ALKALOIDS ISOLATED FROM THE BARK OF ALSEODAPHNE PEDUNCULARIS (WALL. EX NEES) MEISN AND THE ROOTS OF ALSEODAPHNE CORNERI KOSTERM

SITI NOR FADZILAH BINTI MOHAMMAD

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS
(3) pustaka.upsi.edu.my
f. $\begin{aligned} & \text { Perpustakaan Tuanku Bainun } \\ & \text { KABSTRACT } \\ & \end{aligned}$

ustakaTBainun
(11) 0 ptbupsi

The objectives of this study are to extract and isolate the alkaloids from two species of Alseodaphne; Alseodaphne peduncularis (Wall. ex Nees) Meisn from KluangMersing, Johor and Alseodaphne corneri Kosterm from University Malaya, Kuala Lumpur. The extraction process of the plant material started by cold percolation process using hexane to remove non-polar organic compounds, waxes and fats. The plant material then re-extracted by dichloromethane using soxhlet extractor followed by acid-base extraction to get the alkaloid crude extract. The isolation and purification of alkaloids from the crude extract were done by using various chromatographic techniques including column chromatography and preparative thin layer chromatography. The elucidation of the isolated alkaloids were determine by using various spectroscopic methods such as 1D NMR (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and DEPT) and 2D NMR (COSY, HMQC and HMBC), ultraviolet (UV), infrared (IR) and mass spectrometry (MS). The structures were further confirmed by comparison with other literature data. Isolation and purification of alkaloids from the bark of Alseodaphne peduncularis (KL 5165) yielded four aporphines; boldine 69, norpredicentrine 90, norlirioferine 91 and norboldine 78. In addition, seven alkaloids were successfully isolated from the roots of Alseodaphne corneri (KL 4928). The isolated alkaloids include two aporphines; laetanine 30, boldine 69 and five bisbenzylisoquinolines; gyrolidine 47,
 O-methyllimacusine 95 . The bioactivity study on the bark crude extract of Alseodaphne peduncularis and three isolated aporphines; boldine 69, norlirioferine 91 and norboldine 78 showed good to moderate antiplasmodial activity against Plasmodium falciparum after compared to the standard (chloroquine; $0.087 \mu \mathrm{~g} / \mathrm{ml}$) with IC_{50} value of $2.135,1.067,2.786$ and $2.228 \mu \mathrm{~g} / \mathrm{ml}$, respectively. It was found that boldine 69 showed the most potent activity with an IC_{50} value of $1.067 \mu \mathrm{~g} / \mathrm{ml}$ and it showed potential for antiplasmodial drug. The extraction and isolation of alkaloids from this species will be continued to determine various type of alkaloids contents and new alkaloids findings. Moreover, the isolated alkaloids should be tested with other biactivity test such as cytotoxicity, antibacterial and antifungal activities for new drugs discovery.

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Alkaloid darit Kulit Kayu Pokok Alseodaphne peduncularis (Wall. ex Nees) Meisn dan Akar Pokok Alseodaphne corneri Kosterm

Abstract

ABSTRAK

Objektif kajian ini adalah mengestrak dan mengasingkan sebatian alkaloid daripada dua spesies Alseodaphne; Alseodaphne peduncularis (Wall. ex Nees) Meisn dari Kluang-Mersing, Johor dan Alseodaphne corneri Kosterm dari Universiti Malaya, Kuala Lumpur. Pengekstrakan sampel tumbuhan dimulakan dengan proses serapan sejuk menggunakan heksana untuk mengeluarkan sebatian organik tidak polar, lilin dan lemak. Sampel tumbuhan kemudiannya diekstrak semula oleh diklorometana menggunakan pemerah soxhlet diikuti oleh pengekstrakan asid-bes untuk mendapatkan ekstrak mentah alkaloid. Pengasingan dan penulenan alkaloid dari ekstrak mentah telah dilakukan dengan menggunakan pelbagai teknik kromatografi termasuk kromatografi turus dan kromatografi lapisan nipis. Struktur alkaloid dikenalpasti dengan kaedah kombinasi spektroskopi seperti resonan magnet nukleus satu dimensi; 1D NMR (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ dan DEPT), dua dimensi; 2D NMR (COSY, HMQC dan HMBC), ultralembayung (UV), inframerah (IR) dan spektrometri jisim (MS). Struktur-struktur alkaloid disahkan melalui $i_{\text {ku }}$ perbandingan dengan data daripada Rajian-kajian lepas. Pengasingan dàn pénulènán alkaloid daripada kulit kayu pokok Alseodaphne peduncularis (KL 5165) menghasilkan empat sebatian aporfina; boldina 69 , norpredicentrina 90 , norlirioferina 91 dan norboldina 78. Tambahan pula, tujuh sebatian alkaloid berjaya diasingkan daripada akar pokok Alseodaphne corneri (KL 4928). Sebatian alkaloid tersebut termasuklah dua aporfina; laetanina 30, boldina 69 dan lima bisbenzilisokuinolina; girolidina 47, stephasubina 92, 2-norobaberina 93, $3^{\prime}, 4^{\prime}$-dihidrostephasubina 94 dan O-metillimacusina 95. Kajian bioaktiviti ke atas ekstrak mentah kulit kayu daripada Alseodaphne peduncularis dan tiga sebatian aporfina; boldina 69 , norlirioferina 91 dan norboldina 78 menunjukkan aktiviti baik sehingga sederhana terhadap aktiviti antiplasmodial ke atas Plasmodium falciparum selepas dibandingkan dengan standard (chloroquine; $0.087 \mu \mathrm{~g} / \mathrm{ml}$) dengan nilai IC_{50} masing-masing iaitu $2.135,1.067,2.786$ dan $2.228 \mu \mathrm{~g} / \mathrm{ml}$. Didapati boldina 69 menunjukkan aktiviti yang paling baik dengan nilai IC_{50} iaitu $1.067 \mu \mathrm{~g} / \mathrm{ml}$ dan berpotensi digunakan sebagai ubat antiplasmodial. Proses pengekstrakan dan pengasingan alkaloid daripada spesies ini juga akan diteruskan untuk menentukan pelbagai jenis kandungan alkaloid di dalamnya termasuk penemuan sebatian alkaloid baru. Selain itu, alkaloid yang berjaya diasingkan juga perlu diuji untuk kajian bioaktiviti lain seperti kajian sitotoksik, antibakteria dan antikulat untuk digunakan dalam penemuan ubat-ubatan baru.

CONTENTS

(C) $05-4506832$ pustaka.upsi.edu.my
Kampus Sultan Abdul Jalil Sh 5
PustakaTBainun O°
Page
APPRECIATION iii
ABSTRACT iv
ABSTRAK V
CONTENTS vi
LIST OF TABLES xi
LIST OF FIGURES xiii
LIST OF SCHEMES xvi
ABBREVIATHONS Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 3
PustakaTBainun 0°
ptbupsi xvii
CHAPTER 1 INTRODUCTION
1.1 General 1
1.2 Objectives of study 4
1.3 Lauraceae 4
1.3.1 Anatomical features and wood 5
characteristics of Lauraceae
1.3.2 Taxonomy of Lauraceae 6
05-4506832 pustaka.upsi.edu.my 1.3.3 Per Ufitases of Lauraceae PustakaTBainun
$\mathrm{O}^{\circ} \mathrm{ptbups}$ 7
1.4 Genus Alseodaphne 8
(C) 05.4506832 (3) pustaka.upsi.edu. my $f \begin{aligned} & \text { Perpustakaan Tuanku Bainun } \\ & \text { Kamuus sutan } A \text { bulul dili sh }\end{aligned}$ 5 PustakatBainun ${ }^{\circ}{ }^{\circ}$ ptbupsi1.4.1 Characteristic of genus Alseodaphne 9
1.4.2 Alseodaphne peduncularis 10
(Wall. ex Nees) Meisn
1.4.3 Alseodaphne corneri Kosterm 11
CHAPTER 2 GENERAL AND CHEMICAL ASPECTS
2.0 Introduction 12
2.1 Definition of alkaloid 13
2.2 Classification of alkaloid 15
(c) $05-4506832$ (3) pustaka.upsi.edu.my 2.2:1 PerTrue alkaloids 5 PustakaTBainun ptbups 15
2.2.2 Protoalkaloids 16
2.2.3 Pseudoalkaloids 16
2.3 Alkaloids in pharmaceutical 19
2.4 Aporphine 20
2.4.1 UV spectra of aporphine 21
2.4.2 IR spectra of aporphine 22
2.4.3 NMR spectra of aporphine 22
2.4.4 Mass spectra of aporphine 25
2.5 Bisbenzylisoquinoline 26PustakaTBainur30ptbupsi
bisbenzylisoquinoline
2.5.2 NMR spectra of bisbenzylisoquinoline 30
(c) $05-4506832$ (3) pustaka.upsi.edu..my
 33
2.5.4 Biosynthesis of benzylisoquinoline 36
alkaloids
2.6 Alkaloids of Lauraceae family 38
2.7 Alkaloids of genus Alseodaphne 39
CHAPTER 3 EXPERIMENTAL
3.1 Plant material 43
3.2 Instrumentation 44
3.3 Chromatography 44
(C) 05-4506832 (3) pustaka.upsi.edu.my 3.3.1 $\begin{gathered}\text { Perpustakan Tuank Buinun } \\ \text { Kamin layer chromatography (TLC) }\end{gathered}$ ptbupsi 44
3.3.2 Column chromatography (CC) 45
3.3.3 Preparative Thin Layer Chromatography 45 (PTLC)
3.4 Reagents
3.4.1 Mayer's reagent 45
3.4.2 Dragendorff's reagent 46
3.5 Extraction 46
3.6 Isolation 47
3.6.1 Isolation of Alseodaphne peduncularis 47
3.6.2 Isolation of Alseodaphne corneri 48
05.45068323.7 Antiplasmodial assay53
3.8 Physical and spectral data of isolated alkaloids 54
(0) 05-4506832 (3) pustaka.upsi.edu.my F Perpustakaan Tuanku Bainun
PustakaTBainun
CHAPTER 4 RESULTS AND DISCUSSION
4.0 Introduction 62
4.1 Isolation of Alseodaphne peduncularis 63
(Wall. ex Nees) Meisn
4.1.1 AP 1; Boldine 69 63
4.1.2 AP 2; Norpredicentrine 90 70
4.1.3 AP 3; Norlirioferine 91 76
4.1.4 AP 4; Norboldine 78 83
4.2 Isolation of Alseodaphne corneri Kosterm 89
(C) $05-4506832$f Perpustakaan Tuanku BainunPustakaTBainun${ }^{\circ}$
4.2.1 AC 1; Laetanine 30 89
4.2.2 AC 2; Boldine 69 95
4.2.3 AC 3; Gyrolidine 47 96
4.2.4 AC 4; Stephasubine 92 104
4.2.5 AC 5; 2-Norobaberine 93 111
4.2.6 AC 6; 3^{\prime}, 4'-Dihydrostepasubine 94 118
4.2.7 AC 7; O-Methyllimacusine $\mathbf{9 5}$ 125
4.3 Antiplasmodial activity 132
REFERENCES 137
(C) 05-4506832 (${ }^{2}$ pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 5
PustakaTBainun 0°
ptbupsi
APPENDICES 144
(C) 05-4506832 pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

LIST OF TABLES

2.1 Major classes of alkaloids, their chemical structures, their biosynthetic 17 precursors and well known examples of each class
2.2 Examples of pharmaceutically important alkaloids extracted from plants 19
2.3 Types of skeleton in bisbenzylisoquinoline 28
2.4 Alkaloids of Lauraceae family 38
2.5 Alkaloids of genus Alseodaphne 39
4.1 1D (${ }^{1} \mathrm{H}$ and $\left.{ }^{13} \mathrm{C}\right)$ and 2D (HMQC and HMBC) NMR spectral data of 68
AP 1
4.2 ${ }^{1}$ H NMR spectral data of AP 1 and Boldine 69 69
$4.3 \quad{ }^{13} \mathrm{C}$ NMR spectral data of AP 1 and Boldine 69 69
4.4 1D (${ }^{1} \mathrm{H}$ and $\left.{ }^{13} \mathrm{C}\right)$ and 2D (HMQC and HMBC) NMR spectral data of 75 AP 2
4.5 ${ }^{1}$ H NMR Data of AP 2 and Norpredicentrine 90 75
4.6 1D (${ }^{1} \mathrm{H}$ and $\left.{ }^{13} \mathrm{C}\right)$ and 2D (HMQC and HMBC) NMR spectral data of 81
AP 3
4.7 ${ }^{1}$ H NMR Data of AP 3 and Norlirioferine 91 81
$4.8 \quad{ }^{13} \mathrm{C}$ NMR Data of AP 3 and Norlirioferine 91 82
4.9 1D (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) and 2D (HMQC and HMBC) NMR spectral data of 88
AP 4
4.10 ${ }^{1}$ H NMR Data of AP 4 and Norboldine 78 88
4.11 1D (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) and 2D (HMQC and HMBC) NMR spectral data of 94
AC 1
4.12 ${ }^{1} \mathrm{H}$ NMR Data of AC 1 and Laetanine 30 95
 ${ }^{\circ}$ ptbupsi
4.13 1D (${ }^{1} \mathrm{H}$ and $\left.{ }^{13} \mathrm{C}\right)$ and 2D (HMBC) NMR spectral data of AC 3 101
4.14 ${ }^{1} \mathrm{H}$ NMR Data of AC 3 and Gyrolidine 47 102
 (3) PustakaTBainun 10
ptbupsi 103
4.16 1D (${ }^{1} \mathrm{H}$ and $\left.{ }^{13} \mathrm{C}\right)$ and 2D (HMBC) NMR spectral data of AC 4 109
4.17 ${ }^{1} \mathrm{H}$ NMR Data of AC 4 and Stephasubine 92 110
$4.18 \quad 1 \mathrm{D}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ and 2D (HMBC) NMR spectral data of AC 5 116
$4.19{ }^{1} \mathrm{H}$ NMR Data of AC 5 and 2-Norobaberine 93 117
$4.20 \quad 1 \mathrm{D}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ and 2D (HMBC) NMR spectral data of AC 6 123
4.21 ${ }^{1}$ H NMR Data of AC 6 and $3^{\prime}, 4^{\prime}$-Dihydrostephasubine 94 124
$4.221 \mathrm{D}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ and 2D (HMBC) NMR spectral data of AC 7 130
4.23 ${ }^{1} \mathrm{H}$ NMR Data of AC 7 and O-Methyllimacusine 95 131
4.24 Results of HRP2 test for antimalaria in-vitro drug screening 133
5.1 Alkaloids isolated from Alseodaphne peduncularis and Alseodaphne 136 corneri

LIST OF FIGURES

Pigure ${ }^{0.40632}$ pustaka.upsi.edu.my Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil Shah
\square
ustakaTBainun
(-)
page
ptbups
1.1 Anatomical features of Lauraceae 5
1.2 Wood characteristic of Lauraceae 6
1.3 Alseodaphne peduncularis 10
1.4 Alseodaphne corneri 11
2.1 The numbering of the aporphine skeleton 20
2.2 Systematic numbering system in bisbenzylisoquinoline 26
4.1 ${ }^{1} \mathrm{H}$ NMR Spectrum of AP 1 65
4.2 $\quad{ }^{13} \mathrm{C}$ NMR Spectrum of AP 1 66
4.3 COSY Spectrum of AP 1 66
4.4 HMQC Spectrum of AP 1 67
4.5 HMBC Spectrum of AP 1 67
 3 PustakaTBainun ${ }^{\circ}{ }^{\circ}$ ptbupsi 68
4.7 ${ }^{1} \mathrm{H}$ NMR Spectrum of AP 2 72
4.8 COSY Spectrum of AP 2 72
$4.9 \quad{ }^{13} \mathrm{C}$ NMR Spectrum of AP 2 73
4.10 HMQC Spectrum of AP 2 73
4.11 HMBC Spectrum of AP 2 74
4.12 Selected COSY and HMBC correlation in AP 2 74
$4.13{ }^{1} \mathrm{H}$ NMR Spectrum of AP 3 78
4.14 COSY Spectrum of AP 3 78
$4.15{ }^{13} \mathrm{C}$ NMR Spectrum of AP 3 79
4.16 HMQC Spectrum of AP 3 79
4.17 HMBC Spectrum of AP 3 80
4. 18^{4500} Sẻlected COSY and HMBC Ceorrelation in $\mathrm{AP} \cdot \mathrm{A}$ Y PustakaTBainur 0 ptbupsi 80
4.19 ${ }^{1}$ H NMR Spectrum of AP 4 85
4.20 COSY Spectrum of AP 4 85
 0
ustakaTBainun - ptbupsi 86
4.22 HMQC Spectrum of AP 4 86
4.23 HMBC Spectrum of AP 4 87
4.24 Selected COSY and HMBC correlation in AP 4 87
4.25 ${ }^{1} \mathrm{H}$ NMR Spectrum of AC 1 91
4.26 COSY Spectrum of AC 1 92
4.27 ${ }^{13} \mathrm{C}$ NMR Spectrum of AC 1 92
4.28 HMQC Spectrum of AC 1 93
4.29 HMBC Spectrum of AC 1 93
4.30 Selected COSY and HMBC correlation in AC 1 94
4.31 ${ }^{1} \mathrm{H}$ NMR Spectrum of AC 3 98
4.32 ${ }^{13} \mathrm{C}$ NMR Spectrum of AC 3 99
4.35 $3^{4506} \mathrm{COS}$ Spectrum of AC 3 Perpustakan tuanku Bainu PustakaTBainun (10) ptbupsi 99
4.34 HMQC Spectrum of AC 3 100
4.35 HMBC Spectrum of AC 3 100
4.36 Selected COSY and HMBC correlation in AC 3 102
4.37 ${ }^{1} \mathrm{H}$ NMR Spectrum of AC 4 106
4.38 COSY Spectrum of AC 4 107
$4.39 \quad{ }^{13} \mathrm{C}$ NMR Spectrum of AC 4 107
4.40 HMQC Spectrum of AC 4 108
4.41 HMBC Spectrum of AC 4 108
4.42 Selected COSY and HMBC correlation in AC 4 110
4.43 ${ }^{1} \mathrm{H}$ NMR Spectrum of AC 5 113
4.44 ${ }^{13} \mathrm{C}$ NMR Spectrum of AC 5 114
4. $45^{4506} \mathrm{COS}$ Y Spectrum of AC 5 Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun ${ }^{\circ}$
ptbupsi 114
4.46 HMQC Spectrum of AC 5 115
4.47 HMBC Spectrum of AC 5 115
4. 48^{4506} Selected COSY . ${ }^{\text {siod }}$ and HMBC 'eorrelation in AC 5 117
4.49 ${ }^{1} \mathrm{H}$ NMR Spectrum of AC 6 120
4.50 COSY Spectrum of AC 6 121
$4.51 \quad{ }^{13} \mathrm{C}$ NMR Spectrum of AC 6 121
4.52 HMQC Spectrum of AC 6 122
4.53 HMBC Spectrum of AC 6 122
4.54 Selected COSY and HMBC correlation in AC 6 124
$4.55 \quad{ }^{1} \mathrm{H}$ NMR Spectrum of AC 7 127
4.56 COSY Spectrum of AC 7 128
4.57 ${ }^{13} \mathrm{C}$ NMR Spectrum of AC 7 128
4.58 HMQC Spectrum of AC 7 129
4.59 HMBC Spectrum of AC 7 129
 PustakaTBainun ${ }^{\circ}$
ptbupsi 131
pustaka.upsi.edu.my

LIST OF SCHEMES

Scheme pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah \bigcirc
PustakaTBainun O
${ }^{\text {ptbupsi }}$ page
2.1 Fragmentation of aporphine 25
2.2 Characteristic fragments of berbamine $\mathbf{5 1}$ type alkaloids 35
2.3 The various groups of benzylisoquinoline alkaloids derived 37from (S)-norcoclaurine 61
3.1 Extraction process of samples 49
3.2 Isolation of alkaloids from the bark of Alseodaphne peduncularis 50
3.3 Isolation of alkaloids from the roots of Alseodaphne corneri 51
pustaka.upsi.edu.my

	ABBREVIATIONS	
(c) 05 -4506832 ${ }^{\text {pustaka.upsi.edu.my }}$		(0) pitupsi
α	Alpha	
β	Beta	
λ	Maximum wavelength	
δ	Chemical shift	
g	Gram	
kg	Kilogram	
cm^{-1}	per centimeter	
ml	Mililitre	
nm	Nanometer	
MHz	Mega Hertz	
Hz	Hertz	
(c) 05.450 UY (3) pustaka.upsi.edu.my	Ultraviolet ${ }_{\text {ann Tuanku Bainun }}$ Kampus Sultan Abdul Jalii Shal	(1) pitupsi
IR	Infrared	
ppm	Part per million	
MeOH	Methanol	
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Dichloromethane	
CHCl_{3}	Chloroform	
OCH_{3}	Methoxyl group	
OH	Hydroxyl group	
NH_{3}	Ammonia	
HCl	Hydrochloric acid	
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	Sodium sulphate	
MgSO_{4}	Magnesium sulphate	
(C) $05-4508832 \mathrm{Cl}$ pustaka.upsi.edu.my	Sodium chloride \qquad Kampus Sultan Abdul Jalil Shah PustakaTBainun	" ${ }^{\circ}{ }^{\text {p }}$ ptbupsi
KCl	Potassium chloride	

CHAPTER 1

INTRODUCTION

1.1 General

In Southeast Asia, there are rich jungles in Cambodia and Malaysia region due to the hot climate and humid all year round and it supports some of the most complex and species-rich ecosystem on the globe (Croix, 2008). Malaysia known as a green country with 60% of the land surface covered by forest various type of flora and fauna. The forest of East Malaysia are estimated around 2,000 tree species and known as one of most biodiverse areas in the world with 240 difference species in every hectare (Wikipedia, 2014).Plants have been one of the important $_{\text {sen }}$ sources of medicines since the beginning of human civilization. There is a growing demand for plant-based
medicines, health products, pharmaceuticals, food supplements and cosmetics. It was Cestimated that about 80% of all world's sis meddicine are orfginally derived from plant sources (Cseke et al., 2006). Therefore, plants have contributed to the varieties of medicinal products since the past years.

Higher plants are important sources of natural products and are still used commercially to produce a wide range of chemicals as drugs, flavors, enzymes, perfumes, insecticides and emulsifying agents. Hence, many tropical plants from Malaysia has been extensively studied as well as their biological activity such as Artocarpus and Actinodaphne species (Hashim et al., 2012; Rachmatiah et al., 2009a).

Plants continue to be a major source of medicines. Among the most important (are the physiologicallysactive alkaloidssucluding Wincristine $\mathbf{1}$ and vinblastine $\mathbf{2}$ from Catharanthus roseus, codeine $\mathbf{3}$ and morphine $\mathbf{4}$ from Papaver somniferum, hyoscyamine 5 and scopolamine 6 from Datura species, quinine $\mathbf{7}$ and quinidine $\mathbf{8}$ from Cinchona ledgeriana and reserpine 9 from Rauwolfia species.

1
f
Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil Shah
${ }^{\circ}$
ptbups
(C) 05-4506832

3

2

4
(0) 05-45068:

5

6

8
(L)

05-4506832

0^{0}
ptbupsi

1.2 Objectives of study

(1) 05-4506832 pustaka.upsi.edu.my \& Perpustakaan Tuanku Bainun $\begin{aligned} & \text { Kampus Sultan Abdul Jalil Shah } \\ & \text { KastakaTBainun }\end{aligned}$

A research work on the species of Alseodaphne; Alseodaphne peduncularis and Alseodaphne corneri were carried out with the following objectives:

1) To extract and isolate the alkaloids.
2) To elucidate the structures of the isolated compounds using modern spectroscopic methods such as 1D-NMR, 2D-NMR, UV, IR and MS.
3) To test the antiplasmodial activity of crude extract and pure alkaloids.

1.3 Lauraceae

C. Lauraceae form a large family of woody plants with about 50 genera gnd 2,500 to 3,000 species distributed throughout tropical to subtropical latitudes (Chanderbali, Werff \& Renner, 2001). There are 20 genera and more than 420 species of Lauraceae in China which are mainly distributed in areas south of the Qinling Mountain-Huaihe River (Kuo et al., 2012).

In Malaysia, Lauraceae also known as 'Medang' or 'Tejur'. About 16 genera and 213 species of Lauraceae family can be found in Malaysia (Omar et al., 2013). Lauraceae distributed in the lowland and becoming more abundant in the mountains between 1,200 and 1,600 m altitude. Major producing states in Peninsular Malaysia including Kelantan, Perak, Terengganu, Negeri Sembilan and Kedah (Gan \& Lim, 2004).
(5) pustaka.upsi.edu.my
f
Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil ShahPustakaTBainun 0° ptbupsi

The Lauraceae family is known to contain alkaloids which explain the positive
 Elliptibacea (leaves 2+ and bark 4+) (Ismail \& Din, 1995a). Previous works showed that aporphine alkaloids have been isolated from 18 genera of these plants including Actinodaphne, Alseodaphne, Beilschmiedi, Cassytha, Cinnamomum, Cryptocarya, Dehaasia, Laurus, Lindera, Litsea, Machilus, Mezilaurus, Nectandra, Neolitsea, Ocotea, Phoebe, Ravensara and Sassafras (Kuo et al., 2012).

1.3.1 Anatomical features and wood characteristics of Lauraceae

Growth rings absent but the presence of terminal parenchyma in some species may (stimulate growth ringss Vessels medium-sized, solitary radial pairs andanultiples of up to 4 , tyloses usually present (Figure 1.1). Wood parenchyma mainly as incomplete border to the vessels with ill-developed aliform to confluent (Gan \& Lim, 2004).

Figure 1.1. Anatomical features of Lauraceae. Adapted from "Common Commercial Timbers of Peninsular Malaysia," by K. S. Gan and S. C. Lim, 2004, Research Pamphlet No. 125, p. 38.
f
Perpustakaan Tuanku Bainun
隹位takaan Tuanku Bainun
Kampus Sultan Abdul Jalil Shah \square

Some species with irregularly spaced bands. Rays fine or medium-sized and
 not distinct to naked eye. The charácteristics of heartwood very variable, light-straw, red-brown to olive brown. Sapwood ill-defined and the surface is dull while the texture is moderately fine but even (Figure 1.2). Grain interlocked or wavy (Gan \& Lim, 2004).

Cigure 1,2. Wood characteristic of LauraceaenAdapted from "Common Commercial Timbers of Peninsular Malaysia," by K. S. Gan and S. C. Lim, 2004, Research Pamphlet No. 125, p. 38.

1.3.2 Taxonomy of Lauraceae

The classification of Lauraceae illustrated as listed below:

Kingdom: Plantae
Division: Magnoliophyta
Class: Magnoliopsida
Order: Laurales
Family: Lauraceae05-4506832
Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah
 PustakaTBainun

Genera:		
Actinodaphne	f Iteadäphine	
Aiouea	Kubitzkia	Phyllostemonodaphne
Alseodaphne	Laurus	Pleurothyrium
Aniba	Licaria	Polyadenia
Apollonias	Lindera	Potameia
Aspidostemon	Litsea	Potoxylon
Beilschmiedia	Machilus	Povedadaphne
Caryodaphnopsis	Malapoenna	Ravensara
Cassytha	Mezilaurus	Rhodostemonodaphne
Chlorocardium	Misanteca	Sassafras
Cinnadenia	Mocinnodaphne	Schauera
Cinnamomum	Mutisiopersea	Sextonia
Cryptocarya	Nectandra	Sinopora
Dehaasia	Neocinnamomum	Sinosassafras
Dicypellium	Neolitsea	Syndiclis
Dodecadenia	Notaphoebe	Tetranthera
Endiandra	Nothaphoebe	Tylostemon
Endlicheria	Ocotea	Umbellularia
Eusideroxylon	Oreodaphne	Urbanodendron
Gamanthera	Parasassafras	Williamodendron
Hexapora	Parthenoxylon	
Hufelandia	Paraia	
(0) oHypodap hhinisustak. upsi.edu.my	f Rerrstagan Tuank Bainun	

1.3.3 Uses of Lauraceae

In Sabah, a species namely, Cinnamomum from Lauraceae family had been used for traditional medicine. Dusun people of Sabahan called the Cinnamomum species as 'Lamau-Lamau'. They boiled the roots and make as a tonic to heal the headache (Ismail \& Din, 1995b).

One of the major product of Lauraceae is in timber industry (Gan \& Lim, 2004). The timber classification of Lauraceae is light hardwood and it is a large family of medium-sized to large trees. Some species of Lauraceae family are commercial
importance in Malaysia. The important genera which produce the timber of 'Medang' (4) 05 -4506832 pustaka.upsi.edu.my f Perpustakan Tuanku Bainun ${ }^{7}$ Pustaka ${ }^{\circ}$ painun include Actinodaphne, Alseodaphne, Beilschmiedia, Cinnamomum, Cryptocarya, Dehaasia, Litsea, Nothaphoebe and Phoebe.

The wood density is within 400 to $800 \mathrm{~kg} / \mathrm{m}^{3}$ air dry. Its suitable for decorative work such as interior finishing, paneling, furniture and cabinet making. It also suitable for plywood manufacture and the heavier species are suitable for medium construction under cover (Gan \& Lim, 2004).

