
THE DEVELOPMENT OF A WIRELESS MOBILE RFID READER SYSTEM FOR

REAL-TIME TRACKING BASED ON EMBEDDED ARCHITECTURE

SITI NORAINAH BINTI SEMUNAB

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE

DEGREE OF MASTER OF SCIENCE (COMPUTER AIDED DESIGN

TECGHNOLOGY)

(MASTER BY RESEARCH)

FACULTY OF ART, COMPUTING AND CREATIVE INDUSTRY

UNIVERSITI PENDIDIKAN SULTAN IDRIS

2018

v

ABSTRACT

The aims of the study is to develop a system that able to overcome the limitations of

keeping track inventories on the manufacturing plant. The proposed system is named

Wireless Mobile RFID Reader (WiBRED) in order to improve the accuracy and

traceability of materials in the industrial warehouse management process. This novel

system was developed based on the Waterfall model involving the integration of

active and passive Radio Frequency Identification (RFID) and IOIO is a board

specially designed to work with Android 1.5 and later device to support wireless

communication over a smart phone running on Android operating system. This

system was implemented in a Wireless Mesh Network (WMN) environment in which

its performance was assessed in terms of maximum read range for indoor

environment, multi tags communication efficiency, power consumption, and tag

collection time. The findings of the assessment showed that maximum read range

reach up to 3.5meter for passive wireless communication and 74meter for active

wireless communication. Multi tags communication efficiency resulted more than

75% of data received. The duration of tags collection time for 25 tags is

192.5millisecond and the power consumption is 96.611milliampere. Conclusion,

WiBRED is capable in improving the monitoring of warehouse management and

control the material flow in the manufacturing industry when combining passive

RFID and active RFID connected to Android smart phone and can perform in WMN

platform. The implications of the findings suggest that this system can be used to

improve existing practice of material flow monitoring of manufacturing processes

through greater flexibility and mobility in eliminating errors and non-productive labor

and delays caused by repetitive re-keying production data.

vi

PEMBANGUNAN SENI BINA TERTANAM RFID AKTIF MUDAH ALIH

TANPA WAYAR UNTUK SISTEM PENGESANAN MASA NYATA

ABSTRAK

Tujuan kajian ini adalah untuk membangunkan satu sistem yang dapat mengatasi

batasan penyimpanan inventori di kilang pembuatan. Sistem yang dicadangkan ini

dinamakan Wireless RFID Reader (WiBRED) adalah untuk meningkatkan ketepatan

dan kebolehkesanan bahan dalam proses pengurusan gudang industri. Keaslian sistem

ini dibangunkan berdasarkan model Air Terjun yang melibatkan gabungan Radio

Frequency Identification (RFID) aktif dan RFID pasif yang tertanam dengan peranti

IOIO di mana IOIO adalah papan yang direka khas untuk bekerja dengan peranti

Android 1.5 dan ke atas untuk menyokong komunikasi tanpa wayar dengan telefon

pintar Android. Sistem ini dilaksanakan dalam persekitaran Wireless Mesh Network

(WMN) iaitu prestasinya dinilai dari segi julat bacaan maksimum untuk persekitaran

tertutup, kecekapan komunikasi multi tag, anggaran penggunaan kuasa litar sistem

dan masa pengumpulan tag yang dicadangkan. Keputusan penilaian menunjukkan

bahawa julat bacaan maksimum adalah mencapai 3.5meter untuk komunikasi tanpa

wayar pasif, manakala 74meter untuk komunikasi tanpa wayar aktif. Kecekapan

komunikasi pelbagai tag menghasilkan lebih daripada 75% data yang diterima.

Tempoh masa pengumpulan tag untuk 25 tag adalah 192.5milisaat dan penggunaan

kuasa adalah 96.611miliampere. Kesimpulannya, WiBRED mampu meningkatkan

pemantauan pengurusan gudang dan mengawal aliran bahan dalam industri

perkilangan apabila menggabungkan RFID pasif dan RFID aktif yang boleh

disambungkan ke telefon pintar Android dan boleh dilakukan di platfom WMN.

