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Abstract Aggregate production planning (APP) is a sig-

nificant level that seeks efficient production systems. In

actual condition, APP decisions, production inputs, and

relevant planning parameters are intrinsically imprecise,

which results in significant complexities in the generation

of master production schedules. Thus, this paper proposes a

hybridization of a fuzzy programming, simulated annealing

(SA), and simplex downhill (SD) algorithm called fuzzy–

SASD to establish multiple-objective linear programming

models and consequently resolve APP problems in a fuzzy

environment. The proposed strategy is dependent on

Zimmerman’s approach for handling all inexact operating

costs, data capacities, and demand variables. The SD

algorithm is employed to balance exploitation and explo-

ration in SA, thereby efficient and effective (speed and

quality) solution for the APP model. The proposed

approach produces rates for efficient solutions of APP in

large-scale problems that are 33, 83, and 89% more effi-

cient than those of particle swarm optimization (PSO),

standard algorithm (SA), and genetic algorithm (GA),

respectively. Moreover, the proposed approach produces a

significantly low average rate for computational time at

only 64, 77, and 24% compared with those of GA, PSO,

and SA, respectively. Experimental results indicate that the

fuzzy–SASD is the most effectual of all approaches.

Keywords Aggregate production planning � Simulated

annealing � Multiobjective linear programming � Simplex

downhill approach

1 Introduction

APP problems are considerably important in several man-

ufacturing concerns. Managers are well aware that work-

force and production decisions, in accordance with

changing customer demands, can significantly affect a

company economically. APP is defined as the planning of

production quantities and time over a medium term of

3–18 months. During this period, the production to satisfy

anticipated demand is determined. APP aims to set the

overall production levels to satisfy the inconsistent or

uncertain demands for each product category in the future.

APP also considers policy and decision-making factors

regarding suitable levels of hiring, overtime, layoff, back-

order, subcontract work, and inventory [1]. Several APP

models involving different levels of complexity have been

launched since the 1950s. As denoted by [2], conventional

approaches in addressing these problems can be catego-

rized according to the following classifications: linear

decision rule [3], linear programming [4], transportation

method [5], management coefficient approach [6], search

decision rule [8], simulation [7], and management coeffi-

cient approach [6]. In actual APP problems, input data or

parameter values, including resource, demand, cost, and
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objective functions, may be inaccurate because of partial or

unavailable information [9]. The recent study by [10]

classified prior research into factor uncertainties based on

four primary approaches, namely (1) stochastic program-

ming [11, 12], (2) fuzzy programming [13, 14], (3)

stochastic dynamic programming [15], and (4) robust

optimization [10].

The APP problems solved through stochastic pro-

gramming techniques are based on theories, concepts, and

methodologies of randomness theory. Therefore, the

approach can only consider the restricted form of a given

probability distribution function; thus, it cannot contribute

significantly to decision-making in actual situations

[16, 17]. Furthermore, the fuzzy approach is more effi-

cient than stochastic programming approach, specifically

when historical data are lacking; the former can also

provide alternative models for imprecisions and uncer-

tainties [16, 18–25]. In these studies, only the goals are

defined as fuzzy values, and fuzzy models are resolved

through their transformations into classically crisp math-

ematical programming problems [26]. Moreover, the

approach may restrict the utilization of FMP because

obtaining the crisp linear equivalent of a given fuzzy

model in numerous situations may not be possible [27]. In

recent decades, APP problems are characterized by high

complexity and NP-hard problems. Thus, the research

community aims to resolve complicated problems by

using metaheuristic algorithms [28–33]. Although meta-

heuristic algorithms were successfully used to attack

complex actual APP problems, no standard algorithm

(SA) exists for all problems that depend on no-free-lunch

theorem [34]. Therefore, modern concepts of self-adap-

tive modification of algorithms or hybrid algorithms that

support the selection of a proper algorithm aim to over-

come the implicit limitation of metaheuristics ones in

solving actual APP problems. Given that the present study

involved hybrid algorithms, we proposed a novel

scheme that addresses the imprecision of operational

coefficient values. This scheme was formulated as a

multiple-objective linear programming (MOLP) model

for resolving APP problems involving multiple periods

and products. A hybrid optimizing algorithmic procedure

that combines fuzzy programming, simulated annealing

(SA), and simplex downhill (SD) algorithm called fuzzy–

SASD was proposed to resolve the model.