Besides that, the family's great economic has another sources such as the high content of ethereal oils in the woods and leaves of many Lauraceae which are sources of perfumes, spices and flavourings such as camphor and cinnamon (Renner, 2011).
(C) 05.4508332
(1.) pustaka.upsi.edu.my f $\begin{aligned} & \text { Perpustakaan Tuanku Bainun } \\ & \text { Kampus Sultan Abdul Jalil Shah }\end{aligned}$

1.4 Genus Alseodaphne

From the World Dictionary of Plant Names state that Alseodaphne Ness (Lauraceae) origins name is from Greek. The alsos is "a grove" and daphne is "bay laurel" (Umberto, 2002). Alseodaphne is one of genus in Lauraceae family. It can be found in South East Asia countries such as China, Philippines, Borneo, Indonesia, Malaysia, New Guinea and Burma. Alseodaphne species also known as 'gemor' in Indonesia and grows in Kalimantan Tengah and Kalimantan Selatan. Each year, it has become the major product of timber with about $250-300 \mathrm{~kg} /$ tree to $500-600 \mathrm{~kg} /$ tree (Budi \& Andri, 2011)
0) 05-4506832 (3) pustaka.upsi.edu.my
f
Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil ShahPustakaTBainun © ptbupsi

The genus has 96 species of evergreen large trees to shrubs. The species of
 genus Alseodaphne including Alseodaphne bancana, Alseodaphne peduncularis, Alseodaphne gracilis, Alseodaphne hainanensis, Alseodaphne perakensis, Alseodaphne corneri and Alseodaphne yunnanensis. The Alseodaphne genus is well known for their alkaloid bearing plants that have the isoquinoline structures (Zahari, 2010; Ahmat, 2008).

1.4.1 Characteristics of genus Alseodaphne

The genus of Alseodaphne is evergreen trees. Terminal buds scaly. Leaves alternate and always clustered near apex of branchlet, pinninerved and often turning black When ${ }^{50}$ dry. Inflorescence ${ }^{\prime}$ axillary, perpustabanulate Banun deciduous.

The flowers are bisexual. Perianth tube short; perianth lobes 6 , subequal or outer 3 smaller, slightly dilated after anthesis but absent in fruit. Fertile stamens 9, in 3 whorls; filaments of first and second whorls glandless, those of third whorl each with 2 glands at base; anthers 4-celled; cells of first and second whorls introrse, those of third whorl extrorse or upper 2 lateral and lower 2 extrorse staminodes 3 , of innermost whorl, very small, nearly sagittate.

Furthermore, the ovary partly immersed into shallow perianth tube; style often (as) long as ovary; small stigma, inconspicuous, discoid. The fruit is blacko or purplish black when mature, ovoid, oblong or subglobose; fruit stalk is red, green or yellow,
sometimes nearly cylindric, fleshy, pulpy, always warty, truncate at apex (Xiwen, Jie (C) 05.4506832 pustaka.upsi.edu.my \square Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil ShahustakaTBainun
ptbup \& Werff, 200 $\overline{8}$).

1.4.2 Alseodaphne peduncularis (Wall. ex Nees) Meisn

Alseodaphne peduncularis (Figure 1.3) is a small tree up to 12 metre tall. The twigs color is whitish. The leaves are green colour and stalk slender sized to $0.5-1 \mathrm{~cm}$ long. The flowers are sub equal or outer 3 lobes slightly smaller. The fruits shapes are ellipsoid or globose with purple color and on enlarged red perianth tube. Common found in lowland and hill forest in Kedah, Perak, Kelantan, Terengganu, Pahang, Selangor, Negeri Sembilan, Johor and Sumatera (Ng, 1989).
f
Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainu
ptbups

Figure 1.3. Alseodaphne peduncularis.

1.4.3 Alseodaphne corneri Kosterm

(.) 05-4506832

pustaka.upsi.edu.my
Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Alseodaphne corneri (Figure 1.4) is a tree of moderate size growing in Singapore, Malaysia, Jawa, Sumatra and Borneo (Corner, 1988). It is 6 metre tall trees. The leaves are green colour and closely spirally arranged at the ends of twigs with stalk about 3 to 4 cm long. The twigs are stout and grey with prominent leaf scars. The flowers are up to 14 mm long and the fruit are ellipsoid up to $3 \times 2 \mathrm{~cm}$ placed on thick and rough pedicles $(\mathrm{Ng}, 1989)$.

Figure 1.4. Alseodaphne corneri.

CHAPTER 2

GENERAL AND CHEMICAL ASPECTS OF ALKALOIDS

2.0 Introduction

Plants contain more than 100,000 known natural organic constituents, many of which are valuable phytopharmaceuticals (Robinson, 1991; Kaufman, Cseke, Warber, Duke \& Brielmann, 1999). Natural products chemistry as defined today, involves many studies on biosynthesis, isolation, structure determination, and investigation of biological properties of secondary metabolites (Torsell, 1997).

Since today, a lots of natural products especially alkaloids have been a source of highly effective conventional drugs for the treatment of many types of cancer. The major source of alkaloids in the past has been the flowering plants, the Angiospermae,

05-4506832

Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil Shah \square
\squareptbupsi where about 20% contain these constituents. In recent years, an increasing number of
examples of alkaloids have come from animals, insects, marine organisms,
 microorganisms and lower plants (Röberts \& Wink, 1998).

Phytochemical surveys are now seen as the first step towards the discovery of useful drugs now that the tropical rain forest has been identified as a potential source due to its diverse richness in flora. Moreover, the study of alkaloids constituents is always interesting and important in chemistry of natural products. New discovery of alkaloids have high potential to be used in medicinal area.

2.1 Definition of Alkaloid

Whe term alkaloid is derived from the Arabicdword "al-qali" that refersto potassium carbonate-containing ashes from plant material, from which the term "alkali" is derived. Traditionally alkaloids are defined as heterocyclic nitrogen compounds biosynthesized from amino acids. Later, in 1819, the term "alkaloid" was first suggested by Meiser and it usually defined as basic nitrogen-containing compounds widely distributed in different plant groups (Cordell, 1983).

Nearly all alkaloids are alkaline, and most are optically active. Alkaloids are classically defined as being plant-derived, pharmacologically active, basic compounds derived from amino acids that contain one or more heterocyclic nitrogen atoms. Most nitrogen-containing secondary metabolites are considered alkaloids, unless they may be readily classified otherwise such as amines or glucosinolates.

Another simple general definition of an alkaloid has been suggested by
 oxidation state which is of limited distribution in living organisms". This definition includes both alkaloids with nitrogen as part of a heterocyclic system as well as the many exceptions with extra cyclic bound nitrogen such as colchicines $\mathbf{1 0}$ or capsaicin 11.

10

11

The definition of an alkaloid has always been rather problematical. In a taxonomic context it is probably best to restrict what is recognized as an alkaloid to the following (Roberts \& Wink, 1998) :

1. a nitrogenous compound in which at least one nitrogen atom is derived directly from an amino acid and

Thus nonbasic and noncyclic structures such as simple amines and amides (commonly ealled protoalkaloids) would be eonsidered as alkaloids for faxonomic purpose.

2.2 Classification of Alkaloid

Alkaloids are generally classified by their common molecular precursors, based on the biological pathway used to construct the molecule. From a structural point of view, alkaloids are divided according to their shapes and origins. There are three main types of alkaloids: (1) true alkaloids, (2) protoalkaloids and (3) pseudoalkaloids (Aniszewski, 2007). True alkaloids and protoalkaloids are derived from amino acids, whereas pseudoalkaloids are not derived from these compounds.

True alkaloids derive from amino acid and share a heterocylic ring with nitrogen. These alkaloids have a bitter taste and appear as a white solid, with the exception of nicotine $\mathbf{1 2}$ which has a brown liquid. True alkaloids may occur in plants in free state, salts and N -oxides. These alkaloids occur in a limited number of species and families. Examples of true alkaloids are morphine 4, quinine 7 and cocaine 13.

12

(C) $05-450683:$
w

$$
\begin{gathered}
\text { ustakaan Tuanku Bainun } \\
\text { kampus Sultan Abdul Jalil Shah }
\end{gathered}
$$

5 Pus
${ }_{2} 13$
1 ${ }^{\circ} \mathrm{p}$ ptbupsi

2.2.2 Protoalkaloids

Protoalkaloids are amino acid related compounds whose nitrogen atom is not part of a heterocylic system but has remained biogenetically "inert" (Fattorusso \& TaglialatelaScafati, 2008). Protoalkaloids are those with a closed ring, being perfect but structurally simple alkaloids. Some examples of these alkaloids are ephedrine $\mathbf{1 4}$ and mescaline 15.

14

15

2.2.3 Pseudoalkaloids

Pseudoalkaloids are compounds, the basic skeletons of which are not derived from amino acids. From book 'Modern Alkaloids' stated that pseudoalkaloids are compounds unrelated biogenetically to amino acids and whose cyclic nitrogen derives from the formal incorporation of ammonia into a carbon skeleton, generally of terpenoid or polyketide origin (Fattorusso \& Taglialatela-Scafati, 2008). In reality, pseudoalkaloids are connected with amino acid pathways. They are derived from the precursors or postcursors (derivatives the indegradation process) of amino acids. Examples of these alkaloids include capsaicin 11, coniine 16 and caffeine 17.

ustakaan Tuan
16

17

Moreover, there are many categories of alkaloids including pyrrolidine,
 (Micheal 2003, 2004). Table 2.1 shows the major alkaloid classes and their biosynthetic precursors.

Table 2.1

Major Classes of Alkaloids, Their Chemical Structures, Their Biosynthetic Precursors and Well Known Examples of Each Class
Alkaloid class

Note. Adapted from "Quinoline, Quinazoline, and Acridone Alkaloids," by J. P. Michael, 2004, Nat. Prod Rep, 21, p. 650-668.

05-4506832
pustaka.upsi.edu.my
Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil Shah
PustakaTBainun
ptbupsi

2.3 Alkaloids in Pharmaceutical

(C) 05-4506832
(3) pustaka.upsi.edu.my
f Perpustakaan Tuanku Bainun
5 PustakaTBainun
${ }^{\circ}$
ptbupsi

Alkaloids are toxic to both herbivores and humans, yet they have some very important medicinal properties for mankind. The alkaloids are structurally the most diverse class of secondary metabolites and over 5000 compounds are known such as coniine 16 from hemlock (Mann et al., 1996). Traditionally, some plants have been used as poisons for hunting and murder (euthanasia 25) or as medicines (ephedrine 14).

Furthermore, alkaloid that have other pharmacological activities including antiarrhythmic effects (quinidine 8), antimalarial activity (quinine 7) and anticancer actions (vincristine 1 and vinblastine 2) (Cordell, 1983). Other examples of pharmaceutically important alkaloids from plants also can be seen in Table 2.2 (Hay

Table 2.2
Examples of Pharmaceutically Important Alkaloids Extracted from Plants

Natural product	Pharmacological activity
Reserpine $\mathbf{9}$	Central nervous system
Caffeine $\mathbf{1 7}$	Autonomic nervous system
Ephedrine $\mathbf{1 4}$	Adrenergic
Nicotine $\mathbf{1 2}$	Ganglion blocking
Vincristine $\mathbf{1}$	Anticancer
Quinine $\mathbf{7}$	Antimalarial
Morphine $\mathbf{4}$, codeine $\mathbf{3}$	Analgesics
Cocaine $\mathbf{1 3}$	Local anesthetic

Note. Adapted from "Alkaloid Production by Plant Cell Culture in A. Misrahi, A. L.
 1988, Biotechnology in Agricultures, p. 97-140.

2.4 Aporphine

About 250 aporphine alkaloids isolated from plants of 20 families. Plants of the families of Annonaceae Araceae, Aristolochiaceae, Magnoliaceae and Lauraceae are known as known widely to have aporphine type alkaloid (Wu \& Huang, 2006).

The numbering of the skeleton (Figure 2.1) is according to the accepted ruling (Guinaudeau, Leboeuf \& Cavé, 1975). All aporphine alkaloids are based on the skeleton in Figure 2.1 and consist of di-, tri-, tetra-, penta- and hexasubstituted derivatives, the substituents being hydroxyl, methoxy or methylenedioxy groups.

Figure 2.1. The numbering of the aporphine skeleton. Adapted from "Aporphine Alkaloids," by H. Guinaudeau, M. Leboeuf and A. Cavé, 1975, I. Lloydia, 38, p. 275338.

The substituents in the aporphine alkaloids may be located in all four rings with the exception of the methylenedioxy group, which is found only in rings A and D. In the case of all the disubstituted aporphines isolated, the substituents are present in positions 1 and 2 in ring A (Shamma, 1972). The most widespread in nature are the

which functional groups occupy positions at various carbon atoms are found fairly

2.4.1 UV Spectra of Aporphine

In the last 20 years, spectroscopic methods have been widely used giving a large amount of information on the structure of aporphine. According to the nature of the substitution in the aporphine skeleton, the UV spectra are divided into three groups (Sangster \& Stuart, 1965):

1. The spectra of unsubstituted alkaloids or those monosubstituted in ring D have

2. In the spectra of $1,2,9,10$-substituted alkaloids absortion maxima are observed at 280-284 and 303-310 nm which are characterized by approximately equal intensities.
3. The spectra of aporphine substituted in positions $1,2,10$ and 11 each have a maximum at 268-272 nm with a maximum of lower intensity at 303-310 nm.

In addition, the spectra of 1,2,10,11-tetrasubstituted dehydroaporphines absorption maxima are observed at 220,310 and 340 nm .
(3) pustaka.upsi.edu.my
f
Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun P

2.4.2 IR Spectra of Aporphine

(C) $05-4508832$
(2) pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

5 PustakaTBainun
${ }^{\circ}$
ptbupsi

The feature of IR spectra of aporphine is the presence in the aporphine nucleus of a biphenyl system, giving rise to three bands at about 1500,1580 and $1600 \mathrm{~cm}^{-1}$. A difference in the type of substitution of the aromatic rings is demonstrated by a scatter of the frequencies of the maximum of each band (Israilov et al., 1980).

The dehydroaporphine alkaloids have absorption bands in their IR spectra in the $1570-1610 \mathrm{~cm}^{-1}$ region. In the IR spectrum of the oxoaporphine alkaloids the absorption band of the carbonyl group is observed in the form of a sharp peak in the $1640-1675 \mathrm{~cm}^{-1}$ region (Israilov et al., 1980). ustakaTBainun

2.4.3 NMR Spectra of Aporphine

The nuclear magnetic resonance method gives a a large amount of information on the mutual positions of the substituting groups in the aporphine alkaloids (Israilov et al., 1980). Previous research showed that a lot of aporphine alkaloids had been isolated from Lauraceae family (Rachmatiah et al., 2009b; Mukhtar, 1996).

Generally, aporphine from Lauraceae family are dehydroaporphine, oxoaporphine and methylenedioxyaporphine such as pulchine 26, litseferine 27 and oxophoebine 28 (Sivakumaran \& Gopinath, 1976; Castro, López \& Stermitz, 1986). Based on the ${ }^{1} \mathrm{H}$ NMR spectrum, methoxyls groups always appear at region $3.00-3.90$ ppm (Karimova \& Sadykov, 1981; Zarga \& Shamma, 1982). If the methoxy and
hydroxy groups present at C-2, C-3, C-9 and C-10, the protons of aromatic rings at $\mathrm{H}-$
 and laetanine 30 (Chen, Chang, Cowling, Huang \& Gates, 1976; Borthakur \& Rastogi, 1979).

In oxoaporphine, the present of carbonyl carbon $(\mathrm{C}=\mathrm{O})$ can be seen in the ${ }^{13} \mathrm{C}$ NMR spectrum near 180 ppm . The methoxy groups of oxoaporphine will appear at region $3.90-4.25 \mathrm{ppm}$ as shown in oxoglaucine $\mathbf{3 1}$ and O-methylmoschatoline $\mathbf{3 2}$ (Marsaioli, Magalhāes, Ruveda \& Reis, 1980; Leboeuf, Cortes, Hocquemiller \& Cavé, 1983). The aromatic protons of this aporphine always appear at $7.05-9.00 \mathrm{ppm}$ as a singlet or doublet of doublets (Kunitomo, Murakami \& Sugisakon, 1979; Menachery \& Cava, 1981).

The N-methyl signal appear as singlets with integral of three protons at region 2.35-2.55 ppm depends on substituents near the N-methyl group (Hara, Hoshino, Isihige \& Umezawa, 1981; Karimova \& Sadykov, 1981; Pharadai, Tantisewie, Ruchirawat, Hussain \& Shamma, 1981). Furthermore, the signals of methylene protons mainly appear at $2.5-4.0 \mathrm{ppm}$ (Roblot, Hocquemiller, Cavé \& Moretti, 1983).
(6)

25

Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil Shah

26

3

27

31

32
(.) 05-4506832
pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

2.4.4 Mass Spectra of Aporphine

The mass spectra of the aporphine shows characteristic peaks of the M^{+}ions, $(\mathrm{M}-1)^{+}$, $(\mathrm{M}-29)^{+}$or (M-43)+ ions (Israilov et al., 1980). The presence of methoxyl and hydroxyl groups in the molecule is responsible for the appearance in the spectrum of peaks of the ions $\mathrm{M}-\mathrm{CH}_{3}, \mathrm{M}-\mathrm{OH}$ and $\mathrm{M}-\mathrm{OCH}_{3}$ and also for the subsequent ejection of these fragments from the $\mathrm{M}-\mathrm{CH}_{2}-\mathrm{N}=\mathrm{CH}_{2}$ ion.

The nature of the fragmentation of the aporphine alkaloids depends on the type of their substitution. For example, (M-1) ${ }^{+}$ion is the main peak in the spectra of the 1,2,9,10-tetrasubstituted aporphines while 1,2,10,11-tetrasubstituted bases the main peak is that of the molecular ion and as a rule the (M-1) ${ }^{+}$ion does not exceed 50%. (SCheme: 2.1 shôw the overall fragnentations of apporphine (Israilov et al.Qi980):

Scheme 2.1. Fragmentations of aporphine. Adapted from "Aporphine Alkaloids," I.A., Israilov, S. U. Karimova, M. S. Yunusov and S. Y. Yunusov, 1980, Chemistry of Natural Compounds, 16(3), p. 197-225.
f
Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah \square

2.5 Bisbenzylisoquinoline

(1) 05-4506832 pustaka.upsi.edu.my fis $f \begin{aligned} & \text { Perpustakaan Tuanku Bainun } \\ & \text { Kampus Sultan Abdul Jalil Shah }\end{aligned}$ PustakaTBainun

Bisbenzylisoquinoline form a large group of natural bases found in plants of the families of Menispermaceae, Berberidaceae, Ranunculaceae, Lauraceae, Annonaceae, Hernandiaceae, Magnoliaceae and Nymphaeaceae (Tolkachev, Nakova \& Evstigneeva, 1977). More than 250 structures of bisbenzylisoquinoline bases are known which two benzylisoquinoline fragments are connected by one, two or three ether bonds.

Bisbenzylisoquinoline are built up of two benzylisoquinoline units linked by ether bridges. Shamma and Moniot (1976) had established the numbering of the skeleton and the systematic numerical classification describing oxygenation and (Cdimerization pâterns of the alkaloidspats showhini Figure 2.2.ustakatBainun "O) ptbupsi

Figure 2.2. Systematic numbering system in bisbenzylisoquinoline. Adapted from "The Systematic Classification of Bisbenzylisoquinoline," by M. Shamma and J. L. Moniot, 1976, Heterocycles, 4, p. 1817.

The bisbenzylisoquinolines are the largest sub-group among the isoquinoline
 principal structural variations found in bisbenzylisoquinoline alkaloids as follows:

1. The number of oxygen substituents present in the aromatic rings.
2. The number of ether linkages present in the molecule.
3. The nature of ether linkage;
a) Diphenyl ether
b) Benzyl phenyl ether
c) The site of the two benzylisoquinoline units at which the ether or the $\mathrm{C}-\mathrm{C}$ bond originates.

Based on these differences, the bisbenzylisoquinoline are classified into the (C) 05-4506832 groups and subgroups as shown in Table 2.3 (Shamma \& Moniot, 1976). Individual members in each group differ in:
a) The nature of the oxygenated substituents $\left(\mathrm{OH}, \mathrm{OCH}_{3}\right.$, $\mathrm{OCH}_{2} \mathrm{O}$);
b) The nature of the substitution of the two nitrogen atoms $(\mathrm{NH}$, $\left.N \mathrm{CH}_{3}, N^{\prime} \mathrm{CH}_{3}, \mathrm{NO}\right)$.
c) The degree of unsaturation of the hetero rings.
d) The stereochemistry of the two asymmetric centers.

Table 2.3

Types of Skelēton in Bisbenzylisoquinoline

Skeleton	Classification	Group of skeleton	Example

One diphenyl ether linkage

	2. Head to head	IV	Antioquine 34
	3. Head to tail	V	Neferine 35
Two diphenyl ether linkages	1. Head to head and tail to tail	VI-XVII	2-norlimacusine 36
	2. Only head to head	XVIII, XIX	Tilianangine 37
	3. Head to tail	XX, XXI	Sciadoline 38
One diphenyl ether and one			
benzyl phenyl Cetherflionkages	taka.upsi.edu.my f	$\underset{\substack{\text { Perpustakan Tuanku Bainun } \\ \text { Kampus sultan Abdul Jail ishah }}}{\text { XXII }}$	Cissampareine 39 PustakaTBainun ptbupsi
Three diphenyl ether linkages	-	XXIII, XXIV	Kurramine 40
Two diphenyl ether and one phenyl-benzyl ether linkages	-	XXV, XXVI	Insularine 41

Two diphenyl
ether linkages

1. Head to head

I, Ia, II, III

1. Tail to tail
2. Head to head

7-O-methyllindoldhamine 33
2. Only head to head

XVIII, XIX
Tilianangine 37
3. Head to tail

XXII

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

XXIII, XXIV

XXV, XXVI

Cissampareine 39
PustakaTBainun $)^{\circ}$ ptbupsi

Kurramine 40

Insularine 41

Note. Adapted from "The Systematic Classification of Bisbenzylisoquinoline," by M. Shamma and J. L. Moniot, 1976, Heterocycles, 4, p. 1817-1824.

(C) $05-4506832$
33 u.my
f
Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil ShahPustaki
(C) 05-4506832

37

38

39

40
(.) 05-4506832
. pustaka.upsi.edu.myPerpustakaan Tuanku Bainun Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil ShahPustakaTBainun

2.5.1 UV and IR Spectra of Bisbenzylisoquinoline

(0) 05-4506832
(\%) pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Sha Bisbenzylisoquinoline have UV spectra with an absorption maximum at approximately 283 nm and a minimum at 260 nm . Strong absorption is also observed in the 225 nm region. IR spectra of bisbenzylisoquinoline depends on the structure, particularly when they contain characteristic functional groups such as carbonyl, hydroxyl and imino (Tolkachev et al., 1977).

2.5.2 NMR Spectra of Bisbenzylisoquinoline

Bisbenzylisoquinoline show difference characteristics spectral behaviour depends on the o quantity 2 or connection of ether bridge and substituents ${ }_{\text {Kampus }}$ present in the rings. The substituents on the aromatic rings may be hydroxyl or methoxyl or methylenedioxy groups (Nelofar, 1989). Some examples of generalization on the basis of their spectral characteristics as follows:
a) Tail to tail bisbenzylisoquinoline with one diaryl ether bridge (11-12')

The ${ }^{1} \mathrm{H}$ NMR spectrum of this compounds such as temuconine 42 and $7^{\prime}-\mathrm{O}-$ methylcuspidaline 43 show the presence of eleven aromatic protons, four of which appear as singlets belongs to $\mathrm{H}-5, \mathrm{H}-8, \mathrm{H}-5^{\prime}$ and $\mathrm{H}-8^{\prime}$ (Guinaudeau, Cassels \& Shamma, 1982; El-Sebakhy \& Waterman, 1984). Furthermore, H-10', H-11', H-13' and H-14' appear as doublets each of which represents two protons with $J=\sim 8 \mathrm{~Hz}$ () 05-4506832 (3) pustaka.upsi.edu.my $f \begin{aligned} & \text { Perpustakaan Tuanku Bainun } \\ & \text { Kampus Sutan Abdul Jali Shah }\end{aligned}$ PustakaTBainun \quad O ptbupsi like thaligrisine 44 (Guinaudeau, Freyer, Shamma \& Baser, 1984). The N-methyl
groups usually appear near $\delta 2.5$ with the most upfield signal assignable to N^{\prime}-methyl (2) 0.4506832 group such as puattegaium. 1984; Jossang, Leboeuf, Cabalion \& Cavé, 1984). The signal for H-8 appear at upfield region between $\delta 5.95-6.35$. The actual chemical shift for this proton depends upon the substituent at C-7 either hydroxyl or methoxyl groups.
b) Tail to tail bisbenzylisoquinoline with two diaryl ether bridges (7-8', 11-12')

The peaks for the two N-methyl groups appear close to each other or even superimposed near $\delta 2.55$ with the more upfield signal belongs to N^{\prime}-methyl group. $\mathrm{H}-10$ generally appears upfield as a broad singlet in range of δ 5.55-6.66. The signal for $\mathrm{H}-8$ appears in the range of $\delta 6.45-6.50$. Signal for $\mathrm{H}-1$ is usually close to $\delta 3.55$ (4hilesthat for $\mathrm{H}-1$ tákis near $\delta 4.20$ just tilike gyrolidine 47 and 2irnoroxyacanthine 48 (Chalandre, Bruneton, Cabalion, \& Guinaudeau, 1986; Herath, Hussain, Freyer, Guinaudeau, \& Shamma, 1987). The absorption for aromatic protons H-10', H-11', $\mathrm{H}-13^{\prime}$ and $\mathrm{H}-14^{\prime}$ is spread out over a range of more than 1 ppm . Among these four protons, H-14' appear at the farthest downfield near $\delta 7.40$ and above such as in gyrocarpine 49 and gyrocarpusine 50 (Chalandre et al., 1986).

42

1Tuank
in Abdı

43

44

45

46

47
(e) 05-450683
pustaka.upsi.edu.my

(1) ptbupsi

48

(2.5.3 506 Mass Spectra of Bisbenzy lisoquinoline ${ }_{\text {Jainu }}$ Shah
 5 PustakaTBainun
 ptbupsi

Mass spectrum provides extremely useful information for the structure elucidation of bisbenzylisoquinoline. The spectra are most conveniently discussed in terms of groups of alkaloids with similar skeletal (Nelofar, 1989). So far, the major type of bisbenzylisoquinoline alkaloid from Lauraceae family is similar to berbamine $\mathbf{5 1}$ type which tail to tail bisbenzylisoquinoline with two diaryl ether bridges such as gyrocarpine 49 and dehatridine 52 (Chalandre et al., 1986; Lu, Tsai, \& Leou, 1989). The favoured fission is always at the doubly benzylic positions at $\mathrm{C}-1$ and $\mathrm{C}-1^{\prime}$. The mass spectra of this bensylisoquinoline can be summarized as shown in Scheme 2.2 (Tomita et al., 1966).

A typical member of berbamine $\mathbf{5 1}$ group is isotetrandine 53. Scheme 2.2
 $\left(\mathrm{M}^{+} 622\right)$ reveals a characteristic doubly charged ion at $\mathrm{m} / \mathrm{z} 198$ (54), which then eliminates a methoxyl and a methyl radical to give an ion at $\mathrm{m} / \mathrm{z} 175$ (55). A peak at m / z 396, represented by 56, is probably a key intermediate ion for further fragmentation. Loss of a hydrogen from 56 gives an ion at $\mathrm{m} / \mathrm{z} 395$ (57) and in turn fragment 57 affords a fragment ion at $\mathrm{m} / \mathrm{z} 364$ (58) and at $\mathrm{m} / \mathrm{z} 349$ (59) by loss of methoxyl and successive loss of methyl radicals, respectively. Loss of a methyl radical from 56 gives an ion at $\mathrm{m} / \mathrm{z} 381$ (60) (Tomita et al., 1966).

51

52
.
Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil Shah

Scheme 2.2. Characteristic fragments of berbamine $\mathbf{5 1}$ type alkaloids. Adapted from "Mass spectrometry of Bisbenzylisoquinoline Alkaloids by M. Tomita, T. Kikuchi, K. Fujitani, A. Kato, H. Furukawa, Y. Aoyagi, M. Kitano and T. Ibuka, 1966, Tetrahedron Letters, 8, p. 857-864.

2.5.4 Biosynthesis of Benzylisoquinoline

(C) 05-4508832
pustaka.upsi.edu.my
Perpustakaan Tuanku Bainun

Benzylisoquinoline are formed from two molecules of tyrosine which are elaborated to form (S)-norcoclaurine 61 (Rueffer \& Zenk, 1987). This alkaloid is an important precursor of a variety of pathways that lead to a series of diverse structures, some of which are shown in Scheme 2.3. Excellent progress has therefore been made in unravelling the route to (S)-norcoclaurine $\mathbf{6 1}$ and the sequences leading to some of the more important groups of isoquinolines.

Scheme 2.3. The various groups of benzylisoquinoline alkaloids derived from (S)-norcoclaurine $\mathbf{6 1}$. Adapted from "Distant Precursors of Benzylisoquinoline Alkaloids and their Anzymatic Formation," M. Rueffer and M. H. Zenk, 1987, Z. Naturforsh, 42c, p. 319-332.

2.6 Alkaloids of Lauraceae Family

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah
(-)
ptbupsi

Aporphine-type alkaloids, a class of secondary metabolites widely occurring in members of the Lauraceae family (Cseke et al., 2006). Furthermore, plants belonging to Lauraceae also known to produce various bisbenzylisoquinoline with pharmacological activities. A large number of bisbenzylisoquinoline have been isolated from various plant resources and the medicinal properties such as antimalarial, antihypotensive and antitumor. Table 2.4 shows the variety of alkaloids isolated from Lauraceae family.

Table 2.4

Alkaloids of Lauraceae Family

Litsea machilifolia (Medang leaf boldine 69, actinodaphine 70, Katuko)

N -methylactinodaphine 71 and cryptodorine 72 (Abidin, Awang, Hadi \& Mukhtar, 2009).

Litsea petiolata Hk.f

Actinodaphne Pruinosa Nees

Phoebe grandis (Nees)
Merr.