Implikasi dari penemuan ini menunjukkan bahawa sistem WIBRED ini boleh

digunakan untuk menambahbaik pemantauan aliran bahan yang sedia ada di dalam

proses pembuatan kerana sistem WIBRED yang lebih fleksibel dan mudah alih dalam

menghapuskan kesilapan buruh dan kelewatan yang tidak produktif yang disebabkan

oleh data pengeluaran yang berulang.

vii

TABLE OF CONTENTS

Pages

DECLARATION OF ORIGINAL WORK ii

DECLARATION OF DISSERTATION iii

ACKNOWLEDGMENTS iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xiii

LIST OF FIGURES xv

LIST OF ABBREVIATIONS xix

LIST OF APPENDIXES xxii

CHAPTER 1 INTRODUCTION

1.1 Background Research 1

1.2 Problem Statement 4

1.3 Research Questions 7

1.4 Research Objectives 7

1.5 Research Motivation 8

viii

1.6 Research Contributions 10

CHAPTER 2 LITERATURE REVIEW

 2.1 Research Background 11

 2.2 Overview of Embedded System 13

 2.3 Introduction of RFID 15

 2.3.1 History of RFID 15

 2.3.2 RFID System 17

2.3.2.1 RFID Tag 17

2.3.2.2 RFID Reader 21

 2.3.2.3 Host Computer 21

 2.4 Wireless Communication 22

 2.4.1 Wi-Fi Technology 23

 2.4.1.1 Wi-Fi Architecture 25

 2.4.2 Bluetooth 26

 2.4.2.1 Bluetooth Connections 28

 2.4.3 Zigbee 30

 2.4.3.1 Zigbee Architecture 32

 2.4.3.2 Zigbee Topologies 33

 2.4.4 Comparison of Wireless Communication 35

ix

 2.5 IOIO OTG Board 36

 2.5.1 USB OTG 39

 2.6 Mobile Device Operating System 43

 2.6.1 Symbian 44

 2.6.1.1 Symbian OS Architecture 45

 2.6.2 Blackberry 48

 2.6.2.1 BlackBerry OS Architecture 49

 2.6.3 Windows Phone 51

 2.6.3.1 Windows Phone Architecture 52

 2.6.4 iOS 53

 2.6.4.1 iOS Architecture 54

 2.6.5 Android 55

 2.6.5.1 Android Architecture 56

 2.6.6 Comparison of Operating System 58

 2.7 Warehouse Management Process in Manufacturing Industry 62

 2.8 Research Gaps 67

CHAPTER 3 DESIGN AND DEVELOPMENT

3.1 Overview 69

3.2 Research Procedure 70

x

3.3 Hardware Development Design 74

 3.3.1 Phase 1 79

 3.3.1.1 IOIO-OTG with Smart Phone Integration 81

 3.3.2 Phase 2 86

 3.3.2.1 Passive Reader 87

3.3.3 Phase 3 89

 3.3.3.1 Relay Controller 90

3.4 Software Design and Development 93

3.4.1 Phase 1 97

3.4.2 Phase 2 101

 3.4.2.1 Main 101

 3.4.2.2 Thread 105

 3.4.3 Phase 3 106

3.4.3.1 Decoding Message 110

 3.4.4 Phase 4 112

 3.4.4.1 WiBRED Application Layout 113

3.5 Summary 119

xi

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1 Overview 120

4.2 Application Interface Setup 121

4.3 Anti-Collision Test 123

 4.3.1 Stationary Mode 125

 4.3.2 Mobile Mode 127

4.4 Comparison of Results of the Anti-Collision Test 128

4.5 Maximum Read Range Measurement 130

 4.5.1 Stationary Mode 131

 4.5.2 Mobile Mode 132

 4.5.3 Comparison of Station and Mobile Read Range 133

4.6 Wireless Mesh Network Test 135

4.7 Tags Collection Time 137

4.8 Energy Analysis 139

 4.8.1 Calculated Current Consumption 142

 4.8.2 Measured Current Consumption 145

 4.8.3 Rechargeable Battery Lifetime Estimation 146

4.9 Comparison of WiBRED with Existing Systems 146

4.10 Summary 148

xii

CHAPTER 5 CONCLUSION AND FUTURE WORK

5.1 Conclusion 151

5.2 Future Work 153

REFERENCES 154

APPENDICESS

xiii

LIST OF TABLES

Table No. Pages

2.1 The Milestone in the Development of RFID Technology 16

2.2 Differences among the four types of RFID tags 19

2.3 Frequencies and Data Rates of Zigbee of the Technology 32

2.4 Comparison of Wireless Sensor Network Technologies 35

2.5 USB Connector 40

2.6 Description of USB Pins 41

2.7 The Comparison of Mobile Operating Systems 61

2.8 Supply Chain Management Processes and RFID Benefits 66

3.1 Specifications of the Key Components 70

3.2 Java Classes 101

3.3 The Details of The ID Channel 107

3.4 The Descriptions of The Packet Message 110

3.5 The Sample Data Stored in The Database 111