The remaining part of this paper is outlined as follows:

Sect. 2 provides the survey output of the research. Sec-

tion 3 defines the ideal framework. Section 4 describes the

mathematical formulations of multiple-objective APP

problems. Section 5 offers procedural solutions. Section 6

validates the proposed model and demonstrates the effec-

tiveness of the proposed method through computational

study and results. Finally, a conclusion is provided in

Sect. 7.

2 Literature review

Hybrid algorithms have been developed by combining

two or more algorithms to improve overall search effi-

ciencies. Several researchers have attempted to exploit the

advantages of individual algorithms for a considerable

purpose [35]. A hybrid model of the genetic algorithm

(GA) and ant colony optimization was proposed to solve

the APP of long-range policies of industries [36]. In

addition, a mixed-integer linear programming was

developed for a generalized two-phase APP scheme [37].

Subsequently, genetic algorithmic and tabu-type search

methods were applied to resolve the APP model. In [38],

modified particle swarm optimization (PSO) schemes

were suggested to resolve the integer-based linear pro-

gramming model for APP problem sets. Furthermore, the

assumption that inexact parametric values that are deter-

ministic can result in useless and impractical results

[21, 39]. Several metaheuristic algorithms suffer from

problems, such as traps in their localized optimal and slow

convergence rate. Several researchers used the fuzzy

approach with metaheuristic or hybrid metaheuristic

algorithms. In [40], the fuzzy-integrated production dis-

tribution aggregate planning model is considered in the

supply chain. The proposed model was solved through

GA. Authors [27] proposed the tabu search (TS) algorithm

to solve fuzzy goal programs for APP problems. Simi-

larly, [26] proposed fuzzy ranking methods and TS

algorithm for solving multiple-objective APP problems.

Additionally, [41] proposed an interactive fuzzy-based

GA approach to resolve APP problems in an uncertain

environment. However, only two types of products were

applied in their limited case study. In [42], a hybridized

optimizing algorithm that combines fuzzy random simu-

lation, a neural network, GA, and simultaneous pertur-

bation stochastic approximation algorithm was suggested

for solving APP decision-making problems in fuzzy

environments. In addition, [43] proposed an integer linear

programming model to resolve APP problems. This

approach employs trilateral possibilities of distribution to

handle all imprecise capacity data, operating costs, and

demands. The authors subsequently utilized modified

versions of probabilistic environments according to PSO

methods to resolve APP modeling equations. Although

these methods have adopted a fuzzy approach to handle

inaccuracies in the environment and a hybrid algorithm

for solving the model, the proposed model presents a

singular objective.
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We classified the major shortcomings of existing

methods as follows [37, 43]): (1) All these methods are

generally focused on resolution algorithms, but they do not

consider generalized models. They are also incompatible

with actual production systems. Thus, researchers pre-

sented no generalized and comprehensive model to for-

mulate actual production environments. (2) Considering all

parameters in an APP model is challenging, thereby mak-

ing the method inefficient in terms of accuracy and run-

time. (3) Most models for resolving APP problems are

related to single objectives, and they are incompatible with

actual production planning systems.

3 Conceptual framework

A. The problem was organized and devised as a multiple-

objective linear programming model for resolving APP

problems, which involve multiple periods and products

that consider suitable levels of hiring and firing,

overtime, production cost, and inventory as shown in

Fig. 1.

B. To handle all imprecise parameters, we adopted a new

method depending on Zimmerman’s approach to

transfer fuzzy data to crisp data as shown in Fig. 1.

C. To solve the outcome for APP problems, a new hybrid

(SASD) was proposed to solve all aforementioned

parameters of the said problem. Given the complexity

and diversity of actual APP problems resulting from

the planning process, modern approaches coherent

with the innovation in technology over time and the

complexities of the dynamic movement of the

competition and market are required. Therefore, a

single algorithm cannot be adopted for all real-world

APP problems as shown in Fig. 1.

4 Mathematical programming model

The mathematical model of a MOLP for APP was pro-

posed. We presumed that an industrial manufacturing

company produces n-types of products to satisfy the market

demands over a planning time horizon T.