Phoebe tavoyana (Meissn.) bark laetanine 30, boldine 69, norboldine 78,
Hk.f.
bark harman 73, reticuline 74 and thalifoline 75
(Omar, Nafiah, Mukhtar, Awang \& Hadi, 2009).
bark (-)-dauricine 76 and (+)-thaligrisine 77 (Rachmatiah et al., 2009b).
bark boldine 69, norboldine 78, laurotetanine 79 and lindcarpine $\mathbf{8 0}$
(Mukhtar, 1996) roemerine 81 , (+)-tavoyanine 82 , sebiferine $\mathbf{8 3}$ (Omar, 2009)

2.7 Alkaloids of Genus Alseodaphne

(C) 05-4506832
pustaka.upsi.edu.my
F Perpustakaan Tuanku Bainun $\begin{aligned} & \text { Kampus Sultan Abdul Jalil Shah }\end{aligned}$
ptbupsi

Alseodaphne species also had been reported containing various types of aporphine and bisbenzylisoquinoline alkaloids as shown in Table 2.5.

Table 2.5

Alkaloids of Genus Alseodaphne

Alseodaphne species	Part of tree	Isolated alkaloids
Alseodaphne corneri	leaves and bark	gyrolidine 47, N - methyllaurotetanine 84, isocorydine $\mathbf{8 5}$, norisocorydine $\mathbf{8 6}$, stephasubimine $\mathbf{8 7}$ (Zahari, 2010)
Alseodaphne corneri	bark	$3^{\prime}, 4^{\prime}$-dihydronorstephasubine $\mathbf{8 8}$ (Mukhtar et al., 2009)
(C) 05-4506832 \qquad Alseodaphne perakensis	${ }^{n y}{ }^{f} \begin{aligned} & \text { Poots } \\ & \text { Per } \end{aligned}$	boldine 69 , sebiferine 83 and laurolitsine 89 (Ahmat, 2008)
Alseodaphne perakensis	bark	norboldine 78, N-methyllaurotetanine $\mathbf{8 4}$ and N cyanomethylnorboldine 90 (Nafiah et al., 2011)
Alseodaphne archboldiana	*	reticuline 74 and (-)- N-norarmepavine 91 (Johns, Lamberton \& Sioumis, 1967)
Alseodaphne hainanensis	bark	(6,7-dimethoxyisoquinolinyl)-(4'-methoxyphenyl) methanone 92 (Haitao, Lian \& Pengfei, 2000)
Alseodaphne hainanensis	roots	xylopinine 93 and armepavine 94 (Zhang, Liu, Li \& Mia, 1988)

Note. * = not available.

Perpustakaan Tuanku Bainun Kansua Sultan Abdul Jalil Shah

(

82

83
(C) 05-4506832
(3) pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil ShahPustakaTBainun
(1) ptbupsi

85
86

(0) 05-4506832
pustaka.upsi.edu.my
 Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil ShahPustakaTBainun
©
ptbupsi

88

89

90
(C) 05

91

92

94
\odot
05-4506832
(3) pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun
Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil Shah

CHAPTER 3

EXPERIMENTAL

3.1 Plant Material

The bark of Alseodaphne peduncularis (Wall. ex Nees) Meisn (KL 5165) was collected from Kluang-Mersing, Johor. The roots of Alseodaphne corneri Kosterm (KL 4928) was collected from University of Malaya, Malaysia. Both species were identified by Herbarium Group of Chemistry Department, University of Malaya, Malaysia.
pustaka.upsi.edu.my

3.2 Instrumentation

(1) 05-4506832 pustaka.upsi.edu.my firn PustakatBainun $\begin{aligned} & \text { Perpustakan Tuanku Bainun } \\ & \text { Kampus Sultan Abdul Jalil Shah ptbupsi }\end{aligned}$

The 1D (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and DEPT) and 2D NMR (COSY, NOESY, HMQC and HMBC) spectra were obtained using JEOL ECX 500 MHz spectrometer system using deuterated chloroform as solvent. The chemical shift were reported in ppm or δ scale and the coupling constants are given in the Hz unit.

Mass spectrum was obtained on JEOL JMS 700 TZ spectrometer. The EIMS spectrum was obtained on Shimadzu GC-MS-QP2000A Mass Spectrometer 70 eV .

UV spectra was obtained by using Perkin Elmer UV-Visible spectrophotometer with methanol as solvent.
(3) pustaka.upsi.edu.my

- Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun

The infrared spectra was obtained on Nicolet 6700 FTIR spectrophotometer with chloroform as solvent.

3.3 Chromatography

3.3.1 Thin Layer Chromatography (TLC)

Aluminium supported silica gel $60 \mathrm{~F}_{254}$ (Merck 1.05554.0001) plates were used to monitor the spots on the TLC. The TLC spots were visualized under ultraviolet lights of 254 and 365 nm .
f
Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun

3.3.2 Column Chromatography (CC)

(C) $05-4508832$
(3) pustaka.upsi.edu.my
f $\begin{gathered}\text { Perpustakan Tuanku Bainun } \\ \text { Kampus Sutun Andw }\end{gathered}$ Kampus Sultan Abdul Jalii Shah 57 PustakaTBainun O° ptbupsi

The solvents used in this experiment were hexane, dichloromethane and methanol. Silica gel 60, 70-230 mesh ASTM (Merck 1.07734.1000) and silica gel 60, 200-400 mesh ASTM (Merck 1.09385.1000) were used for column chromatography. A slurry of silica gel 60 in hexane solvent was poured into a glass column of appropriate size. The crude extract was initially dissolved in minimum amount of solvent and loaded on top of the packed column. The extract was eluted with gradient solvent system at a certain flow rate.

3.3.3 Preparative Thin Layer Chromatography (PTLC)

pustaka.upsi.edu.my
f Perpustakaan Tuanku Bainun $\begin{aligned} & \text { Kampus Sultan Abdul Jalil Shah }\end{aligned}$
PustakaTBainun

PTLC glass plates of size $20 \times 20 \mathrm{~cm}$ containing silica gel $60 \mathrm{~F}_{254}$ with gypsum (Merck 1.07749.1000) was used for separation of compounds that cannot be separated by conventional column. UV Light Model UVGL-58 was used to examine bands on the PTLC.

3.4 Reagents

3.4.1 Mayer's Reagent (Potassium mercuric iodide)

About 1.4 g mercuric iodide in 60 ml distilled water was mixed with solution of 5.0 g potassium iodide in 10 ml distilled water The mixture then made upo to 100 ml (1) $05-4506832$ (2) pustaka. upsi.edu.my t ampus Sultan Abdul Jalil Shah PustakaTBainun ptbupsi
solution. The positive result was indicated by the formation of white precipitate when
 the aqueous layer (acidified) is treated with 2 to 3 drops of Mayer's reagent.

3.4.2. Dragendorff's Reagent (potassium bismuth iodide)

Bismuth (III) nitrates (0.85 g) are dissolved in a mixture of glacial acetic acid (10 ml) and distilled water (40 ml) for solution A. While for solution B; potassium iodides $(8.0 \mathrm{~g})$ are dissolved in distilled water $(20 \mathrm{ml})$. To prepare the stock solution, solution A (20 ml) and B (20 ml) mixed with equal volumes (1:1). The stock solution (20 ml) then was diluted in the mixture acetic acid (20) ml and distilled water (60 ml) for spray agent. The formation of orange spots on the thin layer chromatography

3.5 Extraction

Extraction was carried out by cold percolation to remove non-polar organic compounds, waxes and fats. The dried bark were soaked with hexane for three days at room temperature. The extract was then filtered and dried using rotary evaporator. The plant material was dried and wetted with 27% ammonia solution $\left(\mathrm{NH}_{4} \mathrm{OH}\right)$ and left overnight to aggregate the nitrogen-containing compounds from the plant.

- 05 It . 506832 was then re-extracted with dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ by exhaustively using soxhlet extractor. The dichloromethane extract was evaporated to 500 ml followed by
acid-base extraction using $5 \% \mathrm{HCl}$ until Mayer's test is negative. The HCl extract was Co 05.550632 with pustak.upsiedu. my f Perpustakan Tuanku Bainun
basified with eoncentrated ammonia to $\mathrm{pH}^{\circ} \mathrm{P}$ and re-extracted with dichforomethane. The dichloromethane extract was washed with distilled water and dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Finally the extract was evaporated to dryness to give alkaloid crude extract. The extraction process of the samples are shown in Scheme 3.1.

3.6 Isolation

The alkaloid crude extracts was subjected to column chromatography over silica gel (70-230 mesh ASTM, Merck 7734). The column was eluted with solvent mixtures of (increasing polârity $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}^{n} \mathrm{H}^{\prime \prime} \mathrm{MeOH}\right)$ to give several fractions. Fractions that having spots with the same R_{f} value were grouped together by TLC. Each series of fractions was then treated separately by extensive column chromatography and preparative TLC to purify the alkaloids.

Structural identification of the isolated compounds were carried out by using spectroscopic methods such as ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, COSY, DEPT, HMQC, HMBC, IR, UV and mass spectroscopy.

3.6.1 Isolation of Alseodaphne peduncularis

The alkaloid extract of Alseodaphne peduncularis $(8.28 \mathrm{~g})$ was subjected to column 05-4508832 pustaka.upsi.ecu:.my T Kampus Sultan Abdul Jalil Shah chromatography over silica gel using hexane, dichloromethane and methanol solvents.

The fractions collected from the column chromatography that having same R_{f} value (2) 05 -4506832 ${ }^{2}$ pere grouped into series of fractions. "PWo potential fractions that contain alkaloid; fractions 169-225 and 226-242 were subjected to another extensive column chromatography.

Then, the purification of alkaloids continue with preparative TLC with suitable solvent system of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$. Finally, AP 1 (boldine 69), AP 2 (norpredicentrine 90), AP 3 (norlirioferine 91) and AP 4 (norboldine 78) were successfully isolated from A. peduncularis. Scheme 3.2 shows the isolation process of A. peduncularis.

3.6.2 Isolation of Alseodaphne corneri

(C) 05.4508832

pustaka.upsi.edu.my
F Perpustakaan Tuanku Bainun Kerpusta Sultan Abdul Jalil Shah PustakaTBainun

Scheme 3.3 shows the isolation process of alkaloids isolated from A. corneri. 7.07 g of the crude was subjected to column chromatography with various solvent system of hexane, dichloromethane and methanol. Series of fractions were collected. AC 1 (laetanine 30) was successfully isolated from fraction 22-33. Then, fraction 9-12 from the column chromatography was undergoing the preparative TLC process with solvent system of 98:2 of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$. Finally, another six alkaloids were isolated known as AC 2 (boldine 69), AC 3 (gyrolidine 47), AC 4 (stephasubine 92), AC 5 (2norobaberine 93), AC 6 ($3^{\prime}, 4^{\prime}$-dihydrostephasubine 94) and AC 7 (O methyllimacusine 95).

Scheme 3.1. Extraction process of samples. pustaka.upsi.edu.my

Scheme 3.2. Isolation of alkaloids from the bark of Alseodaphne peduncularis.

Scheme 3.3. Isolation of alkaloids from the roots of Alseodaphne corneri.
(c)

05-4506832

90

92
(C) 05-4506832
(4) pustaka.upsi.edu.my

Perpustakaan Tua Perpustakaan
Kampus Sultan A

93

94

(1)

05-4506832
pustaka.upsi.edu.my
Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil ShahPustakaTBainun
ptbupsi

3.7 Antiplasmodial Assay

(0) 05-4506832
(2) pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Sha

5
ustakaTBainun
(-)
ptbupsi

For bioactivity assay, the samples were sent to Unit Bioassay, Herbal Medicine Research Center Institute for Medical Research, Kuala Lumpur. The samples were tested for antimalaria in-vitro drug screening by using HRP2 assay.

The antimalarial drug screening test was done by using HRP2 (histidine-rich protein II) in a simple enzyme-linked immunosorbent assay (ELISA) that first published in 2002 and was developed to diagnose falciparum malaria rapidly and reliably without the need of a microscope (Noedl, Wernsdorfer, Miller \& Wongsrichanalai, 2002). The screening test is on the measurement of a histidine- and analine-rich protein produce by Plasmodium falciparum in the course of its growth and multiplication (Noedl, Wongsrichanalai \& Wernsdorfer, 2003). If parasite growth
 is inhibited by antimalarial drugs, the inhibition is reflected in HRP2 levels and may therefore easily be quantified. This assay also faster than other malaria in-vitro sensitivity test, easy and rapid to perform (Noedl et al., 2002).

The antiplasmodial activity of the extracts was determined against the chloroquine-resistant (K1) strains of Plasmodium falciparum that were continuously cultured according to the methods described by Trager and Jensen (1976). Plant extracts were assessed for antiplasmodial activity in-vitro in human blood using parasite lactate dehydrogenase method (pLDH) with slight modifications (Makler \& Hinrichs, 1993; Makler, Ries, Williams \& Bancroft, 1993).

Microtitration techniques were used to measure the activity of samples over a

served as positive control in all experiments. All tests were performed in duplicate.
 stock solutions were subsequently diluted with deionized water at 20 concentrations of two-fold dilutions into two 96 -well microtiter plates. $10 \mu \mathrm{l}$ of each concentration was transferred into another 96-well microtiter plates. $190 \mu 1$ of parasitised red blood cell suspensions (1% parasitaemia) were next added to each well.

For the infected control, parasitised red blood cells were devoid of plant extracts whereas only non-parasitised red blood cells were prepared for the noninfected control plates were incubated for 24 hours at $37^{\circ} \mathrm{C}$ in a candle jar and were subsequently cooled at $-20^{\circ} \mathrm{C}$ to lyse the red blood cells. The plates were next allowed to reach room temperature, and $20 \mu \mathrm{l}$ of the blood suspension was dispensed into a new microtiter plate containing $100 \mu \mathrm{~L}$ MALSTAT $^{\mathrm{TM}}$ reagent and $20 \mu \mathrm{l}$ nitroblue tetrazolium and phenazine ethosulfate mixture. Absorbance was measured with an ELISA plate reader at 630 nm . The percentage inhibition at each concentration was determined and the mean of IC_{50} values of parasite viability was calculated using probit analysis (Chan, Choo, Abdullah \& Ismail, 2004).

3.8 Physical and Spectral Data of Isolated Alkaloids

AP 1, Boldine $69: \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$ (Brownish amorphous)
UV λ max $: 282,302$
IR v max cm $^{-1} \quad: 2945$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta \quad: 2.58\left(3 \mathrm{H}, s, N-\mathrm{CH}_{3}\right), 2.60\left(1 \mathrm{H}, d, J=5.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ax}}-5\right)$,
 $3.01(1 \mathrm{H}, m, \mathrm{H}-6 \mathrm{a}), 3.12\left(1 \mathrm{H}, b r s, \mathrm{H}_{\mathrm{eq}}-5\right), 3.16\left(1 \mathrm{H}, b r s, \mathrm{H}_{\mathrm{eq}}-4\right), 3.59(3 \mathrm{H}, s, 1-$ $\left.\mathrm{OCH}_{3}\right), 3.91\left(3 \mathrm{H}, s, 10-\mathrm{OCH}_{3}\right), 6.64(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 6.82(1 \mathrm{H}, s, \mathrm{H}-8), 7.89(1 \mathrm{H}, s, \mathrm{H}-$ 11).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta \quad: 142.2(\mathrm{C}-1), 60.4\left(1-\mathrm{OCH}_{3}\right), 126.1(\mathrm{C}-1 \mathrm{a}), 126.1(\mathrm{C}-$ 1b), 148.3 (C-2), 113.3 (C-3), 129.5(C-3a), 28.5 (C-4), 53.3 (C-5), 62.5 (C-6a), 33.9 (C-7), 129.8 (C-7a), 114.3 (C-8), 145.2 (C-9), 145.7 (C-10), $56.2\left(10-\mathrm{OCH}_{3}\right), 110.2$ (C-11), 123.6 (C-11a), $43.5\left(N-\mathrm{CH}_{3}\right)$.

AP 2, Norpredicentrine $90 \quad: \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$ (brownish amorphous)
UV λ max $: 217,281,301$
 Mass spectrum $\mathrm{m} / \mathrm{z} \quad: 327[\mathrm{M}]^{+}$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta \quad: 3.09\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-5\right), 2.93(2 \mathrm{H}, m, \mathrm{H}-7), 2.75(1 \mathrm{H}, d$, $\left.J=14.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ax}}-4\right), 3.07\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-4\right), 3.96(1 \mathrm{H}, b r s, \mathrm{H}-6 \mathrm{a}), 3.49\left(1 \mathrm{H}, s, \mathrm{H}_{\mathrm{eq}}-5\right)$, $3.61\left(3 \mathrm{H}, s, 1-\mathrm{OCH}_{3}\right), 3.91\left(6 \mathrm{H}, s, 9,10-\mathrm{OCH}_{3}\right), 6.68(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 6.78(1 \mathrm{H}, s, \mathrm{H}-8)$, 7.94 (1H, $s, \mathrm{H}-11$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta \quad: 142.4(\mathrm{C}-1), 60.5\left(1-\mathrm{OCH}_{3}\right), 125.4(\mathrm{C}-1 \mathrm{a}), 129.1(\mathrm{C}-$ 1b), 148.8 (C-2), 113.8 (C-3), 125.7(C-3a), 27.8 (C-4), 42.7 (C-5), 53.6 (C-6a), 35.7 (C-7), 128.3 (C-7a), 111.1 (C-8), 148.5 (C-9), $148.0(\mathrm{C}-10), 56.1\left(10-\mathrm{OCH}_{3}\right), 56.0$ (9$\left.\mathrm{OCH}_{3}\right), 110.7(\mathrm{C}-11), 123.9(\mathrm{C}-11 \mathrm{a})$.

AP 3, Norlirioferine $91 \quad: \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$ (dark brown amorphous)
 $\left.\mathrm{H}_{\mathrm{ax}}-4\right), 3.05\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-4\right), 3.85(1 \mathrm{H}, b r s, \mathrm{H}-6 \mathrm{a}), 3.43\left(1 \mathrm{H}, d, J=8.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{eq}}-5\right), 3.66$ $\left(3 \mathrm{H}, s, 1-\mathrm{OCH}_{3}\right), 3.88\left(6 \mathrm{H}, \mathrm{s}, 2,10-\mathrm{OCH}_{3}\right), 6.59(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 6.78(1 \mathrm{H}, s, \mathrm{H}-8), 8.07$ (1H, $s, \mathrm{H}-11$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta \quad: 144.4(\mathrm{C}-1), 60.3\left(1-\mathrm{OCH}_{3}\right), 126.9(\mathrm{C}-1 \mathrm{a}), 127.2(\mathrm{C}-$ 1b), 152.3 (C-2), 110.8 (C-3), 128.7 (C-3a), 28.8 (C-4), 42.9 (C-5), 53.7 (C-6a), 36.2 (C-7), 129.5 (C-7a), 114.1 (C-8), 145.5 (C-9), 145.1 (C-10), 56.1 (10- OCH_{3}), 55.9 (2$\left.\mathrm{OCH}_{3}\right), 111.4$ (C-11), 129.5 (C-11a).

AP 4, Norboldine $78 \quad: \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4}$ (brownish amorphous)
UV λ max $: 216,282,302$
$\mathrm{IR} v \operatorname{max~cm}^{-1} \quad: 3300$

Mass spectrum m/z : $313[\mathrm{M}]^{+}, 312[\mathrm{M}-1]^{+}, 298\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta \quad: 3.00\left(1 \mathrm{H}, d d, J=12.3\right.$ and $\left.3.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ax}}-5\right), 2.65(1 \mathrm{H}, m$, $\left.\mathrm{H}_{\mathrm{ax}}-7\right), 2.72\left(1 \mathrm{H}, d d, J=14.3\right.$ and $\left.4.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{eq}}-7\right), 2.96\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-4\right), 2.67(1 \mathrm{H}, m$, $\left.\mathrm{H}_{\mathrm{eq}}-4\right), 3.77(1 \mathrm{H}, d d, J=13.8$ and $4.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 3.33\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-5\right)$, $3.61(3 \mathrm{H}, s, 1-$ OCH_{3}), $3.91\left(3 \mathrm{H}, s, 10-\mathrm{OCH}_{3}\right), 6.65(1 \mathrm{H}, s, \mathrm{H}-3), 6.81(1 \mathrm{H}, s, \mathrm{H}-8), 7.91(1 \mathrm{H}, s, \mathrm{H}-$ 11).

[^0](C-7), 130.1 (C-7a), 114.2 (C-8), 145.1 (C-9), 145.6 (C-10), $56.2\left(10-\mathrm{OCH}_{3}\right), 110.2$ CC-11), 123.8 (C-11 1 a).

AC 1, Laetanine $30 \quad: \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4}$ (dark brownish amorphous)
$\mathrm{UV} \lambda \max \quad: 282$
IR $v \operatorname{max~cm}^{-1} \quad: 3000-3500$ (broad)
Mass spectrum m/z : $313[\mathrm{M}]^{+}$
${ }^{1}{ }^{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta \quad: 2.99\left(1 \mathrm{H}, s, \mathrm{H}_{\mathrm{ax}}-5\right), 2.68\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-7\right), 2.77(1 \mathrm{H}, d d$,
$J=15.5$ and $\left.5.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{eq}}-7\right), 2.68\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-4\right), 2.97\left(1 \mathrm{H}, s, \mathrm{H}_{\mathrm{eq}}-4\right), 3.81(1 \mathrm{H}, d d, J=$
11.1 and $5.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a})$, $3.39\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-5\right), 3.59\left(3 \mathrm{H}, s, 1-\mathrm{OCH}_{3}\right), 3.88(3 \mathrm{H}, s, 9-$
$\left.\mathrm{OCH}_{3}\right), 6.62(1 \mathrm{H}, s, \mathrm{H}-3), 6.78(1 \mathrm{H}, s, \mathrm{H}-8), 7.89(1 \mathrm{H}, s, \mathrm{H}-11)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta \quad: 142.3(\mathrm{C}-1), 60.3\left(1-\mathrm{OCH}_{3}\right), 125.9(\mathrm{C}-1 \mathrm{a}), 126.1(\mathrm{C}-$
 (C-7), 129.3 (C-7a), 114.4 (C-8), 145.9 (C-9), $145.3(\mathrm{C}-10), 56.2\left(9-\mathrm{OCH}_{3}\right), 110.5(\mathrm{C}-$ 11), 123.5 (C-11a).

AC 2, Boldine 69 : refer AP 1

AC 3, Gyrolidine $47 \quad: \mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6}$ (yellow amorphous)
$\mathrm{UV} \lambda \max \quad: 283$
$\mathrm{IR} v \operatorname{max~cm}^{-1} \quad: 1012,1639$
Mass spectrum m/z : $622[M]^{+}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta \quad: 3.75(1 \mathrm{H}, b r s, \mathrm{H}-1), 2.61\left(3 \mathrm{H}, s, N-\mathrm{CH}_{3}\right), 2.45(1 \mathrm{H}, m$,

$\left.\mathrm{OCH}_{3}\right), 6.65(1 \mathrm{H}, s, \mathrm{H}-8), 2.90\left(1 \mathrm{H}, d d, J=14.9\right.$ and $\left.3.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ax}}-\alpha\right), 3.24\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-\right.$
$\alpha), 5.41(1 \mathrm{H}, d, J=2.3 \mathrm{~Hz}, \mathrm{H}-10), 3.89\left(3 \mathrm{H}, s, 12-\mathrm{OCH}_{3}\right), 6.87(1 \mathrm{H}, d, J=7.5 \mathrm{~Hz}, \mathrm{H}-$
 $3.00\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-3^{\prime}\right), 3.26\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-3^{\prime}\right), 2.75\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-4^{\prime}\right), 3.07\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-4^{\prime}\right)$, $6.37\left(1 \mathrm{H}, s, \mathrm{H}-5^{\prime}\right), 3.78\left(3 \mathrm{H}, s, 6^{\prime}-\mathrm{OCH}_{3}\right), 3.19\left(3 \mathrm{H}, s, 7^{\prime}-\mathrm{OCH}_{3}\right), 2.80\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-\alpha^{\prime}\right)$, $3.42\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-\alpha^{\prime}\right), 6.94\left(1 \mathrm{H}, d, J=2.3 \mathrm{~Hz}, \mathrm{H}-10^{\prime}\right), 6.40\left(1 \mathrm{H}, d, J=4.6 \mathrm{~Hz}, \mathrm{H}-11^{\prime}\right)$, $6.95\left(1 \mathrm{H}, d, J=2.3, \mathrm{H}-13^{\prime}\right), 7.48\left(1 \mathrm{H}, d, J=8.1 \mathrm{~Hz}, \mathrm{H}-14^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta \quad: 63.8(\mathrm{C}-1), 43.3\left(\mathrm{~N}-\mathrm{CH}_{3}\right), 50.1(\mathrm{C}-3), 29.7(\mathrm{C}-4)$, 130.9 (C-4a), 110.9 (C-5), 148.6 (C-6), $55.0\left(6-\mathrm{OCH}_{3}\right), 143.8(\mathrm{C}-7), 116.7(\mathrm{C}-8)$, 127.1 (C-8a), 37.6 (C- α), 130.9 (C-9), 116.3 (C-10), 149.0 (C-11), 146.7 (C-12), 55.9 $\left(12-\mathrm{OCH}_{3}\right), 110.9(\mathrm{C}-13), 123.5(\mathrm{C}-14), 61.6\left(\mathrm{C}-1{ }^{\prime}\right), 41.7\left(N^{\prime}-\mathrm{CH}_{3}\right), 45.1\left(\mathrm{C}-3{ }^{\prime}\right), 24.9$ (C-4'), 127.1(C-4'a), 105.8 (C-5'), 151.9 (C-6'), $56.0\left(6^{\prime}-\mathrm{OCH}_{3}\right), 137.2$ (C-7'), 60.5 (7'- OCH_{3}), 147.5 ($\mathrm{C}-8^{\prime}$), 138.2 (C-8'a), 39.8 (C- $\left.\alpha^{\prime}\right), 128.1$ (C-9'), 131.4 (C-10'), 121.1

AC 4, Stephasubine $92 \quad: \mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}$ (yellow amorphous)
UV $\lambda \max$: 207, 236

IR $v \operatorname{max~cm}^{-1}$: 3286

Mass spectrum m/z : $590[\mathrm{M}]^{+}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta \quad: 3.64(1 \mathrm{H}, b r s, \mathrm{H}-1), 2.67\left(3 \mathrm{H}, s, N-\mathrm{CH}_{3}\right), 2.45(1 \mathrm{H}, d$, $\left.J=4.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ax}}-3\right), 2.68\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-3\right), 2.25\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-4\right), 2.50\left(1 \mathrm{H}, s, \mathrm{H}_{\mathrm{eq}}-4\right), 6.54$ (1H, $s, \mathrm{H}-5), 4.03\left(3 \mathrm{H}, s, 6-\mathrm{OCH}_{3}\right), 5.98(1 \mathrm{H}, s, \mathrm{H}-8), 2.42\left(1 \mathrm{H}, d, J=2.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ax}}-\alpha\right)$, $3.00\left(1 \mathrm{H}, d, J=12.6, \mathrm{H}_{\mathrm{eq}}-\alpha\right), 4.77(1 \mathrm{H}, s, \mathrm{H}-10), 3.87\left(3 \mathrm{H}, s, 12-\mathrm{OCH}_{3}\right), 6.71(1 \mathrm{H}, d$, $J=9.1 \mathrm{~Hz}, \mathrm{H}-13), 6.70(1 \mathrm{H}, d, J=8.1 \mathrm{~Hz}, \mathrm{H}-14), 8.43\left(1 \mathrm{H}, d, J=5.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 7.47$
 $\left.13.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ax}}-\alpha^{\prime}\right), 5.36\left(1 \mathrm{H}, d, J=13.8, \mathrm{H}_{\mathrm{eq}}-\alpha^{\prime}\right), 7.0\left(1 \mathrm{H}, b r s, \mathrm{H}-10^{\prime}\right), 6.62(1 \mathrm{H}, d d, J=$
8.6 and $\left.2.3 \mathrm{~Hz}, \mathrm{H}-11^{\prime}\right), 6.47\left(1 \mathrm{H}, d d, J=8.1\right.$ and $\left.2.3 \mathrm{~Hz}, \mathrm{H}-13^{\prime}\right), 7.40(1 \mathrm{H}, d, J=8.1 \mathrm{~Hz}$, (4-15-450.5832

F Perpustakaan Tuanku Bainun
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta \quad: 63.6(\mathrm{C}-1), 43.2\left(\mathrm{~N}-\mathrm{CH}_{3}\right), 49.0(\mathrm{C}-3), 27.0(\mathrm{C}-4)$, 129.1 (C-4a), 111.9 (C-5), 147.7 (C-6), $56.2\left(6-\mathrm{OCH}_{3}\right), 144.3(\mathrm{C}-7), 111.8(\mathrm{C}-8)$, 119.3 (C-8a), 38.1 (C- α), 130.0 (C-9), 117.0 (C-10), 150.0 (C-11), 146.6 (C-12), 56.7 $\left.\left(12-\mathrm{OCH}_{3}\right), 111.1(\mathrm{C}-13), 123.4(\mathrm{C}-14), 157.3\left(\mathrm{C}-1^{\prime}\right), 140.8\left(\mathrm{C}-3^{\prime}\right), 119.2(\mathrm{C}-4)^{\prime}\right)$, 133.9 (C-4'a), 102.1 (C-5'), 151.3 (C-6'), $56.1\left(6^{\prime}-\mathrm{OCH}_{3}\right), 135.6$ (C-7'), 144.3 (C-8'), 137.3 (C-8'a), 45.4 ($\mathrm{C}-\alpha^{\prime}$), 137.6 (C-9'), 129.1 (C-10'), 123.0 (C-11'), 152.8 (C-12'), 122.4 (C-13'), 131.5 (C-14').