4.1 Antenna Parameters 124

4.2 Percentage of Data Received for Stationary Mode 126

4.3
Percentage of Data Received for Mobile Mode

128

4.4 The NLOS and LOS Propagations Based on Stationary Mode 132

4.5 The NLOS and LOS Propagations Based on Mobile Mode 132

4.6 Self-Healing Capability of WMN 137

xiv

4.7 Tags Collection Time Based on Stationary and Mobile Modes 138

4.8 The Current Consumption During Transmission and Reception 142

4.9 Calculated Current Consumption Per Circuit 143

4.10 Percentage of Time Usage for Each Mode 144

4.11 The Calculated Current Consumption of The Tag in a Period of 60 S 144

4.12 The Measured Current Consumption 145

4.13
The Measured Current Consumption Of The Tag In a Period Of 60

S
146

4.14 Comparison Of Wibred with Existing Systems 147

xv

LIST OF FIGURES

Figure No. Pages

1.1 The Cost of Materials of Canon’s Lens Production Based on

Conventional System

4

1.2 The Survey Result of Malaysia Companies Regarding The use of

RFID Technology

9

2.1 Block Diagram of a Generic Embedded System 14

2.2 Core Component of RFID System 17

2.3 Wi-Fi Network 24

2.4 Wi-Fi Architecture 26

2.5 Bluetooth Network 27

2.6 Bluetooth Topology 29

2.7 The Zigbee Architecture 31

2.8 Zigbee Topologies 33

2.9 Ioio Board 38

2.10 USB OTG Cable Orientation of an a Device and A B Device Acting

as a Host a Slave, Respectively

42

2.11 USB OTG Cable Orientation af a B Device And an a Device Acting

as a Host a Slave, Respectively

42

2.12 Symbian OS Architecture 47

2.13 BlackBerry 10 Device Architecture 50

2.14 Microsoft’s Windows Phone Architecture 53

2.15 The Architecture of Apple’s iOS 55

2.16 Android Architecture 58

xvi

2.17 The market share of mobile operating systems 60

2.18 The warehouse management process 63

2.19 The Flows of Materials and Information through a factory 64

2.20 Flowchart for the Basic Material Flow 66

3.1 The Research Methodology of the Study Based on Waterfall Model 73

3.2 The Process of the Hardware Development 75

3.3 Comparison of Existing System and Proposed System 76

3.4 The Block Diagram of the Proposed System 77

3.5 The Architectural of Proposed System Design 78

3.6 The Block Diagram of the Hardware Development 79

3.7 Phase 1 of Hardware Development 80

3.8 IOIO-OTG with Smart Phone Integration 82

3.9 Enabling the Developer Options 83

3.10 Enable USB Debugging 83

3.11 UART Communication Test 84

3.12 Selections of Preferred Application 85

3.13 Phase 2 of the Hardware Development 86

3.14 Connection of Passive Reader with PC 87

3.15 List of Firmware Command 87

3.16 Response of SelectTag Command 88

3.17 Scanning Tag with the PC using X-CTU firmware 89

3.18 Phase 3 of the Hardware Development 90

3.19 Schematic of Relay Controller 91

3.20 Communication in Mobile Mode 92

xvii

3.21 Communication in Stationary Mode 92

3.22 The Processes of the Software Development 94

3.23 The Block Diagram of the Software Development 97

3.24 The Android Layout of Development in Phase 1 98

3.25 The Flow of Communication between Android Application and

Electronic Circuit

99

3.26 Looping Test for Transmit and Reception Process 100

3.27 Taxonomy of MainActivity Java Class 102

3.28 The Layout of MainActivity.java 103

3.29 The Flowchart of handleMessage class 104

3.30 The Taxonomy of Read Tag ID Thread 105

3.31 The Taxonomy of Read Tag Info Thread 106

3.32 Details of ID channel 107

3.33 The Flow of the Database Development 109

3.34 The Parts of the Packet Message 110

3.35 The Descriptions of TR and TD in the Database 112

3.36 The WiBRED Icon Displayed on the Interface 113

3.37 The WiBRED Application Layout 114

3.38 Red Indicate No Accessory Connected 115

3.39 Green Indicate an Accessory is Connected 115

3.40 The Flow of Operational Process of the WiBRED Application 117

3.41 To Scan at Tagged Object 118

3.42 A Display of the Description of a Tagged Object 118

4.1 Database Configuration 122

xviii

4.2 The General Hardware Setup 122

4.3 Anti-Collision Test Setup 123

4.4 Antenna 1 and Antenna 2 Used in the Test 124

4.5 Results of Anti-Collision Test Based on Stationary Mode 126

4.6 The Results of Anti-Collision Test Based on Mobile Mode 127

4.7 Comparison of Results of the Anti-Collision Test Based on Antenna

1

129

4.8 Comparison of Results of the Anti-Collision Test Based on Antenna

2

129

4.9 Test Setup for Read Range Measurement 130

4.10 The Read Range Result of Passive RFID Using Antenna 1 133

4.11 The Read Range Result of Passive RFID Using Antenna 2 134

4.12 The Read Range Result of Active RFID 134

4.13 Layout of Wireless Mesh Sensor Network in Multi-Hop

Environment

136

4.14 Tags Collection Time Based on Stationary and Mobile Modes 138

4.15 The Setup of the Energy Consumption Measurement 140

4.16 The Waveform of Scan Tag Process 141

xix

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

AIDC Automatic Identification and Data Capture

AP Access Point

API Application Program Interface

ATM Automated Teller Machine

BS Base Station

BSS Basic Service Set

CE Compact Edition

CPU Central Processing Unit

DES Data Encryption Standard

DS Distribution System

ESS Extended Service Set

HAL Hardware Adaptation Layer

HNP Host Negotiation Protocol

I2C Inter-Integrated Circuit

IBM International Business Machines

ID Identification

IERC Internet of Things European Research Cluster

IOIO-OTG IOIO-On-The-Go

IoT Internet of Things

IP Internet Protocol

IT Information Technology

JVM Java Virtual Machine

xx

LAN Local Area Networks

LCD Liquid Crystal Display

LED Light Emitting Diode

LOS Line-Of-Sight

MAC Medium Access Control Layer

MCU Microcontroller Unit

MIDP Mobile Information Device Profile

NLOS Non-Line-Of-Sight

OS Operating System

PC Personal Computer

PDA Personal Digital Assistant

PHY Physical Layer

PWM Pulse Width Modulation

RAM Random-Access-Memory

RF Radio Frequency

RFID Radio Frequency Identification

RIM Research in Motion

ROM Read-Only-Memory

SCO Synchronous Connections Oriented

SDK Software Development Kits

SIG Special Interest Group

SPI Serial Peripheral Interface

TCL Tool Command Language

UART Universal Asynchronous Receiver/Transmitter

UI User Interface

xxi

USB Universal Serial Bus

USB-OTG USB On-The-Go

WAP Wireless Application Protocol

WiBRED Wireless Mobile RFID Reader

Wi-Fi Wireless Fidelity

WIP Work-In-Progress

WLAN wireless local area networks

WMN Wireless Mesh Network

WPAN Wireless Personal Area Network

WSN Wireless Sensor Network

WUSB Wireless Universal Serial Bus

ZC Zigbee Coordinator

ZED Zigbee End Device

ZR Zigbee Router

xxii

LIST OF APPENDIXES

 A Source Code of MainActivity.java

 B Source Code of Getting Tag ID

 C Source Code of Tag Info Thread

 D Source Code of Tag Info Thread

 E Source Code of Tag Description Dialog Box

 F Source Code of Database

 G Measurement Results

CHAPTER 1

INTRODUCTION

1.1 Background Research

Internet of Things (IoT) is a global network infrastructure, linking physical and virtual

objects through the exploitation of data capture and communication capabilities (Jia,

Feng, Fan, & Lei, 2012). It will offer specific object identification and connection

capability as the basis for development of independent cooperative services and

applications, which is characterized by high degree of autonomous data capture, event

transfer, network connectivity and interoperability.

2

According to the IEEE Journal OF Internet of Things, an IoT system is a network

of networks where, typically, a massive number of objects, sensors and devices are

