural hydroxyapatite. Ceramics International, 38(1), 641–647. Stoch, A., Jastrzȩbski, W., Brozek, A., Stoch, J., Szaraniec, J., Trybalska, B., & Kmita, G. (2000). FTIR absorption-reflection study of biomimetic growth of phosphates on titanium implants. Journal of Molecular Structure, 555, 375–382. Suchanek, W. L., & Riman, R. E. (2006). Hydrothermal Synthesis of Advanced Ceramic Powders. Advances in Science and Technology, 45, 184–193. Sukaimi, J., Hamzah, S., & Ghazali, M. S. M. (2015). Green Synthesis and Characterization of Hydroxyapatite From Fish Scale Biowaste. Applied Mechanics and Materials, 695, 235–238. Tkalčec, E., Popović, J., Orlić, S., Milardović, S., & Ivanković, H. (2014). Hydrothermal synthesis and thermal evolution of carbonate-fluorhydroxyapatite scaffold from cuttlefish bones. Materials Science & Engineering. C, Materials for Biological Applications, 42, 578–86. Vallet-Regí, M., Peña, J., & Izquierdo-Barba, I. (2004). Synthesis of β-tricalcium phosphate in layered or powdered forms for biomedical applications. In Solid State Ionics (Vol. 172, pp. 445–449). Venkatesan, J., Qian, Z. J., Ryu, B., Thomas, N. V., & Kim, S. K. (2011). A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomedical Materials (Bristol, England), 6(3), 35003. Yoganand, C. P., Selvarajan, V., Cannillo, V., Sola, A., Roumeli, E., Goudouri, O. M., Rouabhia, M. (2010). Characterization and in vitro-bioactivity of natural hydroxyapatite based bio-glass-ceramics synthesized by thermal plasma processing. Ceramics International, 36(6), 1757–1766. Zainol, I., Alwi, N. M., Abidin, M. Z., Haniza, H. M. Z., Ahmad, M. S., & Ramli, A. (2012). Physicochemical Properties of Hydroxyapatite Extracted from Fish Scales. Advanced Materials Research, 545, 235–239. Zaragoza, D. L., Teresita, E., Guzmán, R., & Gutiérrez, L. R. R. (2007). Surface and Physicochemical Properties of Calcium Phosphate from Bovine Bone. Proceedings IJM, 711–719. Zhang, H., Member, S., Burdet, E., Poo, A. N., & Hutmacher, D. W. (2008). Microassembly Fabrication of Tissue Engineering Scaffolds With Customized Design, 5(3), 446–456. Zhang, Y., Liu, Y., Ji, X., Banks, C. E., & Zhang, W. (2011). Sea cucumber-like hydroxyapatite: cation exchange membrane-assisted synthesis and its application in ultra-sensitive heavy metal detection. Chemical Communications, 47(14), 4126. Zhu, Y., Zhu, Z., Zhao, X., Liang, Y., Dai, L., & Huang, Y. (2016). Characterization, dissolution and solubility of cadmium-calcium hydroxyapatite solid solutions at 25°C. Chemical Geology, 423, 34–48.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |