UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :thesis
Subject :QD Chemistry
Main Author :Nur Hidayah Adenan
Title :Pengekstrakan dan pencirian hidroksiapatit daripada tulang lembu dan sisik ikan menggunakan kaedah rawatan alkali
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2018
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
Kajian ini bertujuan untuk mengekstrak dan mencirikan hidroksiaptit (HA) daripada tulang lembu dan sisik ikan menggunakan kaedah rawatan alkali pada kepekatan yang berbeza. Spektroskopi inframerah (FTIR) dan analisis pembelauan sinar-X (XRD) telah digunakan untuk mencirikan bahan HA daripada tulang lembu (HATL) dan sisik ikan (HASI). Analisis FTIR terhadap sampel HATL dan HASI membuktikan kewujudan kumpulan berfungsi fosfat dan hidroksil di dalam kedua-dua sample. Keputusan XRD menunjukkan difragtogram HA tulang lembu dan HA sisik ikan sepadan dengan difragtogram HA piawai. Keputusan XRD mengesahkan kehadiran fasa kedua iaitu beta trikalsium fosfat (β-TCP) daripada HASI selepas disinter pada suhu 1200 °C. Analisis termogravimetri (TGA) menunjukkan tulang lembu dan sisik ikan yang dirawat dengan 5M NaOH berjaya menyingkirkan bahan organik yang paling tinggi. Mikroskop imbasan elektron (SEM) telah digunakan untuk mengkaji morfologi apatit yang diperolehi. Analisis SEM menunjukkan size zarah HATL selepas rawatan alkali adalah sekitar 53 nm manakala untuk HASI adalah sekitar 36 nm. Analisis tenaga serakan sinar X (EDX) menunjukkan nisbah Ca/P adalah 1.75 dan 1.83 untuk tulang lembu dan sisik ikan masing-masing. Ujian kelarutan menunjukkan kelarutan bahan HASI adalah lebih tinggi berbanding dengan HATL. Kedua-dua bahan HA daripada tulang lembu dan sisik ikan adalah berpotensi digunakan sebagai sumber kalsium untuk makanan tambahan

References

Abidi, S. S. A., & Murtaza, Q. (2014). Synthesis and characterization of nano- 

hydroxyapatite powder using wet chemical precipitation reaction. Journal of 

Materials Science and Technology, 30(4), 307–310. 

Agrawal, K., Singh, G., Puri, D., & Prakash, S. (2011). Synthesis and Characterization 

of Hydroxyapatite Powder by Sol-Gel Method for Biomedical Application. 

Journal of Minerals and Materials Characterization and Engineering, 10(8), 727– 

734. 

Akram, M., Ahmed, R., Shakir, I., Ibrahim, W. A. W., & Hussain, R. (2014). Extracting 

hydroxyapatite and its precursors from natural resources. Journal of Materials 

Science, 49(4), 1461–1475. 

Baco, S., Bambang, L., Joseph, N., & Basri, N. F. (2013). Structural and Composition 

of Natural Hydroxyapatite (HA) at Different Sintering Temperatures. Malaysian 

Journal of Fundamental and Applied Sciences, 220–224. 

Bahrololoom, M. E., Javidi, M., Javadpour, S., & Ma, J. (2009). Characterisation of 

natural hydroxyapatite extracted from bovine cortical bone ash. Journal of 

Ceramic Processing Research, 10(2), 129–138. 

Balamurugan, A., Michel, J., Faur, J., Benhayoune, H., Wortham, L., Sockalingum, G., 

Balossier, G. (2006). Synthesis and structural analysis of SOL gel derived 

stoichiometric monophasic hydroxyapatite. Ceramics - Silikaty, 50(1), 27–31. 

Balamurugan, A. , Kannan, S., & Rajeswari, S. (2002). Bioactive sol-gel hydroxyapatite 

surface for biomedical applications - in vitro study. Trends Biomater. Artif. 

Organs, 16(1), 18–20. 

Barakat, N. A. M., Seob, M., Omran, A. M., Sheikh, F. A., & Yong, H. (2008). 

Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three 

different methods. Materials Processing Technology, 9(209), 3408–3415. 

Barakat, N. A M., Khil, M. S., Omran, A. M., Sheikh, F. A., & Kim, H. Y. (2009). 

Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three 

different methods. Journal of Materials Processing Technology, 209(7), 3408– 

3415. 

Boskey, A. L. (2013). Natural and Synthetic Hydroxyapatites. Biomaterials Science: 

An Introduction to Materials: Third Edition (pp. 151–161). Elsevier Inc. 

Brzezińska-Miecznik, J., Haberko, K., Sitarz, M., Bućko, M. M., & Macherzyńska, B. 

(2015). Hydroxyapatite from animal bones – Extraction and properties. Ceramics 

International, 41(3), 4841–4846. 

Catros, S., Guillemot, F., Lebraud, E., Chanseau, C., Perez, S., Bareille, R., Fricain, J. 

C. (2010). Physico-chemical and biological properties of a nano-hydroxyapatite 

powder synthesized at room temperature. Irbm, 31(4), 226–233. 

Chakraborty, R., & Roy Chowdhury, D. (2013a). Fish bone derived natural 

hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch 

oleic acid esterification. Chemical Engineering Journal, 215–216, 491–499. 

Chakraborty, R., & Roy Chowdhury, D. (2013b). Fish bone derived natural 

hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch 

oleic acid esterification. Chemical Engineering Journal, 215–216, 491–499. 

Chavan, P. N., Bahir, M. M., Mene, R. U., Mahabole, M. P., & Khairnar, R. S. (2010). 

Study of nanobiomaterial hydroxyapatite in simulated body fluid: Formation and 

growth of apatite. Materials Science and Engineering B: Solid-State Materials for 

Advanced Technology, 168(1), 224–230. 

Chetty, A., Wepener, I., Marei, M. K., Kamary, Y. E., & Moussa, R. M. (2012). 

Hydroxyapatite : Synthesis, properties and applications. Nova SciencePublishers 

(pp. 91–132). 

Dorozhkin, S. V. (2010). Calcium Orthophosphates as Bioceramics: State of the Art. 

Journal of Functional Biomaterials, 1(1), 22–107. 

Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, F., & Figueiredo, H. 

(2010a). Effect of the calcination temperature on the composition and 

microstructure of hydroxyapatite derived from human and animal bone. Ceramics 

International, 36(8), 2383–2393. 

Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, F., & Figueiredo, H. 

(2010b). Effect of the calcination temperature on the composition and 

microstructure of hydroxyapatite derived from human and animal bone. Ceramics 

International, 36(8), 2383–2393. 

Figueiredo, M. M., Gamelas, J. A. F., & Martins, A. G. (2010). Characterization of 

Bone and Bone-Based Graft Materials Using FTIR Spectroscopy. Ceramics 

International, 36, 2383–2393. 

Fulmer, M. T., Ison, I. C., Hankermayer, C. R., Constantz, B. R., & Ross, J. (2002). 

Measurements of the solubilities and dissolution rates of several hydroxyapatites. 

Biomaterials, 23(3), 751–755. 

Giraldo-betancur, A. L., Espinosa-arbelaez, D. G., Real-lópez, A., & Millan-malo, B. 

M. (2013). Comparison of physicochemical properties of bio and commercial 

hydroxyapatite. Current Applied Physics, 1–8. 

Gumisiriza, R., Mshandete, A. M., Thomas, M. S., Kansiime, F., & Kivaisi, A. K. 

(2009). Nile perch fish processing waste along Lake Victoria in East Africa : 

Auditing and characterization. African Journal of Environmental Science and 

Technology, 3(January), 13–20. 

Huang, Y. C., Hsiao, P. C., & Chai, H. J. (2011). Hydroxyapatite extracted from fish 

scale: Effects on MG63 osteoblast-like cells. Ceramics International, 37(6), 1825– 

1831. 

Ishihara, K., Arai, J., Nakabayashi, N., Morita, S., & Furuya, K. (1992). Adhesive bone 

cement containing hydroxyapatite particle as bone compatible filler. Journal of 

Biomedical Materials Research, 26(7), 937–945. 

Jadalannagari, S., More, S., Kowshik, M., & Ramanan, S. R. (2011). Low temperature 

synthesis of hydroxyapatite nano-rods by a modified sol-gel technique. Materials 

Science and Engineering C, 31(7), 1534–1538. 

Janus, A. M., Faryna, M., Haberko, K., Rakowska, A., & Panz, T. (2008). Chemical 

and microstructural characterization of natural hydroxyapatite derived from pig 

bones. In Microchimica Acta (Vol. 161, pp. 349–353). 

Joschek, S., Nies, B., Krotz, R., & Göpferich, A. (2000). Chemical and physicochemical 

characterization of porous hydroxyapatite ceramics made of natural bone. 

Biomaterials, 21(16), 1645–1658. 

Kamalanathan, P., Ramesh, S., Bang, L. T., Niakan, a., Tan, C. Y., Purbolaksono, J., 

Teng, W. D. (2014). Synthesis and sintering of hydroxyapatite derived from 

eggshells as a calcium precursor. Ceramics International, 40(10), 16349–16359. 

Yousif, A. E., & M.Kareem, M. (2011). Extraction of Hydroxyapatite from Bovine 

Femur Bone by Thermal Decomposition Method. I-Manager’s Journal on Future 

Engineering & Technology, 7(2), 13–17. 

Kim, S.-S., Sun Park, M., Jeon, O., Yong Choi, C., & Kim, B.-S. (2006). Poly(lactide- 

co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. 

Biomaterials, 27(8), 1399–1409. 

Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., & Chanthai, S. (2013). 

Nanocrystalline hydroxyapatite from fish scale waste: Preparation, 

characterization and application for selenium adsorption in aqueous solution. 

Chemical Engineering Journal, 215–216, 522–532. 

Kim, J. H., Kim, S. H., Kim, H. K., Akaike, T., & Kim, S. C. (2002). Synthesis and 

characterization of hydroxyapatite crystals: A review study on the analytical 

methods. Journal of Biomedical Materials Research, 62(4), 600–612. 

Krisanapiboon, A, Buranapanitkit, B., & Oungbho, K. (2006). Biocompatability of 

hydroxyapatite composite as a local drug delivery system. Journal of Orthopaedic 

Surgery (Hong Kong), 14(3), 315–8. 

Kusrini, E., Pudjiastuti, A. R., Astuningsih, S., & Harjanto, S. (2012a). Preparation of 

Hydroxyapatite from Bovine Bone by Combination Methods of Ultrasonic and 

Spray Drying. International Conference on Chemical, Bio-Chemical and 

Environmental Sciences (ICBEE’2012), 47–51 

Kusrini, E., & Sontang, M. (2012). Characterization of x-ray diffraction and electron 

spin resonance: Effects of sintering time and temperature on bovine 

hydroxyapatite. Radiation Physics and Chemistry, 81(2), 118–125. 

Landi, E., Celotti, G., Logroscino, G., & Tampieri, A. (2003). Carbonated 

hydroxyapatite as bone substitute. Journal of the European Ceramic Society, 

23(15), 2931–2937. 

Lim, H. N., Kassim, A., & Huang, N. M. (2010). Preparation and characterization of 

calcium phosphate nanorods using reverse microemulsion and hydrothermal 

processing routes. Sains Malaysiana, 39(2), 267–273. 

Lombardi, M., Palmero, P., Haberko, K., Pyda, W., & Montanaro, L. (2011). Processing 

of a natural hydroxyapatite powder: From powder optimization to porous bodies 

development. Journal of the European Ceramic Society, 31(14), 2513–2518. 

Mobasherpour, I., Heshajin, M. S., Kazemzadeh, a., & Zakeri, M. (2007). Synthesis of 

nanocrystalline hydroxyapatite by using precipitation method. Journal of Alloys 

and Compounds, 430(1–2), 330–333. 

Mohandes, F., Salavati-niasari, M., Fereshteh, Z., & Fathi, M. (2014). Novel 

preparation of hydroxyapatite nanoparticles and nanorods with the aid of 

complexing agents. Ceramics International, 40(8), 12227–12233. 

Mondal, S., Bardhan, R., Mondal, B., & Dey, A. (2012). Synthesis , characterization 

and in vitro cytotoxicity assessment of hydroxyapatite from different bioresources 

for tissue engineering application. Bulletin of Materials Science, 35(4), 683–691. 

Mondal, S., Bardhan, R., Mondal, B., Dey, A., Mukhopadhyay, S. S., Roy, S., Roy, K. 

(2012). Synthesis, characterization and in vitro cytotoxicity assessment of 

hydroxyapatite from different bioresources for tissue engineering application. 

Bulletin of Materials Science, 35(4), 683–691. 

Mondal, S., Mahata, S., Kundu, S., & Mondal, B. (2010). Processing of natural 

resourced hydroxyapatite ceramics from fish scale. Advances in Applied Ceramics, 

109(4), 234. 

Mondal, S., Mondal, A., Mandal, N., Mondal, B., Mukhopadhyay, S. S., Dey, A., & 

Singh, S. (2014). Physico-chemical characterization and biological response of 

Labeo rohita-derived hydroxyapatite scaffold. Bioprocess and Biosystems 

Engineering, 37(7), 1233–1240. 

Mondal, S., Mondal, B., Dey, A., & Mukhopadhyay, S. S. (2012). Studies on Processing 

and Characterization of Hydroxyapatite Biomaterials from Different Bio Wastes. 

Journal of Minerals and Materials Characterization & Engineering, 11(1), 55–67. 

Muralithran, G., & Ramesh, S. (2000). Effects of sintering temperature on the properties 

of hydroxyapatite. Ceramics International, 26(2), 221–230. 

Nath, N., & Krishna, P. (2014). Extraction and characterization of biocompatible 

hydroxyapatite from fresh water fish scales for tissue engineering scaffold. 

Biomaterials, 37, 433–440. 

Nayak, A. K. (2010). Hydroxyapatite synthesis methodologies: An overview. 

International Journal of ChemTech Research, 2(2), 903–907. 

Niakan, A., Ramesh, S., Ganesan, P., Tan, C. Y., Purbolaksono, J., Chandran, H., Teng, 

W. D. (2015). Sintering behaviour of natural porous hydroxyapatite derived from 

bovine bone. Ceramics International, 41(2), 3024–3029. 

Nirmala, R., Sheikh, F. a., Kanjwal, M. a., Lee, J. H., Park, S. J., Navamathavan, R., & 

Kim, H. Y. (2011). Synthesis and characterization of bovine femur bone 

hydroxyapatite containing silver nanoparticles for the biomedical applications. 

Journal of Nanoparticle Research, 13(5), 1917–1927. 

Ooi, C. Y., Hamdi, M., & Ramesh, S. (2007). Properties of hydroxyapatite produced by 

annealing of bovine bone. Ceramics International, 33(7), 1171–1177. 

Orlovskii, V. P., Komlev, V. S., & Barinov, S. M. (2002). Hydroxyapatite and 

hydroxyapatite-based ceramics. Inorganic Materials, 38(10), 973–984. 

Panda, N. N., Pramanik, K., & Sukla, L. B. (2013). Extraction and characterization of 

biocompatible hydroxyapatite from fresh water fish scales for tissue engineering 

scaffold. Bioprocess and Biosystems Engineering, 37(3), 433–440. 

Prabakaran, K., & Rajeswari, S. (2006). Development of hydroxyapatite from natural 

fish bone through heat treatment. In Trends in Biomaterials and Artificial Organs 

(Vol. 20, pp. 20–23). 

Prakash Parthiban, S., Elayaraja, K., Girija, E. K., Yokogawa, Y., Kesavamoorthy, R., 

Palanichamy, M., Narayana Kalkura, S. (2009). Preparation of thermally stable 

nanocrystalline hydroxyapatite by hydrothermal method. In Journal of Materials 

Science: Materials in Medicine (Vol. 20). 

Pramanik, S., Agarwal, A. K., & Rai, K. N. (2005). Development of high strength 

hydroxyapatite for hard tissue replacement. Trends in Biomaterials and Artificial 

Organs, 19(1), 46–51. 

Queiroz, A. C., Santos, J. D., Monteiro, F. J., & Prado da Silva, M. H. (2003). 

Dissolution studies of hydroxyapatite and glass-reinforced hydroxyapatite 

ceramics. In Materials Characterization(Vol. 50, pp. 197–202). 

Ramesh, S., Aw, K. L., Tolouei, R., Amiriyan, M., Tan, C. Y., Hamdi, M., Teng, W. 

D. (2012). Sintering properties of hydroxyapatite powders prepared using different 

methods. Ceramics International, 39, 111–119. 

Rigo, E. C. S., Boschi, A. O., Yoshimoto, M., Allegrini, S., Konig, B., & Carbonari, M. 

J. (2004). Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on 

titanium dental implants. In Materials Science and Engineering C (Vol. 24, pp. 

647–651). 

Ripamonti, U., Crooks, J., Khoali, L., & Roden, L. (2009). Biomaterials The induction 

of bone formation by coral-derived calcium carbonate / hydroxyapatite constructs. 

Biomaterials, 30(7), 1428–1439. 

Rujitanapanich, S., Kumpapan, P., & Wanjanoi, P. (2014). Synthesis of Hydroxyapatite 

from Oyster Shell via Precipitation. Energy Procedia, 56, 112–114) 

Ruksudjarit, A., Pengpat, K., Rujijanagul, G., & Tunkasiri, T. (2008). Synthesis and 

characterization of nanocrystalline hydroxyapatite from natural bovine bone. 

Current Applied Physics, 8(3–4), 270–272. 

Sadat-Shojai, M., Khorasani, M. T., & Jamshidi, A. (2012). Hydrothermal processing 

of hydroxyapatite nanoparticles - A Taguchi experimental design approach. 

Journal of Crystal Growth, 361(1), 73–84. 

Sankar, S., Sekar, S., Mohan, R., Rani, S., Sundaraseelan, J., & Sastry, T. P. (2008). 

Preparation and partial characterization of collagen sheet from fish (Lates 

calcarifer) scales. International Journal of Biological Macromolecules, 42(1), 6– 

9. 

Shavandi, A., Bekhit, A. E.-D. a., Ali, M. A., Sun, Z., & Gould, M. (2015). 

Development and characterization of hydroxyapatite/β-TCP/chitosan composites 

for tissue engineering applications. Materials Science and Engineering: C, 56, 

481–493. 

Shu, C., Yanwei, W., Hong, L., Zhengzheng, P., & Kangde, Y. (2005). Synthesis of 

carbonated hydroxyapatite nanofibers by mechanochemical methods. Ceramics 

International, 31(1), 135–138. 

Sionkowska, A., & Kozlowska, J. (2013). Fish Scales as a Biocomposite of Collagen 

and Calcium Salts. Key Engineering Materials, 587, 185–190. 

Sobczak-Kupiec, A., & Wzorek, Z. (2012). The influence of calcination parameters on 

free calcium oxide content in natural hydroxyapatite. Ceramics International, 

38(1), 641–647. 

Stoch, A., Jastrzȩbski, W., Brozek, A., Stoch, J., Szaraniec, J., Trybalska, B., & Kmita, 

G. (2000). FTIR absorption-reflection study of biomimetic growth of phosphates 

on titanium implants. Journal of Molecular Structure, 555, 375–382. 

Suchanek, W. L., & Riman, R. E. (2006). Hydrothermal Synthesis of Advanced Ceramic 

Powders. Advances in Science and Technology, 45, 184–193. 

Sukaimi, J., Hamzah, S., & Ghazali, M. S. M. (2015). Green Synthesis and 

Characterization of Hydroxyapatite From Fish Scale Biowaste. Applied Mechanics 

and Materials, 695, 235–238. 

Tkalčec, E., Popović, J., Orlić, S., Milardović, S., & Ivanković, H. (2014). 

Hydrothermal synthesis and thermal evolution of carbonate-fluorhydroxyapatite 

scaffold from cuttlefish bones. Materials Science & Engineering. C, Materials for 

Biological Applications, 42, 578–86. 

Vallet-Regí, M., Peña, J., & Izquierdo-Barba, I. (2004). Synthesis of β-tricalcium 

phosphate in layered or powdered forms for biomedical applications. In Solid State 

Ionics (Vol. 172, pp. 445–449). 

Venkatesan, J., Qian, Z. J., Ryu, B., Thomas, N. V., & Kim, S. K. (2011). A 

comparative study of thermal calcination and an alkaline hydrolysis method in the 

isolation of hydroxyapatite from Thunnus obesus bone. Biomedical Materials 

(Bristol, England), 6(3), 35003. 

Yoganand, C. P., Selvarajan, V., Cannillo, V., Sola, A., Roumeli, E., Goudouri, O. M., 

Rouabhia, M. (2010). Characterization and in vitro-bioactivity of natural 

hydroxyapatite based bio-glass-ceramics synthesized by thermal plasma 

processing. Ceramics International, 36(6), 1757–1766. 

Zainol, I., Alwi, N. M., Abidin, M. Z., Haniza, H. M. Z., Ahmad, M. S., & Ramli, A. 

(2012). Physicochemical Properties of Hydroxyapatite Extracted from Fish Scales. 

Advanced Materials Research, 545, 235–239. 

Zaragoza, D. L., Teresita, E., Guzmán, R., & Gutiérrez, L. R. R. (2007). Surface and 

Physicochemical Properties of Calcium Phosphate from Bovine Bone. 

Proceedings IJM, 711–719. 

Zhang, H., Member, S., Burdet, E., Poo, A. N., & Hutmacher, D. W. (2008). 

Microassembly Fabrication of Tissue Engineering Scaffolds With Customized 

Design, 5(3), 446–456. 

Zhang, Y., Liu, Y., Ji, X., Banks, C. E., & Zhang, W. (2011). Sea cucumber-like 

hydroxyapatite: cation exchange membrane-assisted synthesis and its application 

in ultra-sensitive heavy metal detection. Chemical Communications, 47(14), 4126. 

Zhu, Y., Zhu, Z., Zhao, X., Liang, Y., Dai, L., & Huang, Y. (2016). Characterization, 

dissolution and solubility of cadmium-calcium hydroxyapatite solid solutions at 

25°C. Chemical Geology, 423, 34–48. 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.