AC 5, 2-Norobaberine $93 \quad: \mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6}$ (brownish amorphous) UV $\lambda \max : 284$

Mass spectrum m/z : $608[\mathrm{M}]^{+}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta \quad: 4.34(1 \mathrm{H}, b r s, \mathrm{H}-1), 2.90\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-3\right), 3.01(1 \mathrm{H}, m$, $\left.\mathrm{H}_{\mathrm{eq}}-3\right), 2.38\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-4\right), 2.53\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-4\right), 6.36(1 \mathrm{H}, s, \mathrm{H}-5), 3.63(3 \mathrm{H}, s, 6-$ $\left.\mathrm{OCH}_{3}\right), 6.69(1 \mathrm{H}, s, \mathrm{H}-8), 2.91\left(1 \mathrm{H}, m, \mathrm{~Hz}, \mathrm{H}_{\mathrm{ax}}-\alpha\right), 3.25\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-\alpha\right), 5.56(1 \mathrm{H}, d$, $J=2.3 \mathrm{~Hz}, \mathrm{H}-10), 3.90\left(3 \mathrm{H}, s, 12-\mathrm{OCH}_{3}\right), 6.86(1 \mathrm{H}, d, J=2.3 \mathrm{~Hz}, \mathrm{H}-13), 6.80(1 \mathrm{H}, d$, $J=8.6 \mathrm{~Hz}, \mathrm{H}-14), 4.25\left(1 \mathrm{H}, d, J=4.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 2.69\left(3 \mathrm{H}, s, N^{\prime}-\mathrm{CH}_{3}\right), 2.92\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-\right.$ $\left.3^{\prime}\right), 3.23\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}-}-3^{\prime}\right), 2.74\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-4^{\prime}\right), 3.04\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}-}-4^{\prime}\right), 6.37\left(1 \mathrm{H}, s, \mathrm{H}-5^{\prime}\right)$, $3.79\left(3 \mathrm{H}, s, 6^{\prime}-\mathrm{OCH}_{3}\right), 3.22\left(3 \mathrm{H}, s, 7^{\prime}-\mathrm{OCH}_{3}\right), 2.84\left(1 \mathrm{H}, d d, J=14.9\right.$ and $5.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ax}}{ }^{-}$ $\left.\alpha^{\prime}\right), 3.36\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-\alpha^{\prime}\right), 6.85\left(1 \mathrm{H}, d, J=2.3 \mathrm{~Hz}, \mathrm{H}-10^{\prime}\right), 6.30(1 \mathrm{H}, d, J=8.1$ and 2.9 $\left.\mathrm{Hz}, \mathrm{H}-11^{\prime}\right), 6.98\left(1 \mathrm{H}, d d, J=8.6\right.$ and $\left.2.3 \mathrm{~Hz}, \mathrm{H}-13^{\prime}\right), 7.50\left(1 \mathrm{H}, d, J=8.1 \mathrm{~Hz}, \mathrm{H}-14^{\prime}\right)$.
 (C-5), $148.8(\mathrm{C}-6), 55.1\left(6-\mathrm{OCH}_{3}\right), 114.2(\mathrm{C}-7), 116.0(\mathrm{C}-8), 130.5$ (C-8a), 38.9 (C-
$\alpha), 147.6(\mathrm{C}-9), 115.9(\mathrm{C}-10), 149.7(\mathrm{C}-11), 147.3(\mathrm{C}-12), 55.9\left(12-\mathrm{OCH}_{3}\right), 123.5(\mathrm{C}-$
 105.9 (C-5'), $137.3\left(\mathrm{C}-6^{\prime}\right), 56.1\left(6^{\prime}-\mathrm{OCH}_{3}\right), 151.7\left(\mathrm{C}-7^{\prime}\right), 60.6\left(7^{\prime}-\mathrm{OCH}_{3}\right), 128.5(\mathrm{C}-$ $\left.8^{\prime}\right), 122.4$ (C-8'a), 40.0 ($\left.\mathrm{C}-\alpha^{\prime}\right), 139.2$ (C-9'), 131.3 ($\left.\mathrm{C}-10^{\prime}\right)$, 121.0 ($\left.\mathrm{C}-11^{\prime}\right)$, 151.9 (C$\left.12^{\prime}\right), 122.4\left(\mathrm{C}-13^{\prime}\right), 128.1\left(\mathrm{C}-14^{\prime}\right)$.

AC 6, 3',4'-Dihydrostephasubine $94: \mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}$ (yellow amorphous)
$\mathrm{UV} \lambda \max$: 284

IR $v \operatorname{max~cm}{ }^{-1}$: 1646, 3308

Mass spectrum m/z : $593[\mathrm{M}]^{+}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta \quad: 3.54(1 \mathrm{H}, b r s, \mathrm{H}-1), 2.48\left(3 \mathrm{H}, s, N-\mathrm{CH}_{3}\right), 2.39$ $\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-3\right), 3.71\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-3\right), 2.39\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-4\right), 2.40\left(1 \mathrm{H}, s, \mathrm{H}_{\mathrm{eq}}-4\right), 6.46$
 $\left.d, J=13.2, \mathrm{H}_{\mathrm{eq}}-\alpha\right), 4.88(1 \mathrm{H}, s, \mathrm{H}-10), 3.86\left(3 \mathrm{H}, s, 12-\mathrm{OCH}_{3}\right), 6.71(2 \mathrm{H}, b r s, \mathrm{H}-13 / \mathrm{H}-$ 14), $3.60\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-3^{\prime}\right), 3.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{eq}}-4^{\prime}\right), 2.66\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-4^{\prime}\right), 2.68\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}{ }^{-}\right.$ $\left.4^{\prime}\right), 6.55\left(1 \mathrm{H}, s, \mathrm{H}-5^{\prime}\right), 3.94\left(3 \mathrm{H}, s, 6^{\prime}-\mathrm{OCH}_{3}\right), 4.50\left(1 \mathrm{H}, d, J=13.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ax}}-\alpha^{\prime}\right), 3.97$ $\left(1 \mathrm{H}, d, J=13.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{eq}}-\alpha^{\prime}\right), 7.36\left(1 \mathrm{H}, d, J=8.6 \mathrm{~Hz}, \mathrm{H}-10^{\prime}\right), 6.47(1 \mathrm{H}, d, J=2.9 \mathrm{~Hz}, \mathrm{H}-$ $\left.11^{\prime}\right), 6.74\left(1 \mathrm{H}, d d, J=8.6\right.$ and $\left.2.3 \mathrm{~Hz}, \mathrm{H}-13^{\prime}\right), 7.40\left(1 \mathrm{H}, d, J=8.6 \mathrm{~Hz}, \mathrm{H}-14^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta \quad: 63.6(\mathrm{C}-1), 43.3\left(N-\mathrm{CH}_{3}\right), 49.7(\mathrm{C}-3), 27.9(\mathrm{C}-$ 4), $130.2(\mathrm{C}-4 \mathrm{a}), 111.6(\mathrm{C}-5), 144.3(\mathrm{C}-6), 55.9\left(6-\mathrm{OCH}_{3}\right), 147.5(\mathrm{C}-7), 113.1(\mathrm{C}-8)$, 135.0 (C-8a), 38.1 (C- α), 130.2 (C-9), 116.9 (C-10), 146.3 (C-11), 149.7 (C-12), 56.2 $\left(12-\mathrm{OCH}_{3}\right), 110.6(\mathrm{C}-13), 123.2(\mathrm{C}-14), 164.6\left(\mathrm{C}-1^{\prime}\right), 46.8\left(\mathrm{C}-3^{\prime}\right), 27.0\left(\mathrm{C}-4^{\prime}\right), 135.6$ (C-4'a), 105.6 (C-5'), $132.0\left(\mathrm{C}-6^{\prime}\right), 55.8\left(6^{\prime}-\mathrm{OCH}_{3}\right), 149.3\left(\mathrm{C}-7{ }^{\prime}\right), 140.5\left(\mathrm{C}-8^{\prime}\right), 116.5$
 (C-13'), 128.3 (C-14').

AC 7, O-Methyllimacusine 95 : $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6}$ (brownish amorphous)
(4) $v^{5} \lambda^{4.450832}$ max

IR $v \max \mathrm{~cm}^{-1}$
Mass spectrum $\mathrm{m} / \mathrm{z} \quad: 622[\mathrm{M}]^{+}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta \quad: 3.48(1 \mathrm{H}, d, J=7.5 \mathrm{~Hz} \mathrm{H}-1), 2.56\left(3 \mathrm{H}, s, N-\mathrm{CH}_{3}\right)$, $2.75\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-3\right), 3.04\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-3\right), 2.65\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-4\right), 2.85\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-4\right)$, $6.45(1 \mathrm{H}, s, \mathrm{H}-5), 3.42\left(3 \mathrm{H}, s, 6-\mathrm{OCH}_{3}\right), 6.40(1 \mathrm{H}, s, \mathrm{H}-8), 2.57\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-\alpha\right), 3.11$ $\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-\alpha\right), 6.96(1 \mathrm{H}, s, \mathrm{H}-10), 3.95\left(3 \mathrm{H}, s, 12-\mathrm{OCH}_{3}\right), 6.95(1 \mathrm{H}, d, J=5.8 \mathrm{~Hz}, \mathrm{H}-$ 13), $6.65(1 \mathrm{H}, d, J=2.3 \mathrm{~Hz}, \mathrm{H}-14), 4.28\left(1 \mathrm{H}, d, J=10.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 2.56\left(3 \mathrm{H}, s, N^{\prime}-\right.$ $\left.\mathrm{CH}_{3}\right), 2.99\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-3^{\prime}\right), 3.51\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{eq}}-3^{\prime}\right), 2.73\left(1 \mathrm{H}, m, \mathrm{H}_{\mathrm{ax}}-4^{\prime}\right), 2.77(1 \mathrm{H}, m$, $\left.\mathrm{H}_{\mathrm{eq}}-4^{\prime}\right), 6.39\left(1 \mathrm{H}, s, \mathrm{H}-5^{\prime}\right), 3.76\left(3 \mathrm{H}, s, 6^{\prime}-\mathrm{OCH}_{3}\right), 3.01\left(3 \mathrm{H}, s, 7^{\prime}-\mathrm{OCH}_{3}\right), 2.83(1 \mathrm{H}, m$, $\left.\mathrm{H}_{\mathrm{ax}}-\alpha^{\prime}\right), 3.32\left(1 \mathrm{H}, d, J=11.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{eq}}-\alpha^{\prime}\right), 6.80\left(1 \mathrm{H}, d, J=7.5 \mathrm{~Hz}, \mathrm{H}-10^{\prime}\right), 6.81(1 \mathrm{H}, d$,
 14^{\prime}).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta \quad: 65.5(\mathrm{C}-1), 42.2\left(\mathrm{~N}-\mathrm{CH}_{3}\right), 46.5(\mathrm{C}-3), 26.3(\mathrm{C}-4)$, 127.5 (C-4a), 112.5 (C-5), 148.6 (C-6), $55.4\left(6-\mathrm{OCH}_{3}\right), 144.6(\mathrm{C}-7), 120.6(\mathrm{C}-8)$, 131.0 (C-8a), 40.7 (C- α), 134.0 (C-9), 133.6 (C-10), 148.7 (C-11), 149.4 (C-12), 56.3 $\left(12-\mathrm{OCH}_{3}\right), 112.9(\mathrm{C}-13), 120.3(\mathrm{C}-14), 60.5\left(\mathrm{C}-1{ }^{\prime}\right), 41.5\left(N^{\prime}-\mathrm{CH}_{3}\right), 44.2\left(\mathrm{C}-3^{\prime}\right), 22.9$ (C-4'), 127.5(C-4'a), 106.8 (C-5'), 152.2 (C-6'), $55.8\left(6^{\prime}-\mathrm{OCH}_{3}\right), 138.1$ (C-7'), 59.8 $\left(7^{\prime}-\mathrm{OCH}_{3}\right), 148.8\left(\mathrm{C}-88^{\prime}\right), 135.5\left(\mathrm{C}-8^{\prime} \mathrm{a}\right), 43.8\left(\mathrm{C}-\alpha^{\prime}\right), 136.0\left(\mathrm{C}-9^{\prime}\right), 131.7\left(\mathrm{C}-10^{\prime}\right), 120.4$ (C-11'), 155.6 (C-12'), $122.0\left(\mathrm{C}-13{ }^{\prime}\right), 130.3\left(\mathrm{C}-14^{\prime}\right)$.

CHAPTER 4

RESULTS AND DISCUSSION

4.0 Introduction

The extraction and isolation of the bark of Alseodaphne peduncularis (Wall. ex Nees) Meisn and Alseodaphne corneri Kosterm yielded two types of isoquinoline alkaloids. There are aporphine and bisbenzylisoquinoline alkaloids. The isolation process and the spectral data of alkaloids isolated had previously explained in chapter 3. The structural elucidations were done by several spectroscopic methods such as NMR, UV, IR, MS and also confirmation by comparison with previous works.

4.1 Isolation of Alseodaphne peduncularis (Wall. ex Nees) Meisn

The sample (4.8 kg) was collected in Kluang-Mersing, Johor and was identified by Herbarium group of Chemistry Department of Universiti of Malaya. Extraction and further isolation process yielded four aporphine alkaloids. There are boldine 69, norpredicentrine 90 and norlirioferine 91 and norboldine 78.

4.1.1 AP 1, Boldine 69

69

Alkaloid AP 1 (10.8 mg) was isolated as brownish amorphous. The UV spectrum showed absorption at 282 and 302 nm suggested 1,2,9,10-tetrasubstituted aporphine skeleton (Sangster \& Stuart, 1965). The IR spectrum gave a broad band and showed absorption at $3280 \mathrm{~cm}^{-1}$ due to the presence of a highly conjugated hydroxyl group and strong absorption at $2945 \mathrm{~cm}^{-1}$ due to the stretching of CH aromatic (Williams \& Fleming, 1989). The molecular ion peak was observed at $\mathrm{m} / \mathrm{z} 327$ giving the possibility of molecular formula of $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$. The base peak at $\mathrm{m} / \mathrm{z} 326[\mathrm{M}-1]^{+}$
f
Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil ShahPustakaTBainun

The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 4.1) displayed two singlet peaks at $\delta 3.59$ and
 group at $\mathrm{C}-1$ is more shielded due to the anisotropic effect of ring D (Kanokmedhakul, S., Kanokmedhakul, K., Yodbuddee \& Phonkerd, 2003). The N methyl group resonated at $\delta 2.58$ as a singlet. Another three singlets appeared at downfield region corresponding to three aromatic protons at $\delta 6.64,6.82$ and 7.89 attributed to $\mathrm{H}-3, \mathrm{H}-8$ and $\mathrm{H}-11$, respectively. $\mathrm{H}-11$ was found more deshielded due to the anistropic effect caused by the ring A. The aliphatic protons appeared as multiplets at region δ 2.60-3.16 (Omar et al., 2013).

The ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 4.2) of AP 1 showed the presence of nineteen peaks corresponding to nineteen carbons. There are three methyls, three methylenes, (40ur methines) and k nine quaternary parbonth signals. The signals of three methyls carbons were observed at $\delta 43.5,56.2$ and 60.4 corresponding to $\mathrm{N}-\mathrm{CH}_{3}, 10-\mathrm{OCH}_{3}$ and 1- OCH_{3}, respectively. In addition, three methylenes carbons resonated at $\delta 28.5$, 33.9 and 53.3 attributed to C-4, C-7 and C-5. The signal for C-6a appeared at $\delta 62.5$ while three methines signals of C-3, C-8 and C-11 appeared at $\delta 113.3,114.3$ and 110.2. Finally, nine quaternary carbon signals deshielded to downfield region due to diamagnetic anisotropy effects at δ 123.6, 126.1, 129.5, 129.8, 142.2, 145.2, 145.7 and 148.3 were attributed to (C-11a), (C-1a/C-1b), (C-3a), (C-7a), (C-1), (C-9), (C10) and (C-2), respectively.

The COSY spectrum (Figure 4.3) showed correlation of aliphatic protons between $\mathrm{H}-4 / \mathrm{H}-5$ and $\mathrm{H}-7 / \mathrm{H}-7$. The ${ }^{1}{ }^{1} \mathrm{H}^{13} \mathrm{C}_{\text {direct }}$ direcrelations are shown in HMQC spectrum in Figure 4.4

Furthermore, the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long range correlations were determined by HMBC

 between $\mathrm{H}-3$ with $\mathrm{C}-1, \mathrm{C}-1 \mathrm{~b}$ and $\mathrm{C}-2$ while $\mathrm{H}-8$ with $\mathrm{C}-7, \mathrm{C}-10$ and $\mathrm{C}-11 \mathrm{a}$, respectively. The selected COSY and HMBC correlations are illustrated in Figure 4.6.

The complete NMR spectral data of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{HMQC}$ and HMBC of AP 1 are summarized in Table 4.1 while the comparison of the spectral data with literature values are tabulated in Table 4.2 and 4.3.

The comparison between the observed data and literature value (Table 4.3) confirmed that alkaloid AP 1 is boldine 69 (Johns, Lamberton \& Sioumis, 1969; Mukhtar, 1996; Guinaudeau, Leboeuf \& Cave, 1979).
(3) pustaka.upsi.edu.my

F Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun 1-OCH 3

11

${ }^{10.0 \mathrm{OCH}}$

Figure 4.2. ${ }^{13} \mathrm{C}$ NMR spectrum of AP 1 .
(C) 05-4506832 \qquad

Figure 4.3. COSY spectrum of AP 1 .pustakaan Tuanku Bainun
05-4506832 pustaka.upsi.edu.my Kampus Sultan Abdul Jalil ShahPustakaTBainun

Figure 4.4. HMQC spectrum of AP 1.

Figure 4.6. Selected COSY and HMBC correlation in AP 1.

Table 4.1
1D $\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ and 2D (HMQC and HMBC) NMR Spectral Data of AP 1

Table 4.2
(.) 05-4506832
(\%) pustaka.upsi.edu.my

- Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun
©
ptbupsi
${ }^{1}$ H NMR Spectral Data of AP 1 and Boldine 69

Positions	${ }^{1} \mathrm{H} \mathrm{CDCl}_{3}(\mathrm{~Hz})$	
	AP 1	Boldine (Mukhtar, 1996)
3	6.64 (s)	6.63 (s)
$\left.\begin{array}{l}4 \\ 5\end{array}\right\}$		
$\left.\begin{array}{c} 6 a \\ 7 \end{array}\right\}$	2.64-3.16 (m)	2.58-3.20 (m)
8	6.82 (s)	6.83 (s)
11	7.89 (s)	7.89 (s)
$1-\mathrm{OCH}_{3}$	3.59 (s)	3.60 (s)
$10-\mathrm{OCH}_{3}$	3.91 (s)	3.91 (s)
$\mathrm{N}-\mathrm{CH}_{3}$	2.58 (s)	2.52 (s)

Table 4.3

4.1.2 AP 2, Norpredicentrine 90

(.) 05-4506832
(3) pustaka.upsi.edu.m

F Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

5 PustakaTBainun
$)^{-}$
ptbupsi

90

Alkaloid AP $2(3.8 \mathrm{mg})$ was obtained as brownish amorphous. Its molecular formula was assigned as $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$ as the EIMS data showed the presence of ion peak at m / z (6) 05 -4506832 pustaka.upsi.edu.my f Perpustakan Tuanku Bainu ${ }^{2}$ PustakaTBainun ${ }^{\circ} \mathrm{O}$ ptbupsi 327 relevant to the formula assigned. The UV spectrum showed maxima absorption at 217, 281 and 301 nm , indicating the presence of an aporphine substituted at position 1,2,9 and 10 (Sangster \& Stuart, 1965). The IR spectrum showed broad band between 3000 to $3500 \mathrm{~cm}^{-1}$ due to the presence of OH and NH functional groups in AP 2 (Pretsch, Bühlmann \& Affolter, 2000).

The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 4.7) of AP 2 have similar pattern with AP 1 , thus predicted to be aporphine skeleton structure. Its showed three singlets of aromatic protons at $\delta 6.68,6.78$ and 7.94 and were assigned to three aromatic protons of $\mathrm{H}-3, \mathrm{H}-8$ and $\mathrm{H}-11$, respectively. A singlet at $\delta 3.61$ corresponding to a methoxyl group at position C-1 and another two methoxyl groups signals were overlapping with

aliphatic protons appeared as multiplets at the region δ 2.75-3.09. The COSY

The ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 4.9) gave a total of nineteen carbon signals. The aromatic carbons of C-3, C-8 and C-11 resonated at $\delta 113.8,111.1$ and 110.7, respectively. Three methoxyl carbons appeared at $\delta 56.0,56.1$ and 60.5 belongs to $9-$ $\mathrm{OCH}_{3}, 10-\mathrm{OCH}_{3}$ and 1- OCH_{3}. Another four aliphatic carbon signals of C-4, C-5, C-6a and C-7 resonated at $\delta 27.8,42.7,53.6$ and 35.7. Finally, the other nine quarternary carbons appeared at downfield region at $\delta 123.9,125.4,125.7,128.3,129.1,142.4$, 148.0, 148.5 and 148.8 assignable to C-7a, C-1a, C-3a, C-11a, C-1b, C-1, C-10, C-9 and C-2, respectively as the diamagnetic anisotropy effect increases in the benzene rings.

Direct correlations between carbon and hydrogen can be seen in HMQC spectrum in Figure 4.10. The HMBC spectrum can be seen in Figure 4.11. The HMBC spectrum showed cross peaks of $\mathrm{H}-3$ with $\mathrm{C}-1, \mathrm{C}-1 \mathrm{a}, \mathrm{C}-2$ and $\mathrm{C}-4 ; \mathrm{H}-11$ with $\mathrm{C}-1 \mathrm{a}, \mathrm{C}-7 \mathrm{a}, \mathrm{C}-10$; and $\mathrm{H}-6 \mathrm{a}$ with C-7. The selected COSY and HMBC correlations are illustrated in Figure 4.12, further confirmed the structure of AP 2.

The 1D $\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ and 2D (HMQC and HMBC) NMR spectral data of AP 2 are tabulated in Table 4.4. Analysis of the spectroscopic data obtained and comparison with literature values (Table 4.5) alkaloid AP 2 was identified as norpredicentrine 90 which previously isolated from Guatteria (Hocquemiuer,

©

9,10-OCH3
$1-\mathrm{OCH}_{3}$

Figure 4.7. ${ }^{1} \mathrm{H}$ NMR spectrum of AP 2.

Figure 4.8. COSY spectrum of AP 2.
05-4506832

P
Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil ShahPustakaTBainun
©
ptbupsi

Figure 4.9. ${ }^{13} \mathrm{C}$ NMR spectrum of AP 2.

Figure 4.10. HMQC spectrum of AP 2.05-4506832
pustaka.upsi.edu.my
-
Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Figure 4.11. HMBC spectrum of AP 2.
(C) 05-4506832 \square Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil ShahPustakaTBainun

$\longrightarrow \mathrm{J}_{2}$ Correlations
Figure 4.12. Selected COSY and HMBC correlation in AP 2.05-4506832
pustaka.upsi.edu.my
f
Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil Shah \square

Table 4.4

Position	$\begin{gathered} { }^{\mathrm{T}} \mathrm{H} \\ \mathrm{CDCl}_{3}(J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C} \\ \left(\delta, \mathrm{CDCl}_{3}\right) \end{gathered}$	HMQC	HMBC
1		142.4		
1a		125.4		
1 b		129.1		
2		148.8		
3	6.68 (s)	113.8	H_{3}	1,1a,2,4
3a		125.7		
4	$\begin{gathered} 2.75(d, 14.9) \\ 3.07(m) \end{gathered}$	27.8	H_{4}	1b,3
5	$\begin{gathered} 3.09(m) \\ 3.49(\mathrm{~s}) \end{gathered}$	42.7	H_{5}	1b,4,6a
6a	3.96 (br s)	53.6	$\mathrm{H}_{6 \mathrm{a}}$	7
7	2.93 (m)	35.7	H_{7}	1b,6a,7a,8
7 a		123.9		
8	6.78 (s)	111.1	H_{8}	7,10,11a
9		148.5		
10		148.0		
11	7.94 (s)	110.7	H_{11}	1a,7a,10
11a		128.3		
(c) $05.150 \mathrm{OCH}_{3}$	ka.ups 3.61 , (s) f		- $3 \mathrm{H}_{4 \times \text { оенз }}$	(1) pioulsi
9-OCH3	3.91 (s)	56.0	$3 \mathrm{H}_{9}$ - ОСС ${ }_{3}$	9
$\underline{10-\mathrm{OCH}_{3}}$	3.91 (s)	56.1	$3 \mathrm{H}_{10-\mathrm{OCH}}$	10

Table 4.5
${ }^{1} H$ NMR Data of AP 2 and Norpredicentrine 90

Position	${ }^{1} \mathrm{H} \mathrm{CDCl}_{3}(J, \mathrm{~Hz})$	
	AP 2 (H)	Norpredicentrine ocquemiuer et al., 1983)
3	6.68 (s)	6.64
4	2.75 (d, 14.9)	*
	3.07 (m)	
5	3.09 (m)	*
	3.49 (s)	
6a	3.96 (br s)	*
7	2.93 (m)	*
8	6.78 (s)	6.73
11	7.94 (s)	8.06
$1-\mathrm{OCH}_{3}$	3.61 (s)	3.60
(0) 05 -45068.9-OCH ${ }_{3}$ ustaka.upsi.edu.my		5 pust3.86 un - ${ }^{\text {o p ptupsi }}$
10-OCH	$3.91(s)$	3.86

Note. ${ }^{*}=$ not available

4.1.3 AP 3, Norlirioferine 91

(0) 05-4506832
(5) pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

5 PustakaTBainun
ptbupsi

91
Alkaloid AP 3 (9.5 mg) was obtained as a dark brown amorphous. The UV spectrum showed absorption bands at 220, 280 and 302 nm , thus suggesting a 1,2,9,10tetrasubstituted aporphine skeleton (Sangster \& Stuart, 1965). Moreover, the IR
 spectrum exhibited the presence of a highly conjugated hydroxyl group at $3453 \mathrm{~cm}^{-1}$. Its also showed strong absorption at $1642 \mathrm{~cm}^{-1}$ due to the presence of aromatic rings (Pretsch et al., 2000). The EIMS data revealed a molecular ion peak at m/z 327 suggesting the molecular formula of $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 4.13) displayed two singlets at $\delta 3.66(3 \mathrm{H})$ and $3.88(6 \mathrm{H})$ that overlapping attributed to the three methoxyl groups at $\mathrm{C}-2, \mathrm{C}-9$ and C 1 , respectively. At the downfield region, three singlets assigned to the aromatic protons of H-3 ($\delta 6.59$), $\mathrm{H}-8(\delta 6.78)$ and $\mathrm{H}-11(\delta 8.07)$. This observation proved that $\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-9$ and $\mathrm{C}-10$ are substituted. From the prior observation and comparison with the literature value, confirmed the aromatic ring A and D are substituted by
 aromatic protons to the lower region. Three sets of methylene protons of $\mathrm{H}-4, \mathrm{H}-5$ and

H-7 appeared as multiplet at $\delta 2.73-3.43$ as appeared in ring B and C. A broad singlet
 showed cross-peak between $\mathrm{H} 4 / \mathrm{H} 5$ and $\mathrm{H} 6 \mathrm{a} / \mathrm{H} 7$.

The ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 4.15) exhibited nineteen carbons equal to the structure proposed. From the ${ }^{13} \mathrm{C}$ NMR data together with ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlation observed in the HMQC experiment (Figure 4.16) indicated the presence of nine quaternary carbons. The other signals were assigned to three aromatic carbons of C-3 ($\delta 110.8$), C-8 ($\delta 114.1$) and C-11 (δ 111.4). Three methylene carbons were observed at $\delta 28.8$ (C-4), 36.2 (C-5) and 42.9 (C-7). Another three carbons signals at $\delta 55.9,56.1$ and 60.3 are belongs to $2-\mathrm{OCH}_{3}, 9-\mathrm{OCH}_{3}$ and $1-\mathrm{OCH}_{3}$, respectively.
 correlations in the HMBC spectrum (Figure 4.17). The position of methoxy groups were further confirmed due to cross peaks between $1-\mathrm{OCH}_{3}$ with $\mathrm{C}-1\left(\begin{array}{l}\text { 144.4); }\end{array}\right.$ 2- OCH_{3} with $\mathrm{C}-2$; and $9-\mathrm{OCH}_{3}$ with $\mathrm{C}-9$, respectively.