4.1 Notational definitions

The notations utilized in the formulation of MOLP models

for APP are as follows:

n quantity of production, n = 1, 2, …, N.

t number of periods in the planning horizon, t = 1, 2,…,

T.

cn t cost of production for each ton of production n for

period t.

ht cost of hiring each labor in period t.

ft cost layoff each labor in period t.

wt cost of regular labor per period t.

int inventory carrying cost for each ton of product t.

ot cost of overtime labor for each man- hour for period t.

Pnt quantity of production n for period t.

Dnt predicted demand for product n per period t.

Int level of production inventory n for per period t.

Wt labor level for period t.

Ft labors fired for period t.

Ht labors hired for period t.

Fig. 1 Conceptual framework
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Ot man-hours of overtime labor per period t.

Kn hours required for one ton of production n for each

worker.

AR regular working hours for period t.

Mn required hours to produce one ton of product n.

AO overtime working hours allowed during for period t.

4.2 Objective functions

Multiple-objective approaches explicitly treat individual

objectives and enable decision maker (DM) to investigate

sets of alternative solutions. These approaches also allow

the DM to attain more than one objective in selecting a

course of action [44]. In the present study, two objective

functions were solved simultaneously, that is, to minimize

total production and workforce costs.

• Minimize production costs:

Min Z1 ¼
XN

n¼1

XT

t¼1

CntPnt þ intInt ð1Þ

• Minimize workforce costs:

Min Z2 ¼
XT

t¼1

wtWt þ htHt þ ftFt þ otOt: ð2Þ

4.3 Subject to constraint

• Inventory level constraint:

Pnt þ Inðt�1Þ � Int ¼ Dnt 8n; 8t ð3Þ

• Production constraint:

X10

n¼1

MznPnt�AR�Wt�Ot � 0 8t ð4Þ

• Overtime constraint:

Ot�AO�Wt � 0 8t ð5Þ

• Workforce-level constraint:

Ft � Ht þ Wt�Wt�1 ¼ 0 8t ð6Þ

• Constraint of non-negativity on decision variables:

Pnt;; Int;;Ot;Ht; Ft; Wt � 0 8n; 8t

5 Model development

This study used fuzzy linear programming (FLP) based on

SA and SD algorithms (fuzzy–SASD) to solve actual APP

problems.

5.1 Fuzzy approach

In actual APP cases, a DM must frequently handle

imprecise goals that regulate resource and capacity limits

and usage within the operational areas of organizations.

Fuzzy set theory exhibits high applicability in assessing

imprecisely defined situations [1]. Zimmerman (1976) was

the first to introduce fuzzy set theory into typical linear

programming problems. He successively expanded the

fuzzy programming methodology to common MOLP

problems in 1978 [14].

FLP problems enable the membership functionality of

fuzzy decisions and data utilized in sequence based on the

trade-offs between the increasing cost of information and

benefits of the model. Thus, the solution sets obtained from

FLP methods can be realistically appreciated by the DM

[19]. Similarly, Zimmerman improved a tolerance

approach for resolving FLP problems encountered during

allocation of resources and management of production

plans [29, 45]. The present study included relevant inac-

curate operating costs, data capacities, and forecast demand

variables that were covered in Zimmerman’s approach.

However, the tolerance level for his approach was deter-

mined by the DM, depending on their experience, which

can result in several solutions for the same problems.

Therefore, a new method was utilized to determine the

tolerance levels to make it the general means. This method

can be applied by any DM, and it can obtain the same

outcomes to the same problem and their model. FLP model

for Zimmerman’s approach is as follows:

Min C X ~� Z�

Subject to

AX ~� T ; X � 0

where ~� is fuzzy inequalities, T is the tolerance level, and

Z * is an aspiration level of the DM. The linear member-

ship function is defined as follows:

lk Zkð Þ ¼
1 Zk � Z�

k

1� Zk � Z�
k

Tk
Z�
k � Zk � Z�

k þ Tk

0 Zk [ Z�
k þ Tk

8
><

>:
ð7Þ

where k = 1, 2,…, K, which K is the number of objective

functions. The application of this technique as a general

procedure is as follows:

• Step 1

MOLP model for APP problem was composed, as

described in Eqs. (1–6). Thereafter, each individual

fuzzy objective function was solved to generate optimal

solutions for each objective and denote aspiration levels

(Zk�).
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• Step 2

Tolerance level (Tk) for each objective was determined

by taking the last two small decision variable values

from the solution. Afterward, the minimum number

was subtracted from the supreme number for each

objective function. When generalized in this manner,

any DM can utilize the values and achieve similar

results. In previous cases, the DM assumed estimations

to determine values for tolerance levels (Tk) according

to their individual experiences, thereby inducing sev-

eral solutions to the same problem.

• Step 3

With FLP, the membership functions of fuzzy data and

decisions can be applied sequentially on the basis of the

trade-offs between the model benefits and increasing

information costs [19]. Therefore, we applied the

membership function of the Zimmerman approach for

each objective to the APP model in Sect. (4.2) accord-

ing to Eq. (7).

l1 Z1ð Þ ¼
1 Z1 � Z�

1

1� Z1 � Z�
1

T1
Z�
1 � Z1 � Z�

1 þ T

0 Z1 [ Z�
1 þ T1

8
><

>:
ð8Þ

l2 Z2ð Þ ¼
1 Z2 � Z�

2

1� Z2 � Z�
2

T2
Z�
2 � Z2 � Z�

2 þ T

0 Z2 [ Z�
2 þ T2

8
><

>:
ð9Þ

where l represents membership function, and a = lD(Z

D) = min{l1(Z 1), l2(Z 2)}. After solving these equa-

tions, the following equations were obtained:

a� 1� ððZ1 � Z1�Þ = T1Þ ð10Þ
a� 1� ððZ2 � Z2�Þ = T2Þ: ð11Þ

After simplifying the equations, we obtained the

following:

aþ Z1=T1 � 1þ Z1�
T1

ð12Þ

aþ Z2=Z2�� 1þ Z2�
T2

: ð13Þ

• Step 4

The fuzzy decision-making for all the imprecise data of

[46] and [47] methods was applied, and the complete

equivalent single-objective linear programming model

to solve the APP problem can be devised with the

following: Max a was subjected to the following:

a þ Z1=T1 � 1þ Z1�
T1

a þ Z2=T2 � 1þ Z2�
T2

Pnt þ Inðt�1Þ � Int ¼ Dnt

Ot�AO�Wt � 0

Ft � Ht þ Wt�Wðt�1Þ ¼ 0

X10

n¼1

MnSnt�AR�Wt�Ot � 0

Pnt; Int; Ot; Ht; Ft; Wt � 0:

5.2 Hybrid SA–SD algorithm

All the forecasted demand variables, data capacities, and

associated inexact operating costs were handled through a

new method based on Zimmerman’s approach. Given that

APP belongs to the class of NP-hard, large-scale problems

(with a large number of decision variables) cannot be

tackled with mathematical programming solvers of the

APP model [43]. In [31], metaheuristics show good per-

formance for large-scale problems of APP. However,

hybridization of metaheuristics results in robust solution

methods. In creating the hybrid model, we considered two

important components in modern metaheuristics, namely

intensification and diversification (exploration and

exploitation). For an efficient and effective (speed and

quality) algorithm, it should be able to explore effectively

the entire search space and intensify its search around the

neighborhood for an optimal or nearly optimal solution. To

optimize the speed and quality of any algorithm, explo-

ration and exploitation should be balanced. A successful

combination of these two key methodologies usually

ensures that global optimality is attainable [35, 48]. The

whole solution space is effectively explored by global

methods, such as the GA [49], PSO [50], SA [51], and TS

[52, 53], to localize the most suitable areas. Alternatively,

the local methods of SD algorithm [54] and hill climbing

are more effective than those of global methodologies to

exploit the most suitable areas that were already identified

[55]. The SA algorithm can effectively provide feasible

solutions to a diverse range of practical optimization

problems [56]. However, this algorithm is rarely applied in

the APP field because of its avoidance of local optima by

jumping away from them; consequently, its efficiency, that

is, running time, is sacrificed [57].

To overcome issues in applying SA algorithm, a local

search algorithm was chosen to balance between explo-

ration and exploitation for SA. This paper proposed a new

hybrid algorithm that combines the SD algorithm with the

SA algorithm to solve the crisp MOLP APP model. We

selected the SD algorithm for its local search, robustness,

easy programming, and fast search features. Moreover, this

algorithm is appropriate for optimizing functions whose
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derivatives may be expensive to evaluate or are unknown

[55, 58]. According to the proposed approach, SA was

initially allowed to search for the global optimums of

specified objective functions. During the search, the solu-

tion was stagnant for a fixed number of iterations, and the

SA algorithm was considered trapped into a local optimum.

To improve its performance and lessen the deficiencies in

problem solving, [59] tried to expand the search space by

starting with N ? 1 solutions, instead of one solution. The

various stages of the recommended algorithm are as

follows:

• Step 1 Starting step.

• The initial n solutions, such as X1, X2,…, Xn?1, set

K = 1, should be generated, and temperature T

should be initialized.

• Step 2 The fitness function for each Xi should be

evaluated, and step 4 should be subsequently

performed.

• Step 3 Iteration step.

• The m times should be followed.

• New solution xi
0 should be generated for each xi by

using a neighbor search.

• If f(xi
0) B f(xi), then xi = xi

0 and f(xi) = f(xi
0) and

then, step c should be conducted.

• Otherwise, if p = e � f xi0ð Þ�f xið Þj j
Tð Þ B Z�, Z�[ (0, 1), then

xi = xi
0 and f(xi) = f(xi

0) and step c should be

carried out.

• If k = m, then step 3 should be performed. Other-

wise, k = k?1, and step a should be followed.

• Step 4 Sort step.

• f(x1) B f(x2) B … B f(xn B f(xn?1), where f(x1) is

the most suitable solution, and f(xn?1) is the worst

solution.

• Step 5 Reflection step.

• A point xr should be determined by xr = m ? k
(m - xn?1), and f should be evaluated for xr, where

m is the centroid of the N most suitable solutions,

m = mean (x(1: n)), and k = 1.

• If f(x1) B f(xr)\ f(xn), then the worst solution is

replaced with a reflected solution, that is, xn = xr.

• Step 6 Expansion step.

• If f(xr)\ f(x1) then generate a new point xe by

expansion, from xe = xr ? b(xr - m), where

b = 2.

• If f(xe)\ f(xr) then replace xn?1 with xe.

else xn?1 = xr.

• Step 7 Contraction step.

The two kinds of contraction are outside and inside

contractions.

1. Outside contraction:

• If f(xn) B f(xr)\ f(xn?1), then a new point xc
should be generated by contraction from xc =

m ? c (xn?1 - m) and c = 0.5.

• If f(xc)\ f(xr), then xn?1 = xr.

• Otherwise, xn?1 = xr.

2. Inside contraction:

• If f(xn?1) B f(xr), then a new point xc should be

generated by contraction from xc = m ? c
(m - xn?1).

• If f(xc)\ f(xr), then xn?1 = xr.

• Otherwise, xn?1 = xr.

• Step 8 Shrinkage step.

• The f should be evaluated at the n solution x1,

xsj = x1 ? r (xsj - x1), j = {2,…, n ? 1}.

• The vertices of the simplex in subsequent iteration

included x1, v2, …, vn?1.

• Step 9 Stopping step.

• If T = 0.01 or (| f(xn?1) - f(x1)|/f(xn?1))\ 1e-6,

then end.

• Otherwise, the temperature should be reduced by

Tt\ a T(t-1), and step 3 should be followed.

6 Computational study and results

6.1 Case study

The general company for vegetable oil industry was used

as a case study to exhibit the proposed model. The products

of this company are detergent powder, liquid detergent,

vegetable ghee, liquid oil, toilet soap, bay soap, chlorine

bleach, shaving cream, shampoo, and toothpaste. To easily

write these products in tables, each product is represented

by a letter, namely A, B, C, D, E, F, J, H, I, J, and K,

respectively. The periods of APP decision are six months.

Tables 1 and 2 represent the costs of production and

inventory, hours required to produce one ton for each

product, and forecast demand for each product. The initial

inventories for products A, E, H, and J are 105, 333, 0.25,

and 1.8 tons, respectively. The initial worker level is 3313

workers. The cost of a regular worker per month is

$500/man, where the hours worked in one month are 140 h,

and $5.357 is the overtime cost per worker per hour. The
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costs of hiring and firing are $775 and $581 dollars per

worker, respectively. Hours of overtime allowed during the

period are 60 h per period t. The hours of the regular

employee per period are 140 h.

All the imprecise data were first tracked with a new

approach based on the Zimmerman approach, in which

membership functions to obtain the DM’s satisfaction level

must be within [0, 1]. Therefore, the aspiration and toler-

ance levels were determined by using the proposed method

and used to solve each objective function individually. The

aspiration and tolerance levels are Z1* = 7,862,577,

T1 = 1234, Z2* = $6,635,496, and T2 = 207. The linear

membership function for multiple-objective fuzzy

approach is a = 0.862. Afterward, the crisp objective

functions and decision variables were solved by a SASD

algorithm.

6.2 Comparative evaluation of the performance

of fuzzy–SASD, SA, GA, and PSO

In order to verify the performance of the fuzzy–SASD

algorithm in resolving APP problem, we employed the

case study data and examined various problem sizes. We

considered four different algorithms, namely SA, PSO,

GA, and our hybrid fuzzy–SASD. These algorithms were

implemented on a PC with an Intel i5 CPU running at

1.8 GHz and with 4 GB RAM. In conducting the GA,

SA, and PSO approaches, all imprecise data were first

tracked with the new method for Zimmerman’s

approach. Hence, the APP problem was resolved using

the SA, GA, and PSO. However, the parameters set for

the GA population size, crossover, mutation rate, and

generation were 100, 0.9, 0.05, and 103, respectively.

For PSO experimentation, the weights for inertias were

in the range of 0.9–0.4. The social (C1) with cognitive

coefficients (C2) was 2, and the number of particles and

iterations was 30 and 1000, respectively. In addition, the

set parameters for the SA cooling rate a and the final

temperature (T) were 0.95 and 0.001, respectively.

Selecting the most applicable algorithm to solve APP

problems can be difficult. For PSO, the results were

satisfactory, but the method can exhibit longer runtimes

compared those of others, as illustrated in Table 3.

Conversely, the objective function of the GA and SA

approaches provided reasonably adequate solutions that

exhibited shorter runtimes than those of PSO, but they

were costly. Comparison of these four algorithms

showed that in the proposed fuzzy–SASD algorithm, the

total costs for the first objective were $7,093,894.56, and

the costs for the second objective were $5,898,154. In

contrast to SA, PSO, and GA methods, the proposed

fuzzy–SASD provided the least objective function values

and the shortest runtimes.

The proposed fuzzy–SASD method ultimately offered

the most practical solution for APP problems because it

can generate improved decision-making with shorter

runtimes than those of other algorithms. To generalize

the proposed fuzzy–SASD algorithm for large-scale APP

Table 1 Operating costs and

data
A B C D E F G H J K

cnt 328 385 451 1006 801 487 449 1007 496 739

int 38 47 53.6 35.511 35.415 24.6 37.75 37.666 58.666 37

Mn 92 52.5 69 64 50 121 42 607 172 692

Table 2 Forecast demand for

all products
Period A B C D E F G H J K

1 3049.1 53.9 340.6 100 606.4 23.1 1.7 1.2 3.1 0.74

2 1664.1 50.9 708.1 152 482.7 26.5 3.3 2 1.8 1.1

3 1236.4 35.4 700 138 496.8 14.8 7.4 1.7 2.3 0.47

4 782.5 40.8 650 77 429.9 25 8.7 2.5 2.9 0.76

5 914.4 27.5 439 56 324.7 15 21.5 2.4 2.1 2.3

6 652.9 37.9 619.1 50 652.9 12.4 29.1 1.3 2.7 0.71

Table 3 Results for each algorithm

Algorithm Z1 Z2 T (s)

GA 7,560,278.12 6,790,206.86 1.3

SA 7,159,635.69 6,418,976.38 1.2

PSO 7,190,959.95 6,144,191.46 2.5

Fuzzy–SASD 7,093,894.5 5,898,154 0.8
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problems, we employed an artificial dataset comprising

six problems with medium and large sizes and signifi-

cantly equal constraints. Comparison of the perfor-

mances of these algorithms showed that these examples

were similarly encoded and resolved using the Lingo

optimizing solver to determine the global optima and

low bounds (LB) for each objective function. To repre-

sent the differences in performance among global optima

and the objective functional values of the results of these

algorithms, the quality measurement, that is, the percent

deviation symbolized by %Dev, was expressed as

follows:

%Devz1 ¼
BOVfuzzy�sasd;SA;PSO;GA;z1 � LBLingoz1

LBLingoz1

� 100%

%Devz2 ¼
BOVfuzzy�sasd;SA;PSO;GA;z2 � LBLingoz2

LBLingoz2

� 100%

where BOV (fuzzy–SASD, SA, GA, or PSO) is the value of

objective obtained from fuzzy–SASD, SA, GA, and PSO,

and LB (Lingo) is the low bound originated from Lingo for

each objective.

During experimentation using the fuzzy–SASD algo-

rithm, SA, PSO, and the GA, each of the six instances

was executed in 30 trials and 1000 iterations as its

stopping criterion. The statistical outcomes for each

instance were collected solely from the most effective

runs found in the 30 trials. The parametric sets of the

SA, PSO, SA, and GA retained their previously noted

similarities. The outcomes of experiments attained by

Lingo, SA, fuzzy–SASD, PSO, and GA are depicted in

Tables 4 and 5. A test number was assigned to each

instance of the APP problem. Table 4 also contains the

main parameters of each test instance of the APP

problem, which are the number of products and periods.

The first three instances were medium in size, and the

last three ones were large-sized. Furthermore, this

parameter depicted the Lingo LB. Table 5 illustrates the

statistical results of applying fuzzy–SASD, SA, PSO,

and GA in the trials. The results included the mean, most

suitable, standard deviation, and percent deviation of

their values according to the objectives. Runtimes were

similarly incorporated in the tabular information. The

statistical results demonstrated that the values for the

most suitable objective function to each example were

differentiated from their respective optimal values. Each

case also displayed certain differences in their standard

deviation, mean, percent deviation, and time of

execution.

Comparable performance values of each algorithm are

summarized in Table 6. The fuzzy–SASD provided better

average standard deviations, percent deviations, and run-

times for all objective functions than those of SA, PSO, and

GA. Assuming that the fuzzy–SASD outcome was 100%,

the percent deviation gains were increased by 83, 33, and

89% for SA, PSO, and GA, respectively. The search dis-

crepancies of the particle standard deviation corresponded

to values 24, 77, and 64% less than those of SA, PSO, and

GA, respectively.

Comparative analyses of all the various performance

parameter values for fuzzy–SASD, GA, PSO, and SA are

illustrated in Figs. 2 and 3. The average deviation per-

centages for each objective in each algorithm are pre-

sented in Fig. 2. Lingo optima results showed that the

fuzzy–SASD algorithm demonstrated the lowest devia-

tion percentages among all algorithms. Furthermore,

computational runtimes for the fuzzy–SASD algorithm

were consistent with its superior appropriateness over

other algorithms, as shown in Fig. 3. In all problem

cases, the fuzzy–SASD algorithm required shorter time

to solve those instances relative to those of other algo-

rithms. Additionally, the proposed fuzzy–SASD

approach was more applicable to a wider range of the

information for decision-making than those of other

approaches, which largely emphasized multiple-objective

APP problems. We concluded that fuzzy–SASD algo-

rithm presented variants in feature accuracies, reliabili-

ties, and convergence speeds in the optimization of APP

problems, which are superior to those of the PSO, SA,

and GA.

Table 4 Parameters and

statistical results of Lingo
Test no. No. of products No. of period Lingo opt. z1 Lingo opt. z2

1 10 12 40,147,510 54,275,800

2 15 12 60,213,880 52,630,800

3 20 12 79,487,950 52,154,850

4 30 12 112,825,000 52,579,590

5 35 12 136,630,100 53,882,760

6 40 12 154,533,400 51,037,770
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Table 5 Statistical results for all algorithms

Algorithm Test no. No.obj. Best obj. Mean SD % Dev Com. time (s)

Fuzzy–SASD 1 Z1 28,747,819.62 39,995,238 7,671,995 0.37928 2.051042

Z2 52,425,937.67 54,677,633 5,552,682 0.740354

2 Z1 41,771,447.3 60,466,948 9,083,679 0.51777 1.134375

Z2 40,486,841.94 51,811,938 6,051,944 0.1107

3 Z1 55,681,621.82 79,447,366 10,936,781 0.051057 1.278646

Z2 53,148,299.73 52,725,469 6,845,011 1.094086

4 Z1 89,964,226.68 1.17E?08 13,674,939 3.647045 2.182292

Z2 58,711,531.44 52,461,831 5,943,123 0.223963

5 Z1 110,766,178.3 1.38E?08 12,277,269 0.846831 2.266667

Z2 62,028,179.81 54,136,052 8,374,962 0.47008

6 Z1 121,951,104.2 1.55E?08 14,876,834 0.219584 2.292188

Z2 47,529,475.7 51,409,644 7,503,551 0.219584

Avg. Z1 11,409,391 0.3357 1.45

Z2 6,085,437 0.6122

PSO 1 Z1 28,484,836.56 39,790,124 7,681,089 0.89018 34.74479

Z2 63,626,962.56 60,878,994 7,380,405 12.166

2 Z1 42,340,931.19 60,301,075 9,351,528 0.698,386 19.61979

Z2 48,050,806.49 57,216,801 6,627,862 9.36389

3 Z1 56,211,977.91 79,396,767 10,972,625 0.114713 19.55521

Z2 56,024,117.38 57,926,701 6,619,469 11.06676

4 Z1 91,025,188.18 1.17E?08 13,772,925 3.978249 35.50781

Z2 62,242,302.34 57,089,204 6,200,906 8.576738

5 Z1 110,788,243.4 1.38E?08 12,371,826 1.038194 35.70625

Z2 63,858,918.11 58,369,440 8,208,574 8.326746

6 Z1 130,715,333.7 1.55E?08 14,927,381 0.237754 36.03594

Z2 63,838,857.07 54,467,030 6,747,543 6.719063

Avg. Z1 11,473,815 0.4766 2.56

Z2 7,041,287.507 1.0434

SA 1 Z1 28,812,177.72 40,142,480 7,659,850 0.01253 15.67708

Z2 57,836,077.18 55,654,116 6,465,319 2.539468

2 Z1 42,096,077.09 60,695,570 9,320,722 1.11064 9.329688

Z2 42,703,808.3 51,435,603 5,531,342 0.07795

3 Z1 56,515,106.84 79,836,011 10,976,262 0.478789 10.8026

Z2 52,861,204.69 53,089,019 6,763,332 1.791145

4 Z1 90,243,160.44 1.18E?08 13,707,913 4.147242 24.775

Z2 58,711,531.44 52,113,125 6,206,317 0.88716

5 Z1 111,067,544.3 1.38E?08 12,391,843 1.200831 26.01563

Z2 62,028,179.81 54,103,907 8,730,223 0.410423

6 Z1 130,998,417.3 1.55E?08 14,987,986 0.48096 28.08438

Z2 62,560,274.55 51,757,161 7,413,622 1.409526

Avg. Z1 11,474,834 1.238499 1.7966

Z2 7,186,150 1.185945

GA 1 Z1 28,643,531.17 39,960,186 7,668,837 0.46659 93.35208

Z2 61,832,225.04 59,656,705 7,112,881 9.914004

2 Z1 41,961,864.7 60,527,998 9,335,466 0.881016 51.71458

Z2 46,409,018.33 55,638,903 6,166,056 6.452161

3 Z1 56,444,240.13 79700555 10,987,842 0.746794 53.67969

Z2 54,497,796.72 56,019,042 6,542,154 7.7.409076
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7 Conclusion

In this paper, a new hybrid fuzzy–SASD optimization

method was recommended to address the MOLP model for

APP problems. SA has emerged as a popular and reliable

approach for solving large complex problems, including

scheduling, timetabling, and traveling salesman problems.

However, few studies on SA have discussed uncertainties

noted in APP problems. Hence, the present research pro-

vided a novel fuzzy–SASD approach for addressing an

intricate a multiple-objective APP problem. This problem

involved the minimization of total production and work-

force-level costs. This research utilized the SD algorithm to

provide a balance between exploitation and exploration for

the SA algorithm, thereby providing an efficient conver-

gence speed in optimizing the APP problem. On the con-

trary, a new method based on Zimmerman’s approach was

utilized to determine uncertainties associated with model

parameters. An industrial case was exhibited to validate the

viability of the proposed approach. This algorithm can be

applied in vague and unspecified conditions of actual APP

and scheduling problems through imprecise data. To

improve the validation of the proposed fuzzy–SASD

algorithm, its performance was compared with those of

PSO, SA, and GA. The results indicated that the fuzzy–

SASD algorithm variant more precisely solved APP

problems than PSO, SA, and GA.
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