The other selected COSY and HMBC correlations are illustrated in Figure 4.18. The NMR spectral data (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{HMQC}$ and HMBC$)$ are tabulated in Table 4.6. Comparison of the spectral data with the literature values (Table 4.7 and 4.8) confirmed the alkaloid AP 3 is norlirioferine 91 (Castedo, Saá, Suau \& Villaverde, 1980; Castro et al., 1985).
C

$\mathbf{2 , 9 - O C H} 3$

$\mathbf{1 -} \mathrm{OCH}_{3}$

Figure 4.13. ${ }^{1} \mathrm{H}$ NMR spectrum of AP 3.
(C) 05-4506832
(7) pustaka.upsi.edu.my
0° ptbupsi 2, $9-\mathrm{OCH}_{3}$

(C) $05-4506832$

Figure 4.14. COSY spectrum of AP 3 .
©

3

150.0
140.0

1300
Figure 4.15: ${ }^{13} \mathrm{C}$ NMR spectrum of AP 3.

Q.05-4506832 $=$ Perpustakaan Tuanku Bainun

Figure 4.16. HMQC spectrum of AP3us Sultan Abdul Jalil ShahPustakaTBainun
0°
ptbupsi

Figure 4.17. HMBC spectrum of AP 3.
(C) 05-4506832
pustaka.upsi.edu.my
f Perpustakaan Tuanku BainunPustakaTBainun

COSY
$\longrightarrow \mathrm{J}_{2}$ Correlations
$\longrightarrow \mathrm{J}_{3}$ Correlations

Table 4.6

Position	$\begin{gathered} { }^{\mathrm{I}} \mathrm{H} \\ \mathrm{CDCl}_{3}(J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C} \\ \left(\delta, \mathrm{CDCl}_{3}\right) \end{gathered}$	HMQC	HMBC
1		144.4		
1 a		126.9		
1 b		127.2		
2		152.3		
3	6.59 (s)	110.8	H_{3}	1,1a,2,4
3 a		128.7		
4	$\begin{aligned} & 2.73(\mathrm{~m}) \\ & 3.05(\mathrm{~m}) \end{aligned}$	28.8	H_{4}	1b,3,6a
5	$\begin{gathered} 3.05(\mathrm{~m}) \\ 3.43(d, 8.6) \end{gathered}$	42.9	H_{5}	3a,4,6a
6a	3.85 (br s)	53.7	$\mathrm{H}_{6 \mathrm{a}}$	
7	2.79 (m)	36.2	H_{7}	1a,6a,7a, $8,11 \mathrm{a}$
7 a		129.5		
8	6.78 (s)	114.1	H_{8}	7,9,11a
9		145.5		
10		145.1		
11	8.07 (s)	111.4	H_{11}	1a,10,11a
11a		123.9		
(c) $0_{5} \cdot 11_{5} \mathrm{OCHH}_{3} \mathrm{O}$	pustaka.up 3.66 (s) f	Perpustak a 60.3 gru Bainn Kampus	${ }^{3 H_{1+O C H 3 B a i n u ~}}$	(0) pillupsi
2--2CH3	3.88 (s)	Kampus 55.9	$3 \mathrm{H}_{2 \text { - } \mathrm{OCH}_{3}}$	2
9-OCH3	3.88 (s)	56.1	$3 \mathrm{H}_{9}$ - OCH_{3}	9

Table 4.7
${ }^{1}$ H NMR Data of AP 3 and Norlirioferine 91

	${ }^{\mathrm{I}} \mathrm{H}$ $\mathrm{CDCl}_{3}(J, \mathrm{~Hz})$	
Position	AP 3	Norlirioferine (Castedo et al., 1980)
3	$6.59(s)$	$6.55(s)$
8	$6.78(s)$	$6.69(s)$
11	$8.07(s)$	$7.99(s)$
$1-\mathrm{OCH}_{3}$	$3.66(s)$	$3.66(s)$
$2-\mathrm{OCH}_{3}$	$3.88(s)$	$3.89(s)$
$9-\mathrm{OCH}_{3}$	$3.88(s)$	$3.85(s)$

pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil Shah

Table 4.8

0°
ptbupsi

Position	${ }^{13} \mathrm{C}\left(8, \mathrm{CDCl}_{3}\right)$	
	AP 3	Norlirioferine (Castro et al., 1985)
1	144.4	144.1
1a	126.9	126.6
1 b	127.2	127.9
2	152.3	151.9
3	110.8	110.7
3 a	128.7	128.8
4	28.8	29.2
5	42.9	43.1
6a	53.7	53.8
7	36.2	36.7
7 a	129.5	129.7
8	114.1	111.3
9	145.5	145.2
10	145.1	144.9
11	111.4	114.0
11a	123.9	123.7
- $1-\mathrm{OCH}_{3}$	60.3	60.1 -
(C) $05-450682-\mathrm{OCHH}_{3}{ }^{\text {pustaka.upsi.edu. my }}$	f 55.959 .9 suatran Abdual dailis hah	
9-0CH	56.1	56.0

4.1.4 AP 4, Norboldine 78

(C) $05-4506832$ pustaka.upsi.edu.my
f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

1) PustakaTBainun
ptbupsi

78

Alkaloid AP 4 (12.6 mg) was obtained as a brownish amorphous solid. The UV spectrum showed absorption band at 216, 282 and 302 nm due to the degree of Cesonance in the biphenyl system thatexisted in ring A and ring D. Thus suggesting the characteristic of 1,2,9,10-tetrasubstituted aporphine (Goodwin, Shooley \& Johnson, 1958). The EIMS spectrum revealed base peak at $\mathrm{m} / \mathrm{z} 312$ indicated the loss of proton. Another peak at $\mathrm{m} / \mathrm{z} 313$ showed the molecular formula of $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4}$. The IR spectrum showed broad band at $3300 \mathrm{~cm}^{-1}$ due to the presence of NH functional groups in this compound (Williams \& Fleming, 1989).

The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 4.19) data were somewhat similar to AP 1 except the absence of $\mathrm{N}-\mathrm{CH}_{3}$ group in AP 4. Two signals appeared as singlets at δ 3.61 and 3.91. Its showed the presence of two methoxyls groups attached to $\mathrm{C}-1$ and $\mathrm{C}-10$ at ring A and ring D . Three singlets corresponding to three aromatic protons
 respectively. Proton of $\mathrm{H}-11$ is more deshielded due to the anisotropic effect caused
by the ring A. The COSY spectrum (Figure 4.20) showed the exact position of
 aliphatic protons between $\mathrm{H} 4 / \mathrm{H} 5{ }^{\text {Kand }}{ }^{5} \mathrm{H} 6 \mathrm{a} / \mathrm{H} 7$? . The aliphatic protons appeared as multiplets at δ 2.65-3.76 (Kanokmedhakul et al., 2003).

The ${ }^{13}$ C NMR spectrum (Figure 4.21) established eighteen signals which nine of the signals belongs to nine quarternary carbons. The methoxyl carbons were observed at $\delta 56.2$ (C-10) and 60.4 (C-1) meanwhile three methylene carbons appeared at $\delta 29.1$ (C-4), 36.8 (C-7) and 43.3 (C-5). The other signals representing four methines of C-3 ($\delta 113.7$), C-6a ($\delta 53.8$), C-8 ($\delta 114.2$) and C-11 ($\delta 110.2$).

The HMQC and HMBC spectrum of alkaloid AP 4 are shown in Figure 4.22 and Figure 4.23. The HMBC spectrum revealed cross peaks between $1-\mathrm{OCH}_{3} / \mathrm{C}-1$ and
 HMBC correlations can be seen in Figure 4.24.

The NMR spectral data of AP 4 are shown in Table 4.9. Finally, the alkaloid AP 4 was confirmed to be norboldine $\mathbf{7 8}$ by comparison of its spectral data with the literature values in Table 4.10 (Mukhtar, 1996; Zahari, 2010).
(

Figure 4.19. ${ }^{1} \mathrm{H}$ NMR spectrum of AP 4.

Figure 4.20. COSY spectrum of AP 4.
(C) 05-4506832
pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil ShahPustakaTBainun
0
ptbupsi

Figure 4.21. ${ }^{13} \mathrm{C}$ NMR Spectrum of AP 4.

Figure 4.22. HMQC spectrum of AP 4.05-4506832
pustaka.upsi.edu.myPerpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil ShahPustakaTBainun

Figure 4.23. HMBC spectrum of AP 4.
(C) 05-4506832
pustaka.upsi.edu.my
F Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

$\longrightarrow \begin{aligned} & \longrightarrow \\ & \longrightarrow \\ & \mathrm{J}_{2} \text { Correlations } \\ & \mathrm{J}_{3} \text { Correlations }\end{aligned}$

Table 4.9

Position	$\begin{gathered} \stackrel{\mathrm{I}}{\mathrm{H}} \\ \mathrm{CDCl}_{3}(J, \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C} \\ \left(\delta, \mathrm{CDCl}_{3}\right) \end{gathered}$	HMQC	HMBC
1		141.9		
1a		125.6		
1 b		128.1		
2		148.1		
3	6.65 (s)	113.7	H_{3}	1,1b,4
3 a		130.2		
4	$\begin{aligned} & 2.96(m) \\ & 2.67(m) \end{aligned}$	29.1	H_{4}	1b,3,5
5	$\begin{gathered} 3.33(m) \\ 3.00(d d, 12.3,3.5) \end{gathered}$	43.3	H_{5}	3a,4,6a
6a	3.77 (dd, 13.8, 4.6)	53.8	$\mathrm{H}_{6 \mathrm{a}}$	1b,7
7	$\begin{gathered} 2.65(\mathrm{~m}) \\ 2.72(d d, 14.3,4.6) \end{gathered}$	36.8	H_{7}	1b,6a,7a,11a
7 a		130.1		
8	6.81 (s)	114.2	H_{8}	7,9,11a
9		145.1		
10		145.6		
11	7.91 (s)	110.2	H_{11}	1a,7a, 10
(6) 05.45 d da	(2) pustaka.upsi.edu.my f Perputakarn 123.28 Ramus ainun		5 PustakatBainu	${ }^{(1)}$ prtupsi
$1-\mathrm{OCH}_{3}$	$3.61(s)$	60.4	$3 \mathrm{H}_{1-\mathrm{OCH}}$	1
$10-\mathrm{OCH}_{3}$	3.91 (s)	56.2	$3 \mathrm{H}_{10-\mathrm{OCH}}$	10

Table 4.10
${ }^{1} H$ NMR Data of AP 4 and Norboldine 78

Position	${ }^{1} \mathrm{H} \mathrm{CDCl}_{3}(J, \mathrm{~Hz})$		
	AP 4	Norboldine (Zahari, 2010)	Norboldine (Mukhtar, 1996)
34	6.65 (s)	6.60 (s)	6.65 (s)
	2.96 (m)	2.60 (m)	
	2.67 (m)	2.90 (m)	
5	3.33 (m)	2.95 (m)	\} 2.80-3.20
	3.00 (dd)	3.31 (m)	
6 a	3.77 (dd)	3.74 (dd))
7	2.65 (m)	2.68 (m)	
	2.72 (dd)		
(6) $05-45086$	6.81 (s)	6.73 (s)	
	(3) pustaka.usi.7.91y (s) f		
$1-\mathrm{OCH}_{3}$	3.61 (s)	3.58 (s)	3.60 (s)
$10-\mathrm{OCH}_{3}$	$3.91(s)$	3.85 (s)	3.80 (s)

4.2 Isolation of Alseodaphne corneri Kosterm

(6) 05-4506832 pustaka.upsi.edu.my $F \begin{aligned} & \text { Perpustakaan Tuanku Bainun } \\ & \text { Kampus Sultan Abdul Jalil Shah }\end{aligned}$ PustakaTBainun ${ }^{(1)}$ ptbupsi

The roots of Alseodaphne corneri $(3.0 \mathrm{~kg})$ was collected in University of Malaya and going through further extraction and isolation process by various chromatographic techniques. The structural elucidation yielded two aporphines; laetanine $\mathbf{3 0}$ and boldine 69 and five bisbenzylisoquinoline alkaloids; gyrolidine 47, stephasubine 92, 2-norobaberine 93, 3',4'-dihydrostephasubine 94 and O-methyllimacusine 95.

4.2.1 AC 1, Laetanine 30

(e) 05-4506832

30

Alkaloid AC $1(5.3 \mathrm{mg})$ was obtained as a dark brownish amorphous solid which showed positive result on Dragendroff's tests. Its UV spectrum showed absorption band at 282 nm suggested 1,2,9,10-tetrasubstituted aporphine skeleton (Sangster \& Stuart, 1965). The IR spectrum showed broad band between 3000 to $3500 \mathrm{~cm}^{-1}$ due to Che presence of OH^{k} and NH functional groups in the ${ }_{h}$ structure k Its also showeds strong absorption at $1015 \mathrm{~cm}^{-1}$ due to stretching of C-N (amine) group (Williams \& Fleming,
1989). The EIMS spectrum exhibited ion peak at $\mathrm{m} / \mathrm{z} 313$ relevant with suggested

The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 4.25) showed two singlets at $\delta 3.59$ and 3.88 proving the existence of two methoxyl groups at $\mathrm{C}-1$ and $\mathrm{C}-9$ at ring A and ring D . Only three aromatic singlet protons were observed and confirmed to be H-3, H-8 and $\mathrm{H}-11$ at $\delta 6.62,6.78$ and 7.89. This observation indicated that ring A and ring D were di-substituted with hydroxyl and methoxyl groups. In addition, the downfield shift of $\mathrm{H}-3$ and $\mathrm{H}-11$ protons had proved that the OH groups are located at $\mathrm{C}-2$ and $\mathrm{C}-10$ positions, respectively. The aliphatic protons of $\mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}$ and $\mathrm{H}-7$ resonated as multiplets at δ 2.68-3.81. The COSY spectrum (Figure 4.26) showed cross-peak between $\mathrm{H} 4 / \mathrm{H} 5$ and $\mathrm{H} 6 \mathrm{a} / \mathrm{H} 7$.

The ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 4.27) showed presence of eighteen carbons in the molecule and showed two peaks at $\delta 56.2$ and 60.3 belongs to $9-\mathrm{OCH}_{3}$ and 1OCH_{3}, respectively. In addition, a signal at $\delta 53.6$ was attributable to C-6a. Another three methylene carbons were resonated at $\delta 28.1,35.9$ and 42.8 may assigned to C-4, $\mathrm{C}-7$ and C-5. Carbons in the aromatic region (C-3, C-8 and C-11) were resonated at $\delta 113.8,114.4$ and 110.5 , respectively.

The HMQC spectrum of AC 1 was shown in Figure 4.28. The structure of AC 1 was further confirmed by the HMBC experiment as shown in Figure 4.29. The correlations between $1-\mathrm{OCH}_{3} / \mathrm{C}-1$ and $9-\mathrm{OCH}_{3} / \mathrm{C}-9$ were observed and further Confirmed the position of the methoxyl groups in in the molecule. The spectrum also
showed cross peaks of $\mathrm{H}-3$ with $\mathrm{C}-1, \mathrm{C}-1 \mathrm{~b}, \mathrm{C}-2$ and $\mathrm{C}-4$; $\mathrm{H}-4$ with $\mathrm{C}-3$ and $\mathrm{C}-3 \mathrm{a}$; and

(1) PustakaTBainun
${ }^{\circ}$ ptbupsi

Complete spectral data of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HMQC and HMBC are tabulated in Table 4.11. moreover, Table 4.12 shows the comparison of those spectral data with the literature of laetanine $\mathbf{3 0}$ that previously isolated from Phoebe tavoyana and Litsea laeta (Omar, 2009; Borthakur \& Rastogi, 1979).
(1)

Figure 4.25. ${ }^{1} \mathrm{H}$ NMR spectrum of AC 1.

Figure 4.26. COSY spectrum of AC 1.
(C) $05-4506832$
(2) pustaka.upsi.edu.my \& Perpustakaan Tuanku BainunPustakaTBainun

Figure 4.27. ${ }^{13} \mathrm{C}$ NMR spectrum of AC 1.

Figure 4.28. HMQC spectrum of AC 1.

PustakaTBainun

Figure 4.30. Selected COSY and HMBC correlation in AC 1.

Table 4.11

Position	$\begin{gathered} { }^{\mathrm{I}} \mathrm{H} \\ \mathrm{CDCl}_{3}(\mathrm{~J}, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} { }^{\mathrm{T} 3} \mathrm{C} \\ \left(\delta, \mathrm{CDCl}_{3}\right) \end{gathered}$	HMQC	HMBC
1		142.3		
1a		126.1		
1 b		125.9		
2		148.6		
3	6.62 (s)	113.8	H_{3}	1,1b,2,4
3 a		129.3		
4	$\begin{gathered} 2.68(m) \\ 2.97(s) \end{gathered}$	28.1	H_{4}	3,3a
5	$\begin{aligned} & 2.99(s) \\ & 3.39(m) \end{aligned}$	42.8	H_{5}	3a,4,6a
6a	3.81 (dd, 11.1, 5.8)	53.6	$\mathrm{H}_{6 \mathrm{a}}$	1 b
7	$\begin{gathered} 2.68(m) \\ 2.77(d d, 15.5,5.2) \end{gathered}$	35.9	H_{7}	1a,6a,7a,8,11a
7 a		129.3		
8	6.78 (s)	114.4	H_{8}	7,9,11a
9		145.9		
10		145.3		
11	7.89 (s)	110.5	H_{11}	7a,10,11a
11a		123.5		
(2) $01-\mathrm{OCH}_{3}$	(3) pustaka.up $3.59 \mathrm{~m}(s) \nmid \begin{aligned} & \text { Pervin } \\ & \text { Kan }\end{aligned}$	suman 6 dea ${ }^{\text {Brinun }}$		(0) ptblosi
9-OCH3	3.88 (s)	56.2	$3 \mathrm{H}_{9-\mathrm{OCH}}$	9

Table 4.12

Position	${ }^{1} \mathrm{H} \mathrm{CDCl}_{3}(\mathrm{~J}, \mathrm{~Hz})$		
	AC 1	Laetanine (Omar, 2009)	Laetanine (Borthakur \& Rastogi, 1979)
3	6.62 (s)	6.56 (s)	6.65 (s)
4	2.68 (m)	2.67 (m)	*
	2.97 (s)	2.96 (m)	*
5	2.99 (s)	2.94 (m)	*
	3.39 (m)	3.32 (m)	*
6a	3.81 (dd)	3.77 (dd)	4.15 (dd)
7	2.68 (m)	2.62 (dd)	*
	2.77 (dd)	2.75 (dd)	
8	6.78 (s)	6.71 (s)	6.77 (s)
11	7.89 (s)	7.87 (s)	7.91 (s)
$1-\mathrm{OCH}_{3}$	3.59 (s)	3.54 (s)	3.60 (s)
$9-\mathrm{OCH}_{3}$	3.88 (s)	3.83 (s)	3.80 (s)

Note. ${ }^{*}=$ not available

4.2.2 AC 2, Boldine 69

Alkaloid AC $2(10.2 \mathrm{mg})$ was isolated as brownish amorphous and the UV spectrum revealed absorption at 282 and 303 nm giving possible skeleton of 1,2,9,10tetrasubstituted aporphine (Sangster \& Stuart, 1965). The IR spectrum showed absorption at $3450 \mathrm{~cm}^{-1}$ due to the presence of conjugated hydroxyl group in the compound. AC 2 was confirmed to be boldine $\mathbf{6 9}$ after detailed analysis on the NMR spectrum obtained. The NMR spectral data of AC 2 was similar to AP 1 that also previously reported as boldine 69 (page 63).

Please refer 4.1.1 for further explanation on the structural elucidation.
pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil Shah

4.2.3 AC 3, Gyrolidine 47

(C) 05-4508832

f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

5 PustakaTBainun
(1)
ptbupsi

47

Alkaloid AC 3 (4.2 mg) was obtained as yellow amorphous solid. The EIMS spectrum showed existence of molecular ion peak at $\mathrm{m} / \mathrm{z} 622$ approved the suggested molecular formula of $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6}$. The Perpustakan tuanku barum displayed maximum absorption at 283 nm while the IR spectrum revealed absorption bands due to phenyl ether groups ($1012 \mathrm{~cm}^{-1}$) and aromatic rings ($1639 \mathrm{~cm}^{-1}$).

The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 4.31) showed four singlets owned by four methoxyl groups at $\delta 3.19\left(7^{\prime}-\mathrm{OCH}_{3}\right), 3.63\left(6-\mathrm{OCH}_{3}\right), 3.78\left(6^{\prime}-\mathrm{OCH}_{3}\right)$ and 3.89 $\left(12-\mathrm{OCH}_{3}\right)$, respectively. The singlet for $7^{\prime}-\mathrm{OCH}_{3}$ was observed at the higher region due to the presence of the adjacent bulky substituents. A characteristic of two singlets with integration of three each at $\delta 2.61$ and 2.69 assignable to $N-\mathrm{CH}_{3}$ and $N^{\prime}-\mathrm{CH}_{3}$ protons.

The ${ }^{1} \mathrm{H}$ NMR spectrum also displayed a singlet at $\delta 5.49$ corresponding to an (C) $05-4506832$ Pustak.upsi.edu.my $f \begin{aligned} & \text { Perpustakan Tuanku Bainun } \\ & \text { Kadpus Suth }\end{aligned}$ aromatic proton attached to C-10 and another two doublets at $\delta 6.78(J=8.6 \mathrm{~Hz}, \mathrm{H}-13)$
and $6.87(J=7.5 \mathrm{~Hz}, \mathrm{H}-14)$. From this observation, ring C was confirmed to be meta-
 para trisubstituted ring. Moreover, another fodr protons signals at the aromatic region resonated as doublet at $\delta 6.40(J=4.6 \mathrm{~Hz}), 6.94(J=2.3 \mathrm{~Hz}), 6.95(J=2.3 \mathrm{~Hz})$ and 7.48 $(J=8.1 \mathrm{~Hz})$ belongs to vicinal proton of $\mathrm{H}-11^{\prime}, \mathrm{H}-10^{\prime}, \mathrm{H}-13^{\prime}$ and $\mathrm{H}-14^{\prime}$ approved that ring C' was para disubstituted (Mukhtar et al., 2009).

The ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 4.32) showed two signals at $\delta 63.8$ and 61.6 belongs to $\mathrm{C}-1$ and $\mathrm{C}-1$. Those signals have similar pattern to the type VI bisbenzylisoquinoline with two diaryl ether linkages that previously reported in Chapter 2 which is 2^{\prime}-noroxyacanthine 48 (Herath et al., 1987). Four methoxyl carbon signals resonated at $\delta 55.0,55.9,56.0$ and 60.5 which corresponding to $\mathrm{C}-6, \mathrm{C}-12$, C-6'and C-7', respectively. The signals of carbons that contained nitrogen atoms

Among fourteen quaternary carbons, eight of them are substituted quaternary carbons which are $\mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-11, \mathrm{C}-12, \mathrm{C}-6^{\prime}, \mathrm{C}-7^{\prime}, \mathrm{C}-8^{\prime}$ and $\mathrm{C}-12^{\prime}$ that resonated to much lower region compared to non-substituted carbons at $\delta 148.6,143.8,149.0$, 146.7, 151.9, 137.2, 147.5 and 152.3. This situation occur due to the presence of activating groups as the substituents bring the inductive effects to the adjacent carbons and increase the chemical shifts. The methylene carbons for $\mathrm{C}-\alpha$ and $\mathrm{C}-\alpha^{\prime}$ were observed at $\delta 37.6$ and 39.8 which typical for methylene positions (Zahari, 2010).

The COSY spectrum (Figure 4.33) showed the correlations of vicinal proton
 cross peaks were observed between $\mathrm{H}-13 / 12-\mathrm{OCH}_{3}, \mathrm{H}-5 / 6-\mathrm{OCH}_{3}$ and $\mathrm{H}-5^{\prime} / 6^{\prime}-\mathrm{OCH}_{3}$
thus confirming the positions of $12-\mathrm{OCH}_{3}, 6-\mathrm{OCH}_{3}$ and $6^{\prime}-\mathrm{OCH}_{3}$. Another two
 $\mathrm{H}-1^{\prime}$ with $N^{\prime}-\mathrm{CH}_{3}$.

The structure of this alkaloid was further analyzed by the HMQC and HMBC experiments (Figure 4.34 and 4.35). Furthermore, the other selected COSY and HMBC correlations are shown in Figure 4.36.

The complete NMR spectral data are shown in Table 4.13. Finally, Table 4.14 and 4.15 show the comparison of the spectral data with the literature, thus confirmed that AC 3 is gyrolidine 47 (Chalandre et al., 1986; Zahari, 2010) .

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

$6^{\prime}-\mathrm{OCH}_{3}$
$12-\mathrm{OCH}_{3}$

Figure 4.31. ${ }^{1} \mathrm{H}$ NMR spectrum of AC 3.

Figure 4.32. ${ }^{13} \mathrm{C}$ NMR spectrum of AC 3 .

Figure 4.34. HMQC spectrum of AC 3.
pustaka.upsi.edu.my
\& Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

Figure 4.35. HMBC spectrum of AC 3.

Table 4.13

Position	$\begin{gathered} { }^{\mathrm{I}} \mathrm{H} \\ \mathrm{CDCl}_{3}(J, \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} { }^{\mathrm{I} 3} \mathrm{C} \\ \left(\delta, \mathrm{CDCl}_{3}\right) \end{gathered}$	HMBC
1	3.75 (brs)	63.8	
$\mathrm{N}-\mathrm{CH}_{3}$	2.61 (s)	43.3	1,3
3	2.45 (m)	50.1	
	2.76 (m)		
4	2.39 (m)	29.7	
4 a		130.9	
5	6.32 (s)	110.9	4,6,7
6		148.6	
$6-\mathrm{OCH}_{3}$	3.63 (s)	55.0	6
7		143.8	
8	6.65 (s)	116.7	1,6,7
8 a		127.1	14
α	$\begin{gathered} 2.90(d d, 14.9,3.5) \\ 3.24(m) \end{gathered}$	37.6	
9	$5.41(s)$	130.9	人,12,14
10		116.3	
11		149.0	
12		146.7	
(c) 13 14 1^{\prime}			120^{0}
	$6.78(d, 8.6)$	123.5	11
	4.29 (d, 6.3)	61.6	$\alpha^{\prime}, 3^{\prime}, 8^{\prime}$
$N^{\prime}-\mathrm{CH}_{3}$	2.69 (s)	41.7	$1^{\prime}, 3^{\prime}$
3'	$\begin{aligned} & 3.00(\mathrm{~m}) \\ & 3.26(\mathrm{~m}) \end{aligned}$	45.1	
4'	$\begin{aligned} & 2.75(\mathrm{~m}) \\ & 3.07(\mathrm{~m}) \end{aligned}$	24.9	8'a
4'a		127.1	
5^{\prime}	6.37 (s)	105.8	$4^{\prime}, 6^{\prime}, 7^{\prime}$
6^{\prime}		151.9	$6{ }^{\prime}$
$6^{\prime}-\mathrm{OCH}_{3}$	3.78 (s)	56.0	
$7{ }^{\prime}$		137.2	
$7{ }^{\prime}-\mathrm{OCH}_{3}$	3.19 (s)	60.5	
8^{\prime}		147.5	
$8^{\prime}{ }^{\text {a }}$		138.2	
α^{\prime}	$\begin{aligned} & 2.80(m) \\ & 3.42(m) \end{aligned}$	39.8	$9^{\prime}, 8^{\prime} \mathrm{a}$
9^{\prime}		128.1	$\alpha^{\prime}, 12^{\prime}, 14^{\prime}$
10^{\prime}	6.94 (d, 2.3)	131.4	
11^{\prime}	6.40 (d, 4.6)	121.1	
12^{\prime}		152.3	
(C) $05-450 \nmid 33^{\prime}$			
14^{\prime}	$7.48(d, 8.1)$	128.1	$\alpha^{\prime}, 10^{\prime}, 12^{\prime}$

(C) 05-4506832

Figure 4.36. Selected COSY and HMBC correlation in AC 3.

Table 4.14
C. H NMR Data of AC 3 and Gyrolidine $47^{\text {Perpustakaan Tuanku Bainun }}$
ptbupsi ptbupsi

	${ }^{\mathrm{I}} \mathrm{H}$ $\mathrm{CDCl}_{3}(\mathrm{~J}, \mathrm{~Hz})$	
Position	AC 3	Gyrolidine
$\mathrm{N}-\mathrm{CH}_{3}$	$2.61(s)$	2.57
5	$6.32(s)$	6.36
$6-\mathrm{OCH}_{3}$	$3.63(s)$	3.63
8	$6.65(s)$	6.65
10	$5.41(s)$	5.47
$12-\mathrm{OCH}_{3}$	$3.89(s)$	3.89
13	$6.87(d, 7.5)$	6.78
14	$6.78(d, 8.6)$	6.78
$N^{\prime}-\mathrm{CH}_{3}$	$2.69(s)$	2.66
$5{ }^{\prime}$	$6.37(s)$	6.32
$6^{\prime}-\mathrm{OCH}_{3}$	$3.78(s)$	3.79
$7^{\prime}-\mathrm{OCH}_{3}$	$3.19(s)$	3.19
11^{\prime}	$6.40(d, 4.6)$	6.37
13^{\prime}	$6.95(d, 2.3)$	6.95
14^{\prime}	$7.48(d, 8.1)$	7.42

(C) 05-4506832
pustaka.upsi.edu.my
Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil Shah

Table 4.15
(L1)3 ${ }^{3} \mathrm{C}$ NMR Data of AC 3 B and Gyrolidine $\mathbf{4 7}$ an Abdul dail sh 5Y PustakaTBainun 0° ptbupsi

Position	$\begin{gathered} { }^{13} \mathrm{C} \\ \left(\delta, \mathrm{CDCl}_{3}\right) \end{gathered}$	
	AC 3	Gyrolidine (Zahari, 2010)
1	63.8	63.9
$\mathrm{N}-\mathrm{CH}_{3}$	43.3	43.7
3	50.1	50.8
4	29.7	28.4
4a	130.9	130.7
5	110.9	110.9
6	148.6	148.3
$6-\mathrm{OCH}_{3}$	55.0	54.9
7	143.8	143.8
8	116.7	116.7
8 a	127.1	127.3
α	37.6	37.5
9	130.9	130.7
10	116.3	116.4
11	149.0	149.0
12	146.7	146.6
(c) ${ }^{0} 1220 \mathrm{OCH}_{3} 3$ pustaka.upsi.edu.my		
13	110.9	110.7
14	123.5	123.5
$1{ }^{\prime}$	61.6	61.5
$N^{\prime}-\mathrm{CH}_{3}$	41.7	42.1
3^{\prime}	45.1	45.3
4^{\prime}	24.9	25.4
4'a	127.1	127.2
5^{\prime}	105.8	105.7
6^{\prime}	151.9	151.6
$6^{\prime}-\mathrm{OCH}_{3}$	56.0	56.0
$7{ }^{\prime}$	137.2	137.0
$7{ }^{\prime}-\mathrm{OCH}_{3}$	60.5	60.5
8^{\prime}	147.5	147.5
$8^{\prime}{ }^{\prime}$	138.2	138.9
α^{\prime}	39.8	39.5
9^{\prime}	128.1	127.7
10^{\prime}	131.4	131.4
11^{\prime}	121.1	121.1
12^{\prime}	152.3	152.2
13^{\prime}	122.4	122.3
14^{\prime}	128.1	127.8

4.2.4 AC 4, Stephasubine 92

(.) 05-4506832
(2) pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

5 PustakaTBainun
0°
ptbupsi

92

Alkaloid AC $4(5.4 \mathrm{mg})$ was obtained as a yellow amorphous. The EIMS spectrum showed a significant molecular ion peak at m/z 590 giving a possible molecular formula of $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}$. The UV spectrum showed maximum absorption at 207 and (C) 05-4506832
pustaka.upsi.edu.my F Perpustakaan Tuanku Bainun PustakatBainur 236 nm . In addition, the IR spectrum gave a broad band and showed absorption at $3286 \mathrm{~cm}^{-1}$ due to the presence of a highly conjugated hydroxyl group (Pretsch et al., 2000).

The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 4.37) showed the presence of one $N-\mathrm{CH}_{3}$ singlet at $\delta 2.6$. The six methoxyl protons of $6-\mathrm{OCH}_{3}$ and $6-\mathrm{OCH}_{3}$ were overlapped at $\delta 4.03$ and appeared as higher singlets than other methoxyl of $12-\mathrm{OCH}_{3}(\delta 3.87)$. Two sets of doublets were observed at farthest downfield at $\delta 8.43$ and 7.47 corresponding to $\mathrm{H}-3^{\prime}$ and $\mathrm{H}-4^{\prime}$ due to the presence of adjacent nitrogen atom with coupling constant of 5.8 Hz . Moreover, due to the same circumstance, the $\mathrm{H}-\alpha^{\prime}$ dishielded to lower field as doublets of doublets at $\delta 4.50$ and 5.36 compared to $\mathrm{H}-\alpha$ at 82.42 and 3.00 .
pustaka.upsi.edu.my \square Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil ShahPustakaTBainun
${ }^{(1)}$
ptbupsi

The spectrum also exhibited four vicinal protons of $\mathrm{H}-10^{\prime}, \mathrm{H}-11^{\prime}, \mathrm{H}-13^{\prime}$ and
 characteristic peak of tail to tail bisbenzylisoquinoline with two diaryl ether bridges (7-8', 11-12') (Nelofar, 1989). Furthermore, the methylenes protons of H-3 and H-4 resonated as multiplets at δ 2.25-2.68.

The assignment of aromatic protons were supported by COSY spectrum (Figure 4.38) which showed the cross peaks between $\mathrm{H}-3^{\prime} / \mathrm{H}-4^{\prime}, \mathrm{H}-10^{\prime}-\mathrm{H}-11^{\prime}$ and $\mathrm{H}-13^{\prime} / \mathrm{H}-14^{\prime}$.

The ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 4.39) revealed the presence of thirty six carbons signals. The methoxyls C- 6^{\prime}, C-6 and C-12 resonated at $\delta 56.1,56.2$ and 56.7,
 resonated at δ 43.2. The spectrum also showed the chemical shifts of fifteen aromatic carbons between $\delta 119.3$ to 157.3 . Moreover, C-1' resonated far from the other aromatic carbons at $\delta 157.3$ as it is near to the nitrogen atom which is the electronegative element and potent to have low electron density and shifts the signals downfield.

The HMQC spectrum (Figure 4.40) showed direct correlations of carbons and hydrogens in the compound. The HMBC spectrum (Figure 4.41) revealed cross peaks of $\mathrm{H}-3^{\prime}$ with $\mathrm{C}-4^{\prime}, \mathrm{C}-4^{\prime} \mathrm{a}$ and $\mathrm{C}-1^{\prime}$; $\mathrm{H}-14^{\prime}$ with $\mathrm{C}-\alpha^{\prime}, \mathrm{C}-10^{\prime}$ and $\mathrm{C}-12^{\prime}$; and $\mathrm{H}-10$ with $\mathrm{C}-\alpha, \mathrm{C}-11$ and $\mathrm{C}-14$, respectively. In addition, from the HMBC spectrum also
 bridges (7-8', 11-12') by cross peaks between $\mathrm{H}-10$ with $\mathrm{C}-11$; $\mathrm{H}-11^{\prime}$ with $\mathrm{C}-12^{\prime}$; and

H-8 with C-7. The other selected COSY and HMBC correlations are illustrated in Figure 4.42 pustaka.upsi.edu.my f $\begin{aligned} & \text { Perpustakaan Tuanku Bainun } \\ & \text { Kampus Sultan Abdul Jalil Shah }\end{aligned}$PustakaTBainun

The spectral data of AC 4 are recorded in Table 4.16. Comparison of the collected data with the literature (Table 4.17) further confirmed that alkaloid AC 4 is stephasubine 92 (Patra et al., 1986).

Figure 4.37. ${ }^{1} \mathrm{H}$ NMR spectrum of AC 4.
pustaka.upsi.edu.my

5 PustakaTBainun
(O) ptbupsi

Figure 4.39. ${ }^{13} \mathrm{C}$ NMR spectrum of AC 4.

Figure 4.40. HMQC spectrum of AC 4.

Table 4.16

05-4506832
(7) pustaka.upsi.edu.my
f
Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil Shah
$5 P$
PustakaTBainun
0°
ptbupsi

Table 4.17

Position	$\begin{gathered} \stackrel{\mathrm{I}}{\mathrm{H}} \\ \mathrm{CDCl}_{3}(J, \mathrm{~Hz}) \end{gathered}$	
	AC 4	Stephasubine (Patra et al., 1986)
,	3.64 (br s)	3.56 (m)
$\mathrm{N}-\mathrm{CH}_{3}$	2.67 (s)	2.51
3	2.45 (d, 4.1)	2.35 (m)
	2.68 (m)	2.72 (m)
4	2.25 (m)	2.18 (m)
	2.50 (s)	2.27 (m)
5	6.54 (s)	6.56
$6-\mathrm{OCH}_{3}$	4.03 (s)	4.07 (s)
8	5.98 (s)	5.99
α	2.42 (d, 2.9)	2.25 (m)
	3.00 (d, 12.6)	2.97 (m)
10	4.77 (s)	4.79 (br s)
$12-\mathrm{OCH}_{3}$	3.87 (s)	3.88
13	6.70 (d, 9.1)	6.71 (br s)
14	6.71 (d, 8.1)	6.71 (br s)
3'	8.43 (d, 5.8)	8.45 (d, 5.6)
- 4^{\prime}	7.47 (d, 5.8)	7.48 (d, 5.6)
(c) 05.4506835^{\prime}		Y pustaka 7.01 - ${ }^{\text {proupsi}}$
$6^{\prime}-\mathrm{OCH}_{3}$	4.03 (s)	4.07 (s)
α^{\prime}	4.50 (d, 13.7)	4.52(d, 13.8)
	5.36 (d,13.8)	5.37 ($d, 13.8$)
10^{\prime}	7.0 (br s)	7.03 (dd, 8.4, 2.0)
11^{\prime}	6.62 (dd, 8.6, 2.3)	6.65 (dd, 8.4, 2.0)
13^{\prime}	6.47 (dd, 8.1, 2.3)	6.49 (dd, 8.4, 2.0)
14^{\prime}	7.40 (d, 8.1)	7.43 (dd, 8.4, 2.0)

Figure 4.42. Selected COSY and HMBC correlation in AC 4.

4.2.5 AC 5, 2-Norobaberine 93

(C) $05-4506832$
(2) pustaka.upsi.edu.my

93

Alkaloid AC 5 (5.8 mg) was obtained as a brownish amorphous. The UV spectrum showed absorption maxima at 284 nm . The IR spectrum showed broad band at $3274 \mathrm{~cm}^{-1}$ due to the presence of NH functional groups in the structure. Its also
 Fleming, 1989). The EIMS data showed the presence of molecular ion peak at m / z 608 suggesting the molecular formula of $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6}$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 4.43) showed one singlet belongs to $N^{\prime}-\mathrm{CH}_{3}$ at δ 2.69. The bulky substituents within area between ring B and ring B^{\prime} deshielded $7^{\prime}-\mathrm{OCH}_{3}$ at $\delta 3.22$ compared to the other methoxyl groups of $6-\mathrm{OCH}_{3}(\delta 3.63)$, $6^{\prime}-\mathrm{OCH}_{3}(\delta 3.79)$ and $12-\mathrm{OCH}_{3}(\delta 3.90)$. The presence of germinal protons belongs to $\mathrm{H}-\alpha$ and $\mathrm{H}-\alpha^{\prime}$ as doublets of doublets and multiplets between δ 2.84-3.36. The presence of another three proton singlets at the downfield region at $\delta 6.36,6.37$ and 6.69 related to $\mathrm{H}-5, \mathrm{H}-5^{\prime}$ and $\mathrm{H}-8$, respectively. In addition, the para disubstituted ring C^{\prime} was confirmed by the presence of doublets and doublets of doublets signals at (C) $\delta 6.85,6.30,6.98$ and 7.50 corresponding to $\mathrm{H}-10^{\prime}, \mathrm{H}-11^{\prime}, \mathrm{H}-13^{\prime}$ and $\mathrm{H}-14^{\prime}$,
respectively. $\mathrm{H}-1$ and $\mathrm{H}-1^{\prime}$ together appeared as a broad singlet and a doublet at

The ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 4.44) showed presence of thirty seven carbons resonances and showed four signals at $\delta 55.1,55.9,56.1$ and 60.6 belongs to $6-\mathrm{OCH}_{3}$, $12-\mathrm{OCH}_{3}, 6^{\prime}-\mathrm{OCH}_{3}$ and $7^{\prime}-\mathrm{OCH}_{3}$, respectively. A signal for a carbon attached to a nitrogen atom was observed at $\delta 41.9$ corresponding to $N^{\prime}-\mathrm{CH}_{3}$. In addition, the DEPT spectrum showed the presence of six methylene carbons were observed at $\delta 25.1$ (C-4'), 29.0 (C-4), 38.9 (C- α), 40.0 ($\mathrm{C}-\alpha^{\prime}$), 41.0 (C-3) and 45.3 (C-3'). Finally, fourteen quaternary carbons appeared at downfield region at δ 123.9-148.8 as the diamagnetic anisotropy effect increases in the rings.
 (Figure 4.45). The spectrum showed correlations of $\mathrm{H} \alpha / \mathrm{H} \alpha, \mathrm{H} \alpha^{\prime} / \mathrm{H} \alpha^{\prime}, \mathrm{H} 1^{\prime} / \mathrm{H} \alpha^{\prime}$ and H-4 $/ \mathrm{H}-4^{\prime}$. The NOESY spectrum approved the position of methoxy groups when cross peaks were observed between $\mathrm{H}-14 / 12-\mathrm{OCH}_{3}, \mathrm{H}-5 / 6-\mathrm{OCH}_{3}$ and $\mathrm{H}-5^{\prime} / 6^{\prime}-\mathrm{OCH}_{3}$.

The HMQC and HMBC spectrum (Figure 4.46 and 4.47) further confirmed the structure of AC 5 . The spectrum revealed cross peaks between $\mathrm{H}-5$ with $\mathrm{C}-4$, $\mathrm{C}-4 \mathrm{a}, \mathrm{C}-6$ and $\mathrm{C}-7$; $\mathrm{H}-13$ with $\mathrm{C}-10$ and $\mathrm{C}-12$; and $\mathrm{H}-10^{\prime}$ with $\mathrm{C}-\alpha^{\prime}, \mathrm{C}-12^{\prime}$ and $\mathrm{C}-14^{\prime}$. Furthermore, based on the HMBC correlation of H-13'and H-10', its confirmed that C-12' resonated at δ 151.9. The other HMBC and selected COSY correlations of AC 5 are illustrated in Figure 4.48.
(7) pustaka.upsi.edu.my f

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun

The NMR spectral data of AC 5 are shown in Table 4.18. After comparison
 (Tantisewie, Amurrio, Guinaudeau \& Shamma, 1989).

Figure 4.43. ${ }^{1} \mathrm{H}$ NMR spectrum of AC 5.
pustaka.upsi.edu.my

Figure 4.44. ${ }^{13} \mathrm{C}$ NMR spectrum of AC 5 .
(C) 05-4506832 \qquad f
Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

Figure 4.45. COSY spectrum of AC 5.

Figure 4.46. HMQC spectrum of AC 5.

Figure 4.47. HMBC spectrum of AC 5.

Table 4.18

Table 4.19

Position	$\begin{gathered} { }^{\mathrm{I}} \mathrm{H} \\ \mathrm{CDCl}_{3}(J, \mathrm{~Hz}) \end{gathered}$	
	AC 5	2-Norobaberine (Tantisewie et al., 1989)
1	4.34 (br s)	4.23 (m)
5	6.36 (s)	6.37
$6-\mathrm{OCH}_{3}$	3.63 (s)	3.64
8	6.69 (s)	6.69
10	5.56 (d, 2.3)	5.61 (br s)
$12-\mathrm{OCH}_{3}$	3.90 (s)	3.92
13	6.86 (d, 2.3)	6.81 (br s)
14	6.80 (d, 8.6)	6.81 (br s)
1^{\prime}	4.25 (d, 4.6)	4.23 (m)
$N^{\prime}-\mathrm{CH}_{3}$	2.69 (s)	2.69
5'	6.37 (s)	6.36
$6^{\prime}-\mathrm{OCH}_{3}$	3.79 (s)	3.79
$7{ }^{\prime}-\mathrm{OCH}_{3}$	3.22 (s)	3.23
10^{\prime}	6.85 (d, 2.3)	6.87 (dd, 8.2, 2.2)
11^{\prime}	6.30 (dd, 8.1, 2.9)	6.31 (dd, 8.2, 2.2)
	6.98 (dd, 8.6, 2.3)	6.99 (dd, 8.2, 2.2)
		$7.47{ }^{(1)}\left(d d^{\text {a }} 8.2,2.2\right)^{\text {ptbupsi }}$

Figure 4.48. Selected COSY and HMBC correlation in AC 5.
05-4506832

4.2.6 AC 6, 3', 4'-Dihydrostephasubine 94

(C) 05-4508832
(2) pustaka.upsi.edu.my

F $\begin{aligned} & \text { Perpustakaan Tuanku Bainun } \\ & \text { Kampus Sultan Abdul Jalil Sha }\end{aligned}$

1) PustakaTBainun
(1) $^{\circ}$
ptbupsi

94

Alkaloid AC $6(4.8 \mathrm{mg})$ was obtained as brownish amorphous. The EIMS spectrum showed the presence of molecular ion peak at $\mathrm{m} / \mathrm{z} 592$ corresponding to the molecular formula of $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}$. The UV spectrum showed maxima absorption at 284 nm . The IR spectrum showed a broad band of hydroxyl group at $3308 \mathrm{~cm}^{-1}$ and aromatic rings at $1646 \mathrm{~cm}^{-1}$, respectively.

The prior analysis of ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 4.49) of AC 6 showed that it has similar pattern as $3^{\prime}, 4^{\prime}$-dihydronorstephasubine $\mathbf{8 8}$ that previously isolated from the bark of Alseodaphne corneri (Mukhtar et al., 2009). The ${ }^{1} \mathrm{H}$ NMR spectrum exhibited the presence of one $\mathrm{N}-\mathrm{CH}_{3}$ signal assignable to $\mathrm{N}-2$ proton at $\delta 2.48$. The signals for three methoxyls appeared at $\delta 3.86,3.87$ and 3.94 corresponding to $\mathrm{C}-12$, C-6 and C-6', respectively. The downfield signal of $\mathrm{H}-14^{\prime}$ at $\delta 7.40$ showed the VI type of bisbenzylisoquinoline skeleton (Nelofar, 1989).

The vicinal protons of aromatic ring B, C and B^{\prime} appeared as a singlet and
 $6.71(\mathrm{H}-13, \mathrm{H}-14)$. In addition, the protons $\mathrm{H}-10^{\prime}$ and $\mathrm{H}-11^{\prime}$ resonated at $\delta 7.36$ and 6.47 as a doublet. Another doublet of doublet signal at $\delta 6.74$ corresponding to $\mathrm{H}-13^{\prime}$. The COSY spectrum (Figure 4.50) showed cross peaks between $\mathrm{H}-10^{\prime} / \mathrm{H}-11^{\prime}$ and $\mathrm{H}-$ $13^{\prime} / \mathrm{H}-14^{\prime}$ confirmed the position of structure proposed.

The ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 4.51) and DEPT spectrum revealed a $\mathrm{N}-\mathrm{CH}_{3}$ carbon signal at $\delta 43.3$ and three methoxyl carbon signals appeared at $\delta 55.8$ (6'$\left.\mathrm{OCH}_{3}\right), 55.9\left(6-\mathrm{OCH}_{3}\right)$ and $56.2\left(12-\mathrm{OCH}_{3}\right)$, respectively. The spectrum also exhibited signals of six methylenes, eleven methines and fifteen quaternary carbons. A signal of C-1' deshielded to lower region at $\delta 164.6$ due to adjacent nitrogen atom (that formed double bond Moreoverpus coun iusignal also deshielded duêo the same circumstance at $\delta 44.7$ compared to $\mathrm{C}-\alpha$ at δ 38.1. The other methylenes carbon signals at $\delta 27.0,27.9,46.8$ and 49.7 were assigned to $\mathrm{C}-4^{\prime}, \mathrm{C}-4, \mathrm{C}-3^{\prime}$ and $\mathrm{C}-3$, respectively. The substituted aromatic carbons signals resonated at higher chemical shifts at $\delta 144.3$ (C-6), 147.5 (C-7), 132.0 (C-6'), 149.3 (C-7'), 140.5 (C-8'), 146.3 (C-11), 149.7 (C-12) and 152.8 ($\mathrm{C}-12^{\prime}$) due to electronegative substituents effects that induce the carbons to shifts to lower region.

The HMQC spectrum (Figure 4.52) showed direct ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlations while the HMBC spectrum (Figure 4.53) showed the long range correlation of ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ of the structure. From the HMBC spectrum, the correlation of $\mathrm{H}-8$ with $\mathrm{C}-7$ and $\mathrm{H}-5$ with C8. confirmed the position of $\mathrm{C}-7$ at $\delta_{\text {el }} 147.5$. Furthermore, another correlation of $\mathrm{H}-13^{\prime}$, $\mathrm{H}-14^{\prime}$ and $\mathrm{H}-10^{\prime}$ with $\mathrm{C}-12$ also confirmed the position of $\mathrm{C}-12$ at $\delta 152.8$. The
position of $\mathrm{N}-\mathrm{CH}_{3}$ in the structure was further confirmed due to cross peaks between
 correlations are illustrated in Figure 4.54.

The NMR spectral data are shown in Table 4.20 while Table 4.21 shows the comparison of the observed data with the literature value (Patra, Mandal, Mukhopadhyay \& Ranu, 1988), further confirmed that alkaloid AC 6 is $3^{\prime}, 4^{\prime}$ dihydrostephasubine 94
(e) n5-15nkez?

$12-\mathrm{OCH}_{3}$
\qquad
은 n \qquad

Figure 4.50. COSY spectrum of AC 6.
(C) 05-4506832

F Perpustakaan Tuanku Bainun Kampus Sultan Abd

6,6' $-\mathrm{OCH}_{3}$
 ptbupsi

Figure 4.51. ${ }^{13} \mathrm{C}$ NMR spectrum of AC 6
${ }_{05-4506832}^{6}$ pustaka.upsi.edu.my
Kampus Sultan Abdul Jalil Shah
${ }^{\circ}$
ptbupsi

Figure 4.52. HMQC spectrum of AC 6.

Figure 4.53. HMBC spectrum of AC 6.

Table 4.20

Table 4.21

PustakaTBainun
O°
ptbupsi

Position	$\begin{gathered} { }^{\mathrm{I}} \mathrm{H} \\ \mathrm{CDCl}_{3}(J, \mathrm{~Hz}) \end{gathered}$	
	AC 6	3',4'-Dihydrostephasubine (Patra et al., 1988)
1	3.54 (br s)	3.59 (br s)
$\mathrm{N}-\mathrm{CH}_{3}$	2.48 (s)	2.51
5	6.46 (s)	6.50
$6-\mathrm{OCH}_{3}$	3.87 (s)	3.88
8	6.09 (s)	6.08
10	4.88 (s)	4.91 (br s)
$12-\mathrm{OCH}_{3}$	3.86 (s)	3.91
13	6.71 (br s)	6.73 (d, 8.3)
14	6.71 (br s)	6.84 (dd, 8.3, 1.0)
5'	6.55 (s)	6.60
$6{ }^{\prime}-\mathrm{OCH}_{3}$	3.94 (s)	3.95
α^{\prime}	3.97 (d, 13.8)	4.08 (d, 14.0)
	4.50 (d, 13.8)	4.52 (d, 14.0)
10^{\prime}	7.36 (d, 8.6)	7.36 (dd, 8.2, 2.0)
11^{\prime}	6.47 (d, 2.9)	6.48 (dd, 8.2, 2.2)
(c) 05.45068314^{\prime}	6.74 (dd, 8.6, 2.3)	6.77 (dd, 8.2, 2.0)
		37.40 (ddd, 8.2, 2.0) ${ }^{\text {petbupsi }}$

Figure 4.54. Selected COSY and HMBC correlation in AC 6.
05-4506832
pustaka.upsi.edu.my

4.2.7 AC 7, \boldsymbol{O}-Methyllimacusine 95

(.) 05-4506832

95

Alkaloid AC 7 (3.9 mg) was isolated as a brownish amorphous. The UV spectrum revealed maximum absorption at 282 nm . The absorption bands at 1015 and $1650 \mathrm{~cm}^{-1}$ in the IR spectrum are typical of $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}=\mathrm{C}$ absorption bands (Williams \&
 Fleming, 1989). The EIMS data showed molecular ion peak at $\mathrm{m} / \mathrm{z} 622$ giving the possibility of molecular formula of $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6}$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 4.55) showed four singlets at δ 3.01, 3.42, 3.76 and 3.95 corresponding to four methoxyls groups at $\mathrm{C}-7^{\prime}, \mathrm{C}-6, \mathrm{C}-6^{\prime}$ and $\mathrm{C}-12$. The former methoxyl $\left(7^{\prime}-\mathrm{OCH}_{3}\right)$ resonated much higher region due to the bulky substituents and compressed position surrounding the atmosphere compared to the latter methoxyls. A singlet at $\delta 2.56$ with integral value of six attributable to two $\mathrm{N}-\mathrm{CH}_{3}$ groups at ring A and ring A', respectively.

Moreover, $\mathrm{H}-5^{\prime}, \mathrm{H}-10, \mathrm{H}-5$ and $\mathrm{H}-8$ also appeared as a singlet at $\delta 6.39,6.96$,
 $6.65,6.80,6.81,6.95$ and 7.35 corresponding to $\mathrm{H}-14, \mathrm{H}-10^{\prime}, \mathrm{H}-11^{\prime}, \mathrm{H}-13$ and $\mathrm{H}-14^{\prime}$,
respectively. These observations showed that ring C meta-para trisubstituted while
 doublet with coupling constant of 7.5 and 10.3 Hz . The aliphatic protons of $\mathrm{H}-3, \mathrm{H}-3^{\prime}$, $\mathrm{H}-4, \mathrm{H}-4^{\prime}, \mathrm{H}-\alpha$ and $\mathrm{H}-\alpha^{\prime}$ appeared as multiplets at region δ 2.57-3.51.

The COSY spectrum (Figure 4.56) showed cross-peak between $\mathrm{H}-1^{\prime} / \mathrm{H}-\alpha^{\prime}$ and $\mathrm{H}-3 \mathrm{a} / \mathrm{H}-3 \mathrm{~b}$. The ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 4.57) revealed thirty eight carbon signals in the molecule and showed two methyl groups attached to the nitrogen atoms belongs to $N-2$ and $N-2^{\prime}$ at $\delta 42.2$ and 41.5 , respectively. The four methoxyl groups of C-7, C$6^{\prime}, \mathrm{C}-12$ and C-7' resonated at $\delta 55.4,55.8,56.3$ and 59.8 , respectively. In addition, DEPT spectrum showed presence of fourteen quaternary carbons, twelve methines and six methylenes of C-3 ($\delta 46.5$), C-4 ($\delta 26.3$), C- $\alpha(\delta 40.7$), C-3' ($\delta 44.2$), C-4' (δ (220.9) sand $\mathrm{C}-\alpha^{2}(843.8)$. The quaternarys carbons siesonated at the lower regions area at $\delta 106.0-155.6$ due to the diamagnetic anisotropy effect increases in the benzene rings.

The HMQC spectrum is shown in Figure 4.58. The HMBC spectrum (Figure 4.59) showed cross peak of $\mathrm{H}-1$ with $\mathrm{C}-4, \mathrm{C}-4 \mathrm{a}$ and $\mathrm{C}-8$; $\mathrm{H}-14$ with $\mathrm{C}-\alpha$ and $\mathrm{C}-10$; $\mathrm{H}-$ 5^{\prime} with $\mathrm{C}-6^{\prime}$ and $\mathrm{C}-4^{\prime}$; and $\mathrm{H}-13^{\prime}$ with $\mathrm{C}-9^{\prime}$ and $\mathrm{C}-12^{\prime}$. Furthermore, the cross peaks between $12-\mathrm{OCH}_{3}$ with $\mathrm{C}-12 ; 6-\mathrm{OCH}_{3}$ with $\mathrm{C}-6 ; 6^{\prime}-\mathrm{OCH}_{3}$ with $\mathrm{C}-6^{\prime}$; and $7^{\prime}-\mathrm{OCH}_{3}$ with C-7' further confirmed the positions of methoxyl groups in the structure. The other HMBC correlations are illustrated in Figure 4.60.

The NMR spectral data of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HMBC correlations are tabulated in Table 4.22. Finally, structure of alkaloid AC 7 was further confirmed as

O-methyllimacusine $\mathbf{9 5}$ by comparison with other literature in Table 4.23 (Chalandre Cet a5. 1.5068986).
pustaka.upsi.edu.my
? Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

Figure $4.55 .{ }^{1} \mathrm{H}$ NMR spectrum of AC 7.05-4506832
pustaka.upsi.edu.my

Figure 4.56. COSY spectrum of AC 7.
figure 4.56. COS Y spectrum of AC Perpustakaan Tuanku Bainun
5 PustakaTBainun

C. $05-4506832{ }^{713}$ Pustaka upsi.edu.my f Perpustakan Tuanku Bainun

Figure 4.57. ${ }^{13} \mathrm{C}$ NMR spectrum of ${ }^{K} A C C^{\prime 5} 7^{\prime}$.

Figure 4.58. HMQC spectrum of AC 7.
(C) 05.4506832
(8) pustaka.upsi.edu.my

F Perpustakaan Tuanku Bainun

PustakaTBainun

Figure 4.59. HMBC spectrum of AC 7.

Table 4.22

Table 4.23

Position	$\begin{gathered} \stackrel{\mathrm{I}}{\mathrm{H}} \\ \mathrm{CDCl}_{3}(J, \mathrm{~Hz}) \end{gathered}$	
	AC 7	O-Methyllimacusine (Chalandre et al., 1986)
$\mathrm{N}-\mathrm{CH}_{3}$	2.56 (s)	2.55
5	6.45 (s)	6.40
$6-\mathrm{OCH}_{3}$	3.42 (s)	3.43
8	6.40 (s)	6.45
10	6.96 (s)	6.65
$12-\mathrm{OCH}_{3}$	3.95 (s)	3.96
13	6.95 (d, 5.8)	6.99
14	6.65 (d, 2.3)	6.96
$N^{\prime}-\mathrm{CH}_{3}$	2.56 (s)	2.57
5'	6.39 (s)	6.40
$6^{\prime}-\mathrm{OCH}_{3}$	3.76 (s)	3.77
$7{ }^{\prime}-\mathrm{OCH}_{3}$	3.01 (s)	3.02
10^{\prime}	6.80 (d, 7.5)	6.81
11^{\prime}	6.81 (d, 2.4)	6.81
13^{\prime}	7.13 (dd, 8.6, 1.7)	7.13
14^{\prime}	$7.35(d, 8.1)$	7.36
(C) 05-406832		h PustakatBainu (0) pth

Figure 4.60. Selected COSY and HMBC correlation in AC 7.
(e)
05-4506832
pustaka.upsi.edu.my
f
Perpustakaan Tuanku Bainun
Kampus Sultan Abdul Jalil Shah

4.3 Antiplasmodial activity

Malaria is a major global public health problem and responsible for the death of over one million people annually, with more than 90% of cases found in sub-Sarahan Africa. Every year malaria disease kills between one and two million people with as many as $300-500$ million people being infected. It is estimated that nearly half of the world population is at risk, with fatal rates increase among young children below 5 years of age (Saxena, Pant, Jain \& Bhakuni, 2003).

The in-vitro antiplasmodial activity was performed as method reported previously (Trager \& Jensen, 1976). Then, the IC_{50} value of the samples were compared with the standard reference drug of chloroquine, $0.087 \mu \mathrm{~g} / \mathrm{ml}$ (Omoregie, (Sisodia,3012). pustaka.upsi.edu.my fill Perpustakaan Tuanku Bainun $\begin{aligned} & \text { Kampus Sultan Abdul Jalil Shah }\end{aligned}$

For this experiment, the IC_{50} value less than $10 \mu \mathrm{~g} / \mathrm{ml}$ for crude extract and IC_{50} value less than $5 \mu \mathrm{~g} / \mathrm{ml}$ for compound were considered having good activity. The alkaloid crude extract of Alseodaphne peduncularis (bark) showed good to moderate active to Plasmodium falciparum, K1 isolate (resistant strain) with IC_{50} value of 2.135 $\mu \mathrm{g} / \mathrm{ml}$. Therefore, further isolation and purification of alkaloid compound from this species was done to investigate the active pure compound towards Plasmodium falciparum that have potential as antimalarial drug.

Three isolated compounds; boldine $\mathbf{6 9}$, norlirioferine 91 and norboldine $\mathbf{7 8}$

boldine 69 showed most potent antiplasmodial activity with IC_{50} value of 1.067

Table 4.24
Results of HRP2 test for antimalaria in-vitro drug screening

Samples	$\begin{gathered} \mathrm{IC}_{50} \\ (\mu \mathrm{~g} / \mathrm{ml}) \\ \hline \end{gathered}$
Chloroquine (standard)	0.087
Crude extract of Alseodaphne peduncularis (bark)	2.135
Boldine (AP 1)	1.067
Norlirioferine (AP 3)	2.786
Norboldine (AP 4)	2.228
	(3) PustakatBainun ${ }^{\circ}{ }^{\circ} \mathrm{p}$ prtupsi

CHAPTER 5

CONCLUSION

Two Alseodaphne species namely Alseodaphne peduncularis (Wall. ex Nees) Meisn from Kluang-Mersing, Johor and Alseodaphne corneri Kosterm from University of Malaya, Kuala Lumpur were used to investigate the alkaloids contents. The phytochemical study on the bark of Alseodaphne peduncularis and the leaves of Alseodaphne corneri led to discovery of two types of alkaloids; aporphine and bisbenzylisoquinoline. The alkaloids were identical by comparing the spectral data with published report. The list of isolated alkaloid compounds are shown in Table 5.1.

Four aporphines were isolated from the bark of Alseodaphne peduncularis namely boldine 69, norpredicentrine 90 , norlirioferine 91 and norboldine 78. From this research boldine 69 shows as a major alkaloid product from Alseodaphne species when it was successfully isolated from both species of Alseodaphne peduncularis and

Alseodaphne corneri. Furthermore, norpredicentrine 90, norlirioferine 91 and
 aporphine-type alkaloid presence in this species.

Moreover, the roots of Alseodaphne corneri afforded two aporphines and five bisbenzylisoquinolines alkaloids. The two aporphines were boldine 69 laetanine 30. To our knowledge, this is the first report on the isolation of laetanine $\mathbf{3 0}$ from Alseodaphne corneri. The spectral data of AC1 identical with laetanine $\mathbf{3 0}$ from literatures, thus confirming the presence of laetanine $\mathbf{3 0}$ in Alseodaphne corneri (Omar, 2009; Borthakur \& Rastogi, 1979).

Another five bisbenzylisoquinoline alkaloids known as gyrolidine 47,
 methyllimacusine 95. Differ from aporphine, bisbenzylisoquinoline is a dimer of benzylisoquinolines shows that the structure is more complicated and the mass double or higher than aporphine. Gyrolidine 47, stephasubine 92 and $3^{\prime}, 4^{\prime}-$ dihydrostephasubine 94 were previously isolated from Dehaasia incrassata (Mukhtar et al., 2005). Moreover, 2 -norobaberine $\mathbf{9 3}$ and O-methyllimacusine 95 were also had been isolated since 1980s (Tantisewie et al., 1989; Chalandre et al., 1986). The comparison of the spectral data with the previous data concluded the presence of these bisbenzylisoquinoline alkaloids in Alseodaphne corneri.

The crude of Alseodaphne peduncularis and three isolated aporphines; boldine $\mathbf{6 9}$, nerlirioferine 91 and norboldine $\mathbf{7 8}$ were tested for antiplasmodial activity 0. 05 -4506832 pustaka.upsi.edu.my Kampus sultan Abdul Jali ishah Pustakereirinn or prbupsi
against Plasmodium falciparum. Among samples, the result stated that boldine 69 (2) 0 .5.456832

In conclusion, the phytochemical study of these Alseodaphne species proved the existence of two types of alkaloids; aporphine and bisbenzylisoquinoline. It is believed that this species also have strong potential to show interesting bioactivities such as cytotoxicity, vasorelaxant activity and many more in the future.

Table 5.1
Alkaloids Isolated from Alseodaphne peduncularis and Alseodaphne corneri

f
Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah mpus Sultan Abdul Jalil Shah

REFERENCES

 1 PustakaTBainun 0^{0} ptbupsiAbidin, A.Z., Awang, K., Hadi, A.H.A., \& Mukhtar M.R. (2009). Alkaloids isolated from the leaves of Litsea machilifolia. Malaysian Journal of Sciences, Special Edition, 1-6.

Ahmat, N. (2008). Kandungan kimia dan aktiviti biologi daripada Alseodaphne perakensis (Lauraceae), Croton laevifolius dan Croton argyratus (Euphorbiaceae). (Doctoral dissertation, Universiti Kebangsaan Malaysia). UKM, Bangi.

Aniszewski, T. (2007). Alkaloids-Secrets of Life. Alkaloid Chemistry, Biological Significance, Applications and Ecological Role (pp. 6-11). Retrieved from http://www.sciencedirect.com

Borthakur, N. \& Rastogi, R.C. (1979). Laetanine, A new noraporphine alkaloid from Litsea laeta. Phytochemistry, 18, 910-911.

Budi, T.C. \& Andri, T.R. (2011). The utilization of gemor bark (Alseodaphne sp.) and Hazelnut (Aleurites molucca) shell as natural mosquitos coil. Jurnal Riset Industri Hasil Hutan, 3(2).

Castedo, L., Saá, J.M., Suau, R.perm Villaverde, C. (1980). On the structure of
 diacetylnorlirioferine. Heterocycles, 14(8), 1131-1134. doi: 10.3987/R-1980-08-1131.

Castro, O., López, J. \& Stermitz, F.R. (1986). New aporphine alkaloids from Phoebe valeriana (Lauraceae). Journal of Natural Products, 49, 1036-1040.

Castro, O., López, J., \& Vergara. A. (1985). Aporphine alkaloids from Phoebe pittieri. Phytochemistry, 24, 203-204.

Chalandre, M.C., Bruneton, J., Cabalion, P., \& Guinaudeau, H. (1986). Alkaloids from Gyrocarpus americanus. Journal of Natural Products, 49, 101-105.

Chan, K.L., Choo, C. Y., Abdullah, N.R., \& Ismail, Z. (2004). Antiplasmodial studies of Eurycoma longifolia Jack using the lactate dehydrogenase assay of Plasmodium falciparum. Journal of Ethnopharmacology, 92(2-3), 223-227.

Chanderbali, A.S., Werff, H.V.D., \& Renner, S.S. (2001) Phylogeny and historical biogeography of lauraceae: evidence from the chloroplast and nuclear genomes. Annals of the Missouri Botanical Garden, 88(1), 104-134.

Chen, C.L., Chang, H.M., Cowling, E.B., Huang, H.C.Y. \& Gates, R. P. (1976). Aporphine alkaloids and lignans formed in response to injury of sapwood in Liridendron tulipifera. Phytochemistry, 15, 1161-1167.

Cordell, G. A. (1983). Introduction to Alkaloids: A Biogenic Approach. New York: Wiley.

Corner E.J.H. (1988). Wayside trees of malaya (${ }^{\text {rd }}$ ed., Vol. 1, pp.23). Kuala Lumpur: The Malayan Nature Society.

Croix, P.S. (2008). Spirit of the rainsforest; Discover the magic of these amazing and precious habitats. United Kingdom: Parragon Books Ltd.

Cseke, L.J., Kirakosyan, A., Kaufman, P.B., Warber, S.L., Duke, J.A., \& Brielmann, H.L. (2006). Natural Products from Plants (2 $2^{\text {nd }}$ ed., pp. 264). Florida: CRC Press, Taylor \& Francis Group.

Dehaussy, H., Tits, M. \& Angenot, L. (1983). Guattegaumerine, New bisbenzylisoquinoline alkaloid from Guatteria gaumeri. Planta Medica, 49 (9), 25-27.

El-Sebakhy, N., \& Waterman, P.G. (1984). (-) - (R, R')-7'-O-methylcuspidaline from the leaves of Aristolochia elegans. Phytochemistry, 23, 2706-2707.

Fattorusso, E., \& Taglialatela-Scafati, O. (2008). Modern Alkaloids. Structure, Isolation, Synthesis and Biology.Weinheim: Wiley.

Gan, K.S., \& Lim, S.C. (2004). Common Commercial Timbers Of Peninsular Malaysia (Research Pamphlet No. 125) (pp. 38). Kepong, Kuala Lumpur: Forest Research Institute Malaysia.

Goodwin, S., Shooley, J.N. \& Johnson, L.F. (1958). Proc Chem Soc., 306.
 Natural Products, 42, 325-360.

Guinaudeau, H., Cassels, B.K., \& Shamma, M. (1982). The use of nuclear magnetic resonance nuclear overhauser enhancements in the structural elucidation of bisbenzylisoquinoline alkaloids. Heterocycles, 19, 1009-1012.

Guinaudeau, H., Freyer, A.J., Shamma, M. \& Baser, K.H.C. (1984). Enzymic control of strereochemistry among the thalictrum-minus-var-microphyllum bisbenzylisoquinoline alkaloids. Tetrahedron, 40, 1975.

Guinaudeau, H., Leboeuf, M., \& Cavé, A. (1975). Aporphine Alkaloids, I. Lloydia, 38, 275-338.

Haitao, C., Lian, L., \& Pengfei, Tu. (2000). Studies on the chemical constituents of Alseodaphne hainanensis. Chinese Traditional And Herbal Drugs, 31 (10). Abstract retrieved from http:// eng. med. wanfangdata. com. cn/ PaperDetail.aspx?qkid=zcy\&qcode=zcy200010003.

Hara, H., Hoshino, O., Ishige, T. \& Umezawa, B. (1981). Studies on Tetrahydroisoquinolines XIX. Chem. Pharm. Bull. 29, 1083-1087.

Hashim, N.J., Rahmani, M., Ee, G.C.L., Sukari, M.A., Yahayu, M., Amin, M.A.M., Ali, A.M. \& Go, R. (2012). Antioxidant, antimicrobial and tyrosinase
(6) 05-450635hibitory activities isolated from Artocarpus obtusus F.M. JarrettoMolecules, 17, 6071-6082. doi: 10.3390/molecules 17056071.

Hay, C.A., Anderson, L.A., Roberts, M.F. \& Phillipson, J.D. (1988). Alkaloid production by plant cell cultures, In A, Misrahi, A. L. Van Wezel (Eds.), Biotechnology in Agricultures' (pp! $97-140$). New York: Liss.

Herath, W. H. M. W., Hussain, S.F., Freyer, A.J., Guinaudeau, H., \& Shamma, M. (1987). Nine bisbenzylisoquinoline alkaloids from Thalictrum cultratum. Journal of Natural Products, 50(4), 721-725.

Hocquemiuer, R., Rasamizafy, S., Cavé, A., \& Moretti, C. (1983). Alkaloids from Annonaceae XXXVII: Alkaloids of Guatteria scandens. Journal of Natural Products, 46(3), 335-341.

Ismail, G. \& Din, L. (1995a). Medicinal plants used by Dusun community in Kg. Sayap, Ranau, Sabah. In F. Ahmad, S. Omar \& Gunsalam, A (Eds.), A scientific journey through Borneo: Sayap-Kinabalu Park, Sabah (pp. 145). Selangor: Pelanduk Publications.

Ismail, G. \& Din, L. (1995b). A phytochemical survey of Sayap-Kinabalu Park, Sabah. In I.M. Said, L. Din, M. W. Samsudin, N. I. Yusoff, A. Latiff, R. A. Ali, A. H. A. Hadi (Eds.), A scientific journey through Borneo: SayapKinabalu Park, Sabah (pp. 137). Selangor: Pelanduk Publications.

Israilov, I.A., Karimova, S.U., Yunusov, M.S., \& Yunusov, S.Y. (1980). Aporphine alkaloids. Chemistry of Natural Compounds, 16(3), 197-225.

Johns, S.R. Lamberton, J.A, \& \& Sioumis, A.A (1967). 1-Benzyl-1,2,3,4-
 Kostermans (family Lauraceae). Australian Journal of Chemistry, 20(8), 1729 -1735.Abstract retrieve from http://www.publish.csiro.au/?paper=CH9671729

Johns, S.R., Lamberton, J.A., \& Sioumis, A.A. (1969). The alkaloids of Neolitsea Pubescens (Lauraceae). Aust. J. Chem, 22, 1311-1312.

Jossang, A., Leboeuf, M., Cabalion, P. \& Cavé, A. (1984). Alkaloids of the Annonaceae. XLV: Alkaloids of Polyalthia nitidissima. Planta Medica, 49, 20-24.

Kanokmedhakul, S., Kanokmedhakul, K., Yodbuddee, D., \& Phonkerd, N. (2003). New antimalarial bis-dehydroaporphine alkaloids from Polyalthia debilis. American Chemical Society and American Society of Pharmacognosy, 10.1021/np020498d.

Karimova, S.U. \& Sadykov, Y.D. (1981). Khim. Prir. Soedin., 670.
Kaufman, P.B., Cseke, L.J., Warber, S., Duke, J.A. \& Brielmann, H.L. (1999). Natural products from plants. Florida: CRC Press.

Kunitomo, J., Murakami, Y. \& Sugisakon, M. (1979). Synthesis of a few trimethoxyoxoaporphines. Yakugaku Zasshi (J. Pharm. Soc. Jap.), 99(1), 102105.
(C) $05-4508832$ pustaka.upsi.edu.my f - Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Kuo, G., Jianxin, C., Huihui, Z., Hao, W., Bing, L. \& Wei, W. (2012). Distribution, structures and pharmacological activities of aporphine alkaloids in various ${ }^{6832}$ ant families. Topclass Journal of Herbat Medicine, $1(1), 1-28$.

Lajis, N. H., Sharif, A. M., Kiew, R., Khan, M. N. \& Samadi, Z. (1992). Communication III: The alkaloids of Lindera pipericarpa Boerl (Lauraceae). Pertanika, 15(2), 175-177.

Leboeuf, M., Cortes, D., Hocquemiller, R. \& Cavé, A. (1983). Alkaloids from Annonaceae. XLVII : Alkaloids of Guatteria ouregou. Planta Medica, 48, 234-245.

Lu, S.T., Tsai, I.L., \& Leou, S.P. (1989). Alkaloids of Dehaasia triandra. Phytochemistry, 28(2), 615-620.

Makler, M.T., \& Hinrichs, D.J. (1993). Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. American Journal of Tropical Medicine and Hygiene, 48, 205-210.

Makler, M.T., Ries, J.M., Williams, J.A., \& Bancroft, J.E. (1993). Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. American Journal of Tropical Medicine and Hygiene, 48, 739-741.

Mann, J., Davidson, R.S., Hobbs, J.B., Banthorpe, D.V., \& Harborne, J.B. (1996). Natural products (Their chemistry and biological significance). Malaysia: Longman.

Marsaioli, A.J., Magalhāes, A.F., Ruveda, E.A. \& Reis, F. de A.M. (1980). ${ }^{13}$ C NMR analysis of some oxoaporphine alkaloids. Phytochemistry, 19(5), 995-997.

Menachery, M.D. \& Cava, M.P. (1981). The alkaloids of Telitoxicum peruvianum. Journal of Natural Products, 44(3), 320-323.

Michael, J.P. (2004). Quinoline, quinazoline, and acridone alkaloids. Nat. Prod Rep 21,650-668.

Micheal, J.P. (2003). Indolizidine and quinolizidine alkaloids. Nat Prod Rep, 20, 458475.

Mukhtar, M. R. (1996). Chemical Constituents of Phoebe Grandis (Nees) Merr. (Lauraceae) and Goniothalamus Tortilipetalus Hend. (Annonaceae) (Master's thesis, University of Malaya). Retrieved from studentsrepo.um.edu.my.

Mukhtar, M. R., Zahari, A., Nafiah, M. A., Hadi, A.H.A., Thomas, N. F., Arai, H., Morita, H., Litaudon, M. \& Awang, K. (2009) 3', 4^{\prime}-dihydronorstephasubine, A new bisbenzylisoquinoline from the bark of Alseodaphne corneri. Heterocyles, 78(10). doi: 10.3987/COM-09-11753.

Mukhtar, M.R., Hadi, A.H.A., Litaudon, M., Mohamad, K. \& Awang, K. (2005). New bisbenzylisoquinoline (BBIQ) alkaloids from Dehaasia incrassata (Jack)
(2) 05-4506Kosterm Malaysian Journatof Sciencess B2 4(1). \square PustakeatBainun

Nafiah, M. A., Mukhtar, M. R., Omar, H., Ahmad, K., Morita, H., Litaudon, M.,
 aporphine isolated from Alseodaphnéperakensis (Lauraceae). Molecules, 16, 3402-3409. doi: 10.3390/molecules16043402.

Nelofar, A. (1989). Isolation and structural studies on Concculus pendulus and some other related plants. (Doctoral dissertation, University of Karachi). Retrieved from eprints. hec. gov. pk /696/1/611. html. htm

Ng, F.S.P. (1989). Malayan Forest Records. Tree Flora of Malaya (Vol. 4). Forest Research Institute Malaysia.

Ng. F.S.P. (1991). Trees Of Peninsular Malaysia (Chapter 9). Selangor: Malayan Nature Society.

Noedl, H., Wernsdorfer, W. H., Miller, R. S. \& Wongsrichanalai, C. (2002). Histidine-rich protein II: a novel approach to malaria drug sensitivity testing. Antimicrobial Agents and Chemoteraphy, 46(6), 1658.

Noedl, H., Wongsrichanalai, C. \& Wernsdorfer, W. H. (2003). Malaria drugsensitivity testing: new assays, new perspectives. Trends in Parasitology, 19(4). 175-181.

Omar, H. (2009). Alkaloids isolated from Litsea Petiolata and Phoebe Tavoyana (Lauraceae). (Master's thesis, University of Malaya). Retrieved from

Omar, H., Hashim, N.M., Zajmi, A.,Nordin, N., Abdelwahab, S.I., Azizan, A.H.S., Hadi, A.H.A., \& Ali, H.M. (2013). Aporphine alkaloids from the leaves of Phoebe grandis (Nees) Mer. (Lauraceae) and their cytotoxic and antibacterial activities. Molecules, 18, 8994-9009. doi: 10.3390/molecules18088994.

Omar, H., Nafiah, M.A., Mukhtar, M.R., Awang, K., \& Hadi, A.H.A. (2009). Harman and isoquinoline alkaloids from Litsea petiolata Hk. F (Lauraceae). Malaysian Journal of Sciences, 28 (Special Edition), 17-28.

Omoregie, E. S., \& Sisodia, B.S. (2012). In vitro antiplasmodial activity and cytotoxicity of leaf extracts of Jatropha Tanjorensis J.L. Ellis and Soroja. Bayero Journal of Pure and Applied Sciences, 5(1), 90-97.

Patra, A., Freyer, A.J., Guinaudeau, H., Shamma, M., Tantisewie, B., \& Paradai, K. (1986). The bisbenzylisoquinoline alkaloids of Stephania suberosa. Journal of Natural Products, 49(3), 424.

Patra, A., Mandal, M.K., Mukhopadhyay, P.K., \& Ranu, B. C. (1988). (+)-3', $4^{\prime}-$ dihydrostephasubine, a bisbenzylisoquinoline alkaloid from Stephania hernandifolia. Phytochemistry, 27(2), 653-655.

Pelletier, S. W. (1983) The nature and definition of an alkaloid, in: Alkaloids: Chemical and Biological Perspectives, (Vol. 1, pp. 1-31). (S. W. Pelletier, (C) ${ }^{05-450}{ }^{\circ}$ Ed.). New ${ }^{\text {Y }}$ York. Wiley.f $\begin{aligned} & \text { Perpustakaan Tuanku Bainun } \\ & \text { Kampus sultan Abdul Jai i }\end{aligned}$

Pharadai, K., Tantisewie, B., Ruchirawat, S., Hussain, S.F. \& Shamma, M. (1981). (2) $05-4506832$ absolute configuration of $(-)$ crebanine . Heterocycles, $15,1067-1068$.

Pretsch, E., Bühlmann, P. \& Affolter, C. (2000). Structure determination of organic compounds. (Tables of spectral data) (pp. 245-400). New York: Springer.

Rachmatiah, T., Mukhtar, M.R., Nafiah, M.A., Hanafi, M., Kosela, S., Morita, H., Litaudon, M., Awang, K., Omar, H., \& Hadi, A.H.A. (2009a). (+)-N-(2Hydroxypropyl)lindcarpine: A new cytotoxic aporphine isolated from Actinodaphne pruinosa Nees. Molecules, 14, 2850-2856. doi: 10.3390/ molecules14082850.

Rachmatiah, T., Mukhtar, M.R., Nafiah, M.A., Hanafi,F., Awang, K., Kosela, S., \& Hadi, A.H.A. (2009b). Bisbenzylisoquinoline alkaloids from the bark of Actinodaphne Pruinosa Nees. Malaysian Journal of Sciences, 28 (Special Edition), 75-80.

Renner, S. S. (2011) Laurales. In: eLS. John Wiley \& Sons (pp.1-4). Ltd: Chichester. doi: 10.1002/9780470015902.a0003695.pub2.

Roberts, M.F., \& Wink, M. (1998). Alkaloids: Biochemistry, Ecology, and Medicinal Applications (pp. 1-114). New York: Plenum Press.

Robinson, T. (1991). The Organic Constituent Of Higher Plants. Massachusetts: Corduss Press.
 Annonaceae, XLIV. Alkaloids of Duguetia obovata. Journal of Natural Products, 46, 862.

Rueffer, M., \& Zenk, M.H. (1987). Distant precursors of benzylisoquinoline alkaloids and their anzymatic formation, Z. Naturforsh, 42c, 319-332.

Sangster, A.W. \& Stuart, K.L. (1965). Ultraviolet spectra of alkaloids. Chem.Rev., 65.
Saxena, S., Pant, N., Jain, D. C., \& Bhakuni, R. S. (2003). Antimalarial agents from plant sources. Current Science, 85(9), 1314-1329.

Shamma, M. (1972). The Isoquinoline Alkaloids-The Chemistry and Pharmacology. New York: Academic Press.

Shamma, M., \& Moniot, J.L. (1976). The systematic classification of bisbenzylisoquinolines. Heterocycles, 4, 1817-1824.

Sivakumaran, M. \& Gopinath, K.W. (1976). Indian J.Chem, (Sect. B), 14B, 150.
Tanaka, H., Harada, A., Ichino, K., \& Ito, K. (1981). Alkaloids of Michelia fuscata Blume: The structure and synthesis of magnolamine. Heterocycles, 16(8), 1275-1279.

Tantisewie, B., Amurrio, S., Guinaudeau, H. \& Shamma, M. (1989). New
 52(4), 846-851.

Tolkachev, O.N., Nakova, E.P., \& Evstigneeva, R.P. (1977). Bisbenzylisoquinoline alkaloids. Chemistry of Natural Compounds, 13(4), 382-405.
(C) 05

Tomita, M., Kikuchi, T., Fujitani, K., Kato, A., Furukawa, H., Aoyagi, Y., Kitano, M. \& Ibuka, T. (1966). Mass spectrometry of bisbenzylisoquinoline alkaloids. Tetrahedron Letters, (8), 857-864.

Torsell, K.B.G. (1997). Natural Products Chemistry: A Mechanistic, Biosynthetic and Ecological Approach (2 ${ }^{\text {nd }} \mathrm{ed}$). Stockholm: Swedish Pharmaceutical Press.

Trager, W., \& Jensen, J.B. (1976). Human malarial parasites in continues culture. Sciences, 193, 673-675.

Umberto Q.F.L.S. (2002). Common Names, Scientific Names, Eponyms, Synonyms, And Etymology A-C [CRC World Dictionary Of Plant Names] (Vol. 1, pp. 102). USA: CRC Press Llc.

Wikipedia, the free encyclopedia. (2014, January 17). List of plants of Malaysia. Retrieved from en.wikipedia.org/wiki/List_of_plants_of_Malaysia.

Williams, D.H. \& Fleming, I. (1989). Spectroscopic methods in organic chemistry (4 ${ }^{\text {th }}$ eds., pp. 1-29). Europe:Mc-Graw-Hill Book.

Wu, W.N., \& Huang, C.H. (2006). Structural elucidation of isoquinoline, isoquinolone, benzylisoquinoline, aporphine and phenanthrene alkaloids using API-ionspray tandem mass spectrometry. The Chinese Pharmaceutical

Xiwen, L., Jie, L. \& Werff, H.V.D. (2008). Alseodaphne Nees. Flora of China, 7, 227-230.

Zahari, A. (2010). Alkaloids isolated from Alseoaphne corneri. (Master's thesis, University of Malaya). Retrieved from studentsrepo.um.edu.my

Zarga, M.H.A. \& Shamma, M. (1982). A spectral method for the determination of the position of a phenolic group on ring a of an aporphine. Four new aporphines from Polyalthia acuminata. Journal of Natural Products, 45(4), 471-475.

Zhang, F., Liu, M., Li, Yu., \& Mia, L. (1988). Studies on the alkaloids of Alseodaphne hainanensis Merr. Acta Botanica Sinica, 30(2), 183-186.

Extraction and Isolation of Alkaloids from The Leaves of Alseodaphne
 ${ }_{05-450632}^{3}$ pustaka.upsi.edu.my corneri Kostermminun

*Mohd Azlan Nafiah ${ }^{1}$, Jennie Khoo Hui Chen ${ }^{1}$, Siti Nor Fadzilah Mohammad ${ }^{1}$, Khalijah Awang ${ }^{2}$, A. Hamid A. Hadi ${ }^{2}$ and Kartini Ahmad ${ }^{1}$.
${ }^{1}$ Department of Chemistry, Faculty of Science and Mathematics, University Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak.
${ }^{2}$ Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur. E-mail: *azlan@fsmt.upsi.edu.my (Corresponding author)

Abstract

The isolation and purification of the leaves extract of Alseodaphne corneri Kosterm yielded four alkaloids; norisocorydine 1, isocorydine 2, 2-norobamegine 3 and obamegine 4. This phytochemical study involves extraction, separation by using various chromatographic methods and structural determination by spectroscopic technique such as ultraviolet spectroscopy (UV), infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR) including 1D-NMR $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$ and DEPT), 2D-NMR (COSY, NOESY, HMQC/HSQC, and HMBC) and mass spectrometry (MS). The IC_{50} value of antiplasmodial activity for isocorydine 2 and obamegine $\mathbf{4}$ are $0.50 \mu \mathrm{molL}^{-1}$ and $0.14 \mu \mathrm{molL}^{-1}$ respectively.

Keywords : Alkaloids, Alseodaphne corneri, Lauraceae.
Received : 24.10.2013; Accepted : 25.03.2013

Introduction

The Lauraceae are nearly all woody trees and shrubscomprising of 30 to 50 genera with about 2,000 species. There is about fifty or more ${ }^{\text {Kampus Sultaptith chiloroform as a solvent on a Perkin Elmer }}$ Alseodaphne species that can be found in Cambodia, China, India, Indonesia, Laos, Malaysia, Myanmar, Philipines, Sri Lanka, Thailand and Vietnam [1]. Alseodaphne corneri Kosterm of Lauraceae, grows as wild plant, 6-8 m high. In Malaysia, the plant is also known as Medang [2].

Based on literature review, both aporphine and bisbenzylisoquinoline alkaloids showed interesting biological bioactivities such as vasorelaxants effect [3], cytotoxic action [4] and cardiovascular pharmacological effects [5].

This paper reports the isolation and identification of four alkaloids which are aporphine and bisbenzylisoquinoline types from leaves extract of the plant species. The structural elucidation was performed by various spectroscopic methods; nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR), ultraviolet spectroscopy (UV) and mass spectroscopy (MS).

In this study, the isolated compounds were then tested for in vitro inhibitory activity against Plasmodium falciparum.

Experimental

General methods

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ and 2D NMR were recorded in CDCl_{3} with TMS as internal reference on a JEOL JNM-FX100 (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$). Chemical shifts were reported in ppm or δ
scale and the coupling constant are given in Hz . Mass spectra obtained using JEOL JMS 700 TZ nspectrometer. The infrared spectra-were obtained 2000 spectrometer. UV spectra were recorded on a Shimadzu UV-310 IPC Ultraviolet-Visible NIR Scanning Spectrophotometer. All solvents used are AR grade except those that are used for bulk extraction (distilled). Column chromatography (CC) was carried out using Merck silica gel 230400 mesh and TLC was performed on silica gel $60 \mathrm{~F}_{254}$, Merck.

Plant material

The leaves of Alseodaphne corneri was obtained and identified by the team of the Herbarium of Chemistry Department, University of Malaya, Kuala Lumpur, Malaysia on 2008. Voucher specimens (KL 4928) were deposited at the Herbarium of Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia.

Extraction and Isolation

4.0 kg of the air dried leaves of Alseodaphne corneri were moistened with 25% ammonia solution and soaked in dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 3 days (cold extraction). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was evaporated to 500 ml followed by extraction using 5\% hydrochloric acid (HCl) until perpustakan Mayer's test is negative. The HCbextract was Kampus Sultabasified with coneentrated ammonia to pH 11 and re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was washed with distilled water and dried over anhydrous sodium sulphate.

Finally, the extract was evaporated to dryness to give crude alkaloid (10.5g). The crude
alkaloid was introduced to column chromatography over silica gel with the solvent systems of $\mathrm{CH}_{2}^{3} \mathrm{Cl}_{2}(100 \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$: ${ }^{\text {ny }}$ MeOH ampus sul (99:1, $98: 2,97: 3,95: 5$) and finally $100 \% \mathrm{MeOH}$. Further purification was done by using the preparative thin layer chromatography (PTLC). The purified alkaloids were indicated by a single spot on thin layer chromatography (TLC).

In vitro antiplasmodial activity

The antimalaria activity of isolated compounds was determined by the procedure described by Budimulya et al [6]. In brief, each sample was separately dissolved in dimethyl sulfoxide (DMSO; $10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$) and kept at $-20^{\circ} \mathrm{C}$ until use. The malaria parasite Plasmodium falciparum 3D7 clone was propagated in a 24 well culture plate in the presence of wide range of concentrations of each sample. The growth of the parasite was monitored by making a blood smear fixed with MeOH and stained with Geimsa. The half maximal inhibitory concentration, IC_{50} value, used to measure the effectiveness of isolated compound in antiplasmodial activity was calculated.

Result and Discussion

Four known alkaloids have been isolated from the leaves of Alseodaphne corneri. They are norisocorydine $\mathbf{1}$, isocorydine $\mathbf{2}$, 2 -norobamegine 3 and obamegine 4.

Compound 1 was isolated as brownish amorphous solid. Its UV spectrum showed an absorption bands at 223,267 and 308 nm , thus suggesting a 1,2,10,11-tetrasubstituted aporphine skeleton [7,8]. In addition, the IR spectrum gave a broad band between 3500 and $2936 \mathrm{~cm}^{-1}$ due to the presence of OH and NH groups $[9,10]$. In its mass spectrum, the base peak $[\mathrm{M}-1]^{+}, \mathrm{m} / \mathrm{z} 326$ was formed by the loss of a hydrogen atom from the molecular ion. The $[\mathrm{M}]^{+}$occurred at $\mathrm{m} / \mathrm{z} 327$ suggesting a molecular formula of $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$. In addition, the peak at $\mathrm{m} / \mathrm{z} 312\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$and m / z $296\left[\mathrm{M}-\mathrm{OCH}_{3}\right]^{+}$suggested the fragmentation of a methyl and methoxyl groups, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of an aromatic proton appeared as a singlet at $\delta 6.65$,
erpustakan
attributable to $\mathrm{H}-3$. The spectrum also revealed two doublets belonging toH-8 at $\delta 6.73$ ($J=8.0$ $\mathrm{Hz})$ and $\mathrm{H}-9$ at $\delta 6.78\left(J=8.0^{\mathrm{TB}} \mathrm{Hz}\right)$ Which formed an AB spin system. Three singlets at $\delta 3.65$ (1$\left.\mathrm{OCH}_{3}\right), 3.83\left(2-\mathrm{OCH}_{3}\right)$ and $3.84\left(10-\mathrm{OCH}_{3}\right)$ were detected, which corresponded to the three methoxyl groups.

The ${ }^{13} \mathrm{C}$ and DEPT experiments further confirmed the presence of nineteen carbons, which consisted of three aromatic methines, four sp^{3} aliphatic carbons, nine sp^{2} quaternary carbons and three methoxyl carbons. The full assignment of the 1D-NMR (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) spectral data are given in Table 1. Finally comparison of this spectroscopic data with those reported in the literature, showed significantly that alkaloid obtained was norisocorydine [11].

Compound 2 was obtained as a dark brown amorphous solid. The UV spectrum showed absorption bands at 283 and 304 nm , which were typical of the aporphine skeleton $[7,8]$. The IR spectrum showed the presence of hydroxyl group at about $3450 \mathrm{~cm}^{-1}$. The molecular ion peak was observed at $\mathrm{m} / \mathrm{z} 341$ proposed the molecular formula of $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4}$. The base peak at $\mathrm{m} / \mathrm{z} 340$ indicated the loss of a proton. The high intensity fragment ions at $\mathrm{m} / \mathrm{z} 326\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$and $\mathrm{m} / \mathrm{z} 310$ $\left[\mathrm{M}-\mathrm{OCH}_{3}\right]^{+}$indicated the loss of a methyl and methoxyl group, respectively.
an AbdThe ${ }^{1}{ }^{1}{ }^{1} N M R$ spectrum showeda singlet at δ 3.68 and another six proton singlet at $\delta 3.89$, corresponding to the three methoxyl groups. The former was attributed to methoxyl on $\mathrm{C}-1$ and the latter to $\mathrm{C}-2$ and $\mathrm{C}-10$, respectively. The $\mathrm{C}-1$ methoxyl signal was rather shielded compared to the normal aromatic methoxyls since the protons of the methoxyl were forced to place themselves on top of ring A where the electron density was high. Another singlet at $\delta 2.51$ was attributed to N -methyl group which differentiates compound $\mathbf{2}$ with compound 1 due to the absence of this peak in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}$. The spectrum also revealed two doublets assigned to $\mathrm{H}-8$ at $\delta 6.82(J=8.0 \mathrm{~Hz})$ and H-9 at $\delta 6.83(J=$ 8.0 Hz) which formed an AB system. In ring A , the $\mathrm{C}-3$ aromatic proton served as singlet at δ 6.68 .

1: $\mathrm{R}=\mathrm{H}$
2. $\mathrm{R}=\mathrm{CH}_{3}$

3: $\mathrm{R}=\mathrm{H}$
4. $\mathrm{R}=\mathrm{CH}_{3}$

Table $1:{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectral Data of Compound 1 and 2

The ${ }^{13} \mathrm{C}$ NMR and DEPT experiments further confirmed the presence of twenty carbons, which consist of three aromatic methines, four sp^{3} aliphatic carbons; nine sp^{2} quaternary carbons, three methoxyl carbons and one N-methyl carbon. The correlations of 2D NMR of compound 2 are similar to 2D NMR of norisocorydine. Comparison of the spectral data with the literature values confirmed that alkaloid obtained was isocorydine [12,13]. The full assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data is given in Table 1.

Compound 3 was obtained as a brownish amorphous solid with $[\alpha] \frac{27}{\mathrm{D}}+290.0^{\circ} \quad(c=0.5$,
 maxima at 295 nm which is characteristic of a bisbenzylisoquinoline $[14,15]$.

The IR spectrum revealed absorption peaks at $3394,2930,1514$ and $1264 \mathrm{~cm}^{-1}$ corresponding to the stretching of $\mathrm{O}-\mathrm{H}, \mathrm{C}-\mathrm{H}, \mathrm{C}=\mathrm{C}$ ring and $\mathrm{C}-\mathrm{O}-$

C; diphenyl ether groups, respectively [16]. It showed a molecular ion $[\mathrm{M}+\mathrm{H}]^{+}$peak at $\mathrm{m} / \mathrm{z} 581$ corresponding to the molecular formula of $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}$.

The ${ }^{1} \mathrm{H}$ NMR spectrum revealed one N methyl signal at δ 2.51. The spectrum also exhibited the presence of two methoxyl groups, with one in the upfield region, $\delta 3.53$ which was the characteristic for methoxyl on C-6' substituted and the other peaks at $\delta 3.73$ were located at C-6. The presence of three protons singlet at $\delta 6.27,6.31$ and 6.64 were related to the $\mathrm{H}-5, \mathrm{H}-5^{\prime}$ and $\mathrm{H}-8^{\prime}$, respectively. In addition, H10 resonated as a broad singlet at $\delta 5.48$. $\mathrm{H}-11^{\prime}$, $\mathrm{H}_{2} 14$ and $\mathrm{H}-10$ - each appeared as doublets at δ $6.21(f)=6.8 \mathrm{~Hz}), 6.69(J=7.6 \mathrm{~Hz})$ and $6.78(J=$ 7.6 Hz), respectively; and another three signals corresponding to $\mathrm{H}-13, \mathrm{H}-13^{\prime}$ and $\mathrm{H}-14^{\prime}$ resonated as a doublet of doublets at $\delta 6.55(J=$ 8.0 and 1.6 Hz$), \delta 6.87(J=8.4$ and 2.8 Hz$)$ and $\delta 7.38(J=10.4$ and 1.6 Hz$)$, respectively. A
broad singlet and a doublet signal corresponding to two protons, $\mathrm{H}-1$ and $\mathrm{H}-1$ ' were observed at 4.09 and 4.13 , respectively. ${ }^{50635}$.aka.upsi.edu.my
The ${ }^{13} \mathrm{C}$ NMR spectrum of this alkaloid showed thirty-five carbons. There were fourteen quarternary carbons, two methoxyl, twelve methines, six methylenes and one methyl group which attached to nitrogen atom $\left(N^{\prime}-\mathrm{CH}_{3}\right)$, consistent with the structure proposed.

Compound 4 was obtained as a brownish amorphous state with $\quad[\alpha]]_{\mathrm{D}}^{26}+140^{\circ}(c=8.28$,
$\mathrm{MeOH})$. The UV spectrum revealed absorbance band at 283 nm , while the IR spectrum exhibited absorption for aromatic ring and diphenyl ether at 1500 and $1220 \mathrm{~cm}^{-1}$ respectively. Another significant peak was also observed at $3400 \mathrm{~cm}^{-1}$ corresponding to the phenolic function $[17,18]$. The EIMS mass spectrum revealed the $[\mathrm{M}+\mathrm{H}]^{+}$ peak at $\mathrm{m} / \mathrm{z} 594$ thus suggesting a molecular formula of $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6}$.

Table 2: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectral Data of Compound 3 and 4

Position	$\stackrel{{ }^{1} \mathrm{H}}{\delta, \mathrm{CDCl}_{3}(J, \mathrm{~Hz})}$		${ }^{13} \mathrm{C}\left(\mathrm{\delta}, \mathrm{CDCl}_{3}\right)$		
	3	4	3	4	
1	4.09 (br s)	4.06 (d, 10.1)	54.7	60.6	
$\mathrm{N}-\mathrm{CH}_{3}$	-	2.31 (s)		42.4	
3	2.69 (m)	2.79 (d, 11.0)	42.1	44.1	
	2.97 (m)	3.28 (m)		44.1	
4	2.29 (m)	2.42 (m)	29.2	23.0	
	2.29 (m)	2.82 (m)			
4 a	6.27 (s)	6.34 (s)	133.7	132.1	
5			104.7	121.5	
6	$3.73(s)$ pustaka.upsi.edu.my		146.1	147.0	
6-OCH3		$\begin{aligned} & 3.77(\mathrm{~s}) \\ & \begin{array}{l} \text { Perpustakan Tuanku Bainu } \\ \text { Kampus Sultan Abdul Jali I Shah } \end{array} \end{aligned}$	314 P.4 takaTBainu 36.20°		
(6) 05-4507832					
8			144.2	143.9	
8 a			122.1	124.2	
α		2.66 (d, 15.5)	38.7	38.9	
α	$3.10(d, 14.8)$	2.93 (m)	38.7	38.9	
9			127.5	132.5	
10	$5.48(b r s)$	6.21 (br s)	116.0	114.6	
11			148.7	148.4	
12			148.1	143.6	
13	6.55 (dd, 8.0, 1.6)	6.75 (d, 8.2)	123.6	115.2	
14	6.69 (d, 7.6)	6.67 (d, 7.3)	114.9	122.8	
1^{\prime}	4.13 (d, 4.8)	3.72 (dd, 11.8, 6.8)	61.1	64.8	
$N^{\prime}-\mathrm{CH}_{3}$	2.51 (s)	2.53 (s)	41.4	42.7	
3'	2.85 (dd, 12.8, 6.8)	2.88 (m)	44.8	45.5	
	3.15 (m)	3.51 (m)			
4^{\prime}	2.56(3.93 (m)	2.96 (m)2.96 (m)	23.8	24.9	
4'a			130.6	130.3	
5'	6.31 (s)	6.73 (s)	112.0	112.3	
6^{\prime}			148.7	149.6	
$6{ }^{\prime}-\mathrm{OCH}_{3}$	3.53 (s)	3.87 (s)	55.3	56.1	
$7{ }^{\prime}$			144.1	143.5	
8^{\prime}	6.64 (s)	6.05 (s)	116.7	121.5	
8'a			128.3	129.3	
	2.78 (d, 5.6)	2.83 (m)		38.5	
α^{\prime}	3.20 (d, 14.8)	3.37 (dd, 13.2, 4.1)	40.3	38.5	
$\text { (6) } \begin{gathered} 9^{\prime} \\ 05-45 \boldsymbol{P}^{332} \end{gathered}$	$\text { pust } 6.78 \circ\left(d, d^{\prime} \not(6)\right.$$6.21(d, 6.8)$		139.3	135.1	
			513 P .2	132.10	
11^{\prime}			120.8	122.8	
12^{\prime}			151.9	154.4	
13^{\prime}	6.87 (dd, 8.4, 2.8)	7.05 (dd, 8.2, 2.7)	122.3	122.7	
14^{\prime}	7.38 (dd, 10.4, 1.6)	7.32 (dd, 8.2, 2.2)	128.1	130.1	

Table 3 : Results of Plasmodium falciparum Inhibition Screening Assay

*Not available

The ${ }^{1} \mathrm{H}$-NMR spectrum particularly revealed two N-methyl singlets, which were at $\delta 2.31$ and 2.53 corresponding to $N-2$ and $N-2^{\prime}$ methyl protons, respectively. It also showed another two singlets attributed to two methoxyl groups appeared at $\delta 3.77$ and 3.87 which were attached to C-6 and C-6', respectively. The absence of signals positioned between $\delta 2.95$ to $\delta 3.20$ characteristic of a $\mathrm{C}-7^{\prime}$ methoxyl indicated that C-7' was phenyl ether linkage instead substituted with hydroxyl or methoxyl group [19]. The spectrum also showed three singlets at $\delta 6.05$, 6.34 and 6.73 which were assignable to $\mathrm{H}-8^{\prime}, \mathrm{H}-5$ and H-5', respectively. In addition, H-10 resonated as a broad singlet at $\delta 6.21$. The spectrum also displayed three doublet of doublets attributable to $\mathrm{H}-10^{\prime}, \mathrm{H}-13^{\prime}$ and $\mathrm{H}-14^{\prime}$ were present at $\delta 6.42(J=8.2$ and 1.8 Hz$), 7.05(J$ $=8.2$ and 2.7 Hz$)$ and $7.32(J=8.2$ and 2.2 Hz$)$, respective ${ }^{5}$.4506832 $)^{3}$ pustaka.upsi.edu.my

In addition, $\mathrm{H}-14, \mathrm{H}-13$ and $\mathrm{H}-11$ ' appeared as a doublet at $\delta 6.67(J=7.3 \mathrm{~Hz}), 6.75(J=8.2$ $\mathrm{Hz})$ and $6.78(J=8.2 \mathrm{~Hz})$, respectively. A doublet ($J=10.1 \mathrm{~Hz}$) and doublet of doublets (J $=11.8$ and 6.8 Hz$)$ signals corresponding to two protons, $\mathrm{H}-1$ and $\mathrm{H}-1^{\prime}$ were observed at $\delta 4.06$ and 3.72 , respectively.

The ${ }^{13} \mathrm{C}$ NMR spectrum revealed thirty-six carbons. There were fourteen quarternary carbons, two methoxyls, twelve methines, six methylenes, and two methyl groups attached to two different nitrogen atoms consistent with the structure proposed. Signals for C-1 ($\delta 60.6$), C-3 ($\delta 44.1$) and $\mathrm{C}-8 \mathrm{a}(\delta 124.2)$ shifted to a lower field due to the presence of methyl group at $N-2$ position when compared with compound 3. Furthermore, in the HMBC spectrum for compound 4, long-range correlation at $\mathrm{N}-2$ connected with $\mathrm{C}-1$ and C-3 was observed and this is to further confirm the position of methyl. The full assignment of the 1D-NMR $\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ spectral data are given in Table 2.

The isolated alkaloids were tested for in-vitro inhibitory activity against Plasmodium falciparum. The IC_{50} value of compound $\mathbf{2}$ and 4 were tabulated in Table 3 and then compared with standasd chiofociuine (IC ${ }_{50}, 0.0069^{s} \mu \mathrm{mbl} \mathrm{E}^{-1}$) [20]. Both compounds showed weak inhibitory activity against Plasmodium falciparum.

Conclusions

Study on the leaves of Alseodaphne corneri has resulted in the isolation and the identification of norisocorydine $\mathbf{1}$, isocorydine $\mathbf{2}$, 2norobamegine $\mathbf{3}$ and obamegine 4. Antiplasmodial activity test showed that isocorydine 2 and obamegine 4 exhibited weak inhibitory activity against Plasmodium falciparum compared with standard chloroquine.

Acknowledgement

The authors would like to express their gratitude to University of Pendidikan Sultan Idris for financial support (GPU number: 2011-0060-101-01) and phytochemistry group of University of Malaya, Kuala Lumpur.

References

1. Li Hi Hi-wen, Li Jie, Huang Pu -hwa, Wei
 Werff (1982) Lauracea. Fl. Reipubl. Popularis Sin., 31:1-463. Retrieved from http://flora.huh.harvard.edu/china/mss/volum e07/Lauraceae.pdf.
2. Ng, F. S. P. (1989) Malayan Forest Records. Tree Flora of Malaya. Vol. 4. Forest Research Institute Malaysia.
3. Nafiah, M. A., Mukhtar, M. R., Omar H., Ahmad K, Morita, H., Litaudon, M., Awang, K. and A. Hamid A. Hadi (2011) Molecules, 16:3402-3409.
4. Rachmatiah, T., Mukhtar, M. T., Nafiah, M. A., M. Hanafi, Awang, K., Kosela, S., and A. Hamid A. Hadi (2009) Molecules, 114:28502856.
5. Qian, J. Q. (2002) Cardiovascular pharmacological effects of bisbenzylisoquinoline alkaloid derivatives. Acta pharmacologica Sinica, 23(12), 108692. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12466 045.
6. Budimulya A. S., Syafruddin, Tapechaisri P, Wiliariat P, Mazruki S. (1997) The sensitivity of Plasmodium protein synthesis to prokaryotic ribosomal inhibitors. Mol Kampus Sutan AbdBiochern Parasitol, 184:137-14P. ptbupsi
7. Nozaka, T., F. Watanabe, S. Tadaki, M. Ishino, I. Morimoto, J. Kunitomo, H. Ishii and S. Natori, (1990) Mutat. Res., 240:267279.
8. Pyo, M.K., H.S. Yun-Choi and Y.J. Hong (2003) Planta Medica, 69:267-269.
9. Sitverstein, R. B. and F. X. Webster (1998) ampus Sultan Abd 29:1083-1087 Spectroscopic Identification of Organic Compounds. 6th Ed ed.: John Wiley \& Sons, New York.
10. Duddley, H.W. and F. Ian (1989) Spectroscopic Methods in Organic Chemistry. 4th Ed ed.: McGraw-Hill Book Company, England.
11. Wijeratne, E.M.K., Y. Hatanaka, T. Kikuchi, Y. Tezuka and A.A.L.Gunatilaka (1996) Phytochemistry, 42:1703-1706.
12. Azziz, S. A. S. S. (2006) University of Malaya. 175-176.
13. Hocquemiuer, R., S. Rasamizafya and A. Cave (1983) Journal of Natural Products, 46(3):335-341.
14. Baarschers, W. H., R. R. Arndt, K. Pachler, J. A. Weisbach \& B. Douglas (1964) Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry, 4778-4782.
15. Hara, H., O. Hoshino, T. Ishige \& B. Umezawa (1981) Chem. Pharm. Bull,
16. Barbosa-Filho, J. M., E. V. L. Da-Cunha, M. L. Cornelio, C. D. S. Dias \& A. I. Gray (1997) Phytochemistry, 44:959-961.
17. Silverstein, R. B. \& Webster F. X. (1998) Spectroscopic Identification of Organic Compounds. 6th Ed. John Wiley \& Sons, New York.
18. Williams, D. H. \& I. Fleming (1989) Spectroscopic Methods in Organic Chemistry. 4th edition: McGraw-Hill Book Company.
19. Tomita, M., K. Fujitani, Y.Masaki \& Y. Okamoto (1968) Chemical and Pharmaceutical Bulletin, 16:70-75.
20. Quashie, N. B., de Koning, H. P. \& RanfordCartwright, L. C. (2006). Malar J. 15:95100.
(5) pustaka.upsi.edu.my f

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah
(1) pustaka.upsi.edu.my

Programme / Abstracts
Book

International Conference on Natural Products 2013

29th Malaysian Annual Natural Producis Seminar

 4-6 March 2013 Shah Alam Convention Centre(SACC)Selangor, Malaysia
05-4506832
have never been reported. Our recent study on the chemical constituents of the stem bark of both Calophyllum benjaminum and Calophyllum javanicum has yielded three xanthones. These were identified as fuscaxanthone C (1), β-mangostin (2), thwaitesixanthone (3), and dombakinaxanthone (4) together with four triterpenes known as friedelin, β-sitosterol, γ-sitosterol and stigmasterol. The hexane, chloroform, ethyl acetate and methanol extracts of Calophyllum benjaminum were tested for antioxidant properties by DPPH free radical scavenging test. Only the methanol extract shows significant antioxidant activity.

Keywords: Clusiaceae; Calophyllum benjaminum; Calophyllum javanicum; xanthone; Antioxidant

P-30

Isolation of Stilbenes from the Stem of Gnetum microcarpum

Nik Fatini Nik Azmin*, Norizan Ahmat
Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam,Selangor, Malaysia. Email: nick sakura88@yahoo.com

Over the last 15 years, plant stilbenes have received considerable interest, due to their biological activities and possible pharmacological applications. Large numbers of natural stilbenes isolated from plants are oligomers which include dimers, trimers and tetramers. Gnetaceae is a family of the most advanced members of tropical gymnosperms in the order Gnetales (division Gnetophyta). It composed of only one genus, Gnetum and there are about 30 to 40 species in the tropical lowlands of the world, from northeastern South America, tropical West Africa, and south China to Southeast Asia. Various species in the family have been used as folk medicine for the treatment of arthritis, bronchitis and asthma. The leaves and the fruits are also used as food in many parts of the tropics [1]. The plants of Gnetaceae are known to contain stilbene oligomers as their major chemical constituents, in which their structural formations are unique [2]. In this research, the lianas of Gnetum microcarpum has been investigated. Gnetum microcarpum Blume grows in Malaysia and is not recorded in folk medicines. The standard procedures of extraction, fractionation, isolation and elucidation were used for the accomplishment of this research. The stem of Gnetum microcarpum was chopped, air dried, grind into powder and extracted using acetone. The crude extract obtained was fractioned with vacuum liquid chromatography (VLC) and each fraction was subjected to multiple column and radial chromatography techniques for isolation and purification process. Four known stilbenes were successfully isolated from the stem of Gnetum microcapum namely resveratrol (1), gnetol (2), gnetucleistol C (3) and gnetucleistol D (4). The structures of these stilbenes were determined using several spectroscopic methods which were 1D and 2D NMR, UV, IR and MS.

Keywords: Gnetaceae, Gnetum microcarpum, stilbenes

References

1. Iliya, I., Ali, Z., Tanaka, T., linuma, M., Furusawa, M., Nakaya, K., Murata, J., and Darnaedi, D., 2002. Helevetica Chimica Acta. 85, 2538-2546.
2. Iliya, I., Ali, Z., Tanaka, T., Iinuma, M., Furusawa, M., Nakaya, K., Murata, J., Darnaedi, D., Matsuura, N., Ubukata, M., 2003. Phytochemistry. 62, 601-606.

P-31

Aporphine and Bisbenzylisoquinoline Alkaloids from Roots of Alseodaphne corneri Kosterm (Lauraceae)

Siti Nor Fadzilah Mohammad**1 ${ }^{1}$ Kartini Ahmad ${ }^{1}$, Khalijah Awang ${ }^{2}$ and Mohd Azlan Nafiah ${ }^{1}$
${ }^{1}$ Department of Chemistry, Faculty of Science and Mathematics, University of Pendidikan Sultan Idris, 35900 Tanjung Malim,
Perak, Malaysia; ${ }^{2}$ Centre for Natural Products and Drug Discovery, Block D, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia. Email: zilatwinkle2@gmail.com

In Malaysia, there about 15 genera and 212 species of Lauraceae family and one of the species that reported contained various aporphine and bisbenzylisoquinoline types alkaloids is Alseodaphne corneri Kosterm. The plant of this family growth in moderate size in Singapore, Malaysia, Jawa, Sumatra and Borneo. The phytochemical study of the roots of Alseodaphne corneri (Lauraceae) had been carried out. Chromatographic separation of the alkaloid extract led to the isolation of four isoquinoline alkaloids namely laetanine (1), boldine (2), O-methyllimacusine (3) and stephasubine (4). The isolation and purification of the alkaloids were achieved using column chromatography (CC) and preparative thin layer chromatography (PTLC). The structural elucidation

$4^{\text {th }}$ International Conference for Young Chemists 2013
Chemistry: Empowering Sciences Beyond Boundaries
Bayview Hotel, Georgetown, Penang, Malaysia $30^{\text {th }}$ January $-1^{\text {st }}$ February 2013

Abstract \& Program Book

ALKALOIDS FROM THE BARKS OF ALSEODAPHNE PEDUNCULARIS (WALL. EX. NESS) MEISSN

${ }^{1}$ Siti Nor Fadzilah Mohammad, ${ }^{1}$ Kartini Ahmad, ${ }^{2}$ Mohamad Nurul Azmi Mohamad Taib, ${ }^{2}$ Khalijah Awang, ${ }^{1}$ Mohd Azlan Nafiah.
${ }^{1}$ Department of Chemistry, Faculty of Science and Mathematics, University Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak.
${ }^{2}$ Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur. Email: zilatwinkle2@gmail.com

In Malaysia, Lauraceae is known as 'Medang' or 'Tejur' which distributed in the lowland and becoming more abundant in the mountains between 1200 and 1600 m altitude. The phyochemical study of Alseodaphne peduncularis had been carried out. The alkaloid extract produced three aporphines namely boldine $\mathbf{1}$, norboldine 2, norpredicentrine $\mathbf{3}$ and norlirioferine 4. The isolation and purification of the alkaloids were achieved using column chromatography (CC) and preparative thin layer chromatography (PTLC). The structural elucidation was performed by spectral methods mainly UV, IR, NMR including 1D-NMR (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) and 2DNMR (COSY, HMQC and HMBC).

Keywords:-alkafoids, Alseodaphne peduncularis, ${ }^{\text {sen }}$ Alseodaphe cornert, Lauraceae.

Alkaloid	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$
$\mathbf{1}$	OH	CH_{3}	OH	OCH_{3}
$\mathbf{2}$	OH	H	OH	OCH_{3}
$\mathbf{3}$	OH	H	OCH_{3}	OCH_{3}
$\mathbf{4}$	OCH_{3}	H	OCH_{3}	OH

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun
0^{11}
ptbupsi

Bisbenzylisoquinoline alkaloids from leaves of Alseodaphne Corneri Kosterm (Lauraceae)

Mohd Azlan Nafiah ${ }^{1}$, Siti Nor Fadzilah Mohammad ${ }^{1}$, Khalijah Awang ${ }^{2}$,
A. Hamid A. Hadi ${ }^{2}$ and Kartini Ahmad ${ }^{1}$

Dept. of Chemistry, Faculty of Science and Mathematics,
Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia.
Centre for Natural Products and Drug Discovery, Dept. of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
*azlan@upsi.edu.my
A phytochemical study on the leaves of Alseodaphne corneri (Lauraceae) has been carried out. The dichloromethane extract produced two bisbenzylisoquinoline alkaloids namely 2-norobamegine 1 and obamegine 2. The isolation and purification of the alkaloids were achieved using column chromatography (CC) and preparative thin layer chromatography (PTLC). The structural elucidation was performed by spectral methods mainly 1D and 2D NMR, IR, UV and MS, and in comparison with published literature.

1

2

Kolokium Kebangsaan Pasca Siswazah

SAINS \& MATEMATIK

6 Oktober 2012
Dewan Konvensyen, Bangunan E-Learning Universiti Pendidikan Sultan Idris

Tanjong Malim, PERAK
"Sains dan Matematik Menjana Transformasi Minda"

- Anjuran -

 FSMT UPSI05-4506832
Pu

KIMIA

ISOLATION OF BOLDINE FROM ALSEODAPHNE PEDUNCULARIS (WALL. EX. NESS) MEISSN (LAURACEAE)

Siti Nor Fadzilah Mohammad ${ }^{1}$, Mohd Azlan Nafiah ${ }^{2}$, Kartini Ahmad ${ }^{3}$
${ }^{1,2,3}$ Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia. 'zilatwinkle2@gmail.com, 'azlan@upsi.edu.my, 'kartini@upsi.edu.my

Abstract

A phytochemical investigation of the bark of Alseodaphne peduncularis (Wall. Ex. Ness) Meissn (Lauraceae) has resulted in the isolation of a known aporphine alkaloid; boldine (1). The isolation and purification of the alkaloids were achieved using column chromatography (CC) and preparative thin layer chromatography (PTLC). The structural elucidation was performed by spectral methods mainly ID and 2D NMR, IR, UV and MS, and in comparison with data from other literature.

SULTA'N IDRIS EDUCAATIONUNIVERSITYY

International Post Graduate Conference on Science and Mathematics 2013

Research in Science and Mathematics

 Catalyse Sustainable FutureDate : Saturday, October 5th, 2013
Venue
: Convention Hall, E-Learning Building, Universiti Pendidikan Sultan Idris
Organised by : Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris

www.upsi.edu.my

P-005

ALKALOIDS FROM ROOTS OF Alseodaphne Corneri Kosterm (Lauraceae)

Siti Nor Fadzilah Mohammad ${ }^{1}$, Kartini Ahmad ${ }^{1}$, Muhammad. Hafiz Husna Hasnan ${ }^{1}$ Jennie Khoo Hui Chen ${ }^{1}$, A. Hamid A. Hadi ${ }^{2}$, Khalijah Awang ${ }^{2}$, Mohd Azlan Nafiah ${ }^{1}$
${ }^{1}$ Dept. of Chemistry, Faculty of Sciences and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak
${ }^{2}$ Dept. of Chemıstry, Faculty of Sciences, Universiti Malaya, 50603 Kuala Lumpur ${ }^{1}$ zilatwinkle2@gmail.com

Lauraceae distributed in the lowland and becoming more abundant in the mountains between 1200 and 1600 m altitude. Major producing states in Peninsular Malaysia including Kelantan, Perak, Terengganu, Negeri Sembilan and Kedah (Gan \& Lim, 2004) Alseodaphne cornert Kosterm belongs to Lauraceae family. The Alseodaphne genus is well known for their alkaloid bearing plants that have the isoquinoline structures. A phytochemical study on the roots of Alseodaphne corneri had been carried out. The roots were air dried, gronded and extracted with dichloromethane. The extract was then proposed to further isolation and separation process such as column chromatography and preparative thin layer chromatography to obtain pure alkaloid compound. Two bisbenzylisoqumoline alkaloids were successfully isolated from the roots of Alseodaphne corneri namely gyrolidine (1) and 2 -norobaberine (2). The structural elucidation was performed by spectral methods mainly NMR, UV, IR and MS. Finally, determination of compounds was further confirmed by comparison with previous works.

1

2

[^0]: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta \quad: 141.9(\mathrm{C}-1), 60.4\left(1-\mathrm{OCH}_{3}\right), 125.6(\mathrm{C}-1 \mathrm{a}), 128.1(\mathrm{C}-$ db) $148.1(\mathrm{C}-2), 113.7(\mathrm{C}-3), 130.2(\mathrm{C}-3 \mathrm{aa}), 2.29 .11_{i}(\mathrm{C}-4), 43.3(\mathrm{C}-5), 53.8(\mathrm{C}-6 \mathrm{C}), 36.8$