connected through communications and information infrastructure to provide value-

added services via intelligent data processing and management for many different

applications (Porkodi & Bhuvaneswari, 2014). For example, Radio Frequency

Identification (RFID), Zigbee and Wireless Sensor Network (WSN) are used for wireless

communication among diverse systems. In addition, The Internet of Things of European

Research Cluster (IERC) provides a succinct definition of IoT, stating that it is a dynamic

global network infrastructure with self-configuring capabilities based on standard and

interoperable communication protocols, where physical and virtual “things” have

identities, physical attributes, and virtual personalities and use intelligent interfaces, and

are seamlessly integrated into the information network (Gaikwad, Gabhane, & Professor,

2015).

In this regard, the characteristics of RFID serve as a prerequisite for the IoT.

Admittedly, RFID is not new technology since it has been popularly used in the early

twentieth century. The popularity of RFID lies in its practicality in a wide variety of

applications. As such, it can virtually provide almost limitless potentials for future

applications. Specifically, RFID technology can be efficiently used to monitor

manufacturing products that constantly moving and have low visibility (Bachelor, 2014).

Hence, it is not surprising that the use of RFID technology has been pervasive in many

industries. More specifically, the technology has almost been fully utilized in the

3

manufacturing industry, in view of the diversity and complexity of manufacturing

products that need to managed efficiently.

For example Wal-Mart has been using RFID technology since 2003, the impact of

which has made the company’s operations become more efficient. This technology is

poised to become more dominant in this decade as many industries across the globe will

experience fast and high growth. For example, the Asia-Pacific region is expected to

experience high economic growth in the next 10 years, with many expensive and massive

projects being carried out by a strong legion of private companies and government

enterprises(Bachelor, 2014). For example, Canon is one of the leading and largest camera

producers in the world that is using the RFID technology in their manufacturing process.

In lens production, considerable quantities of waste material resulted from the grinding

process. Previously, based on its conventional system, about 1% of defective products

could be recorded. Figure 1.1 shows a figure highlighting various costs along the process

chain at Canon. For each machining process, the costs of raw materials, system, and the

disposal were recorded and distributed between outputs. As shown, 32% of the costs

were attributed to material loss. The figure shows that within six months the company

managed to cover the cost of deployment of RFID system by only focusing on

supervisory labour cost. Clearly, further innovarove use of RFID can lead to fewer

downtimes, higher productivity, and reduced maintenance cost.

4

Figure 1.1. The Cost of Materials of Canon’s Lens Production Based on Conventional

System (Resources, 2013)

1.2 Problem Statement

Typically, a firm’s stocks consist of a variety of inventories, including finished goods,

work-in-progress (WIP) materials, and raw materials (Jou, Wee, & Chen, 2009). As such,

keeping track of such materials is very critical to the company’s operational efficiency.

Nevertheless, this has become a major problem to many manufacturing companies, given

their inability to gather and control accurate product and process data, causing massive

loss of profits and competitiveness (North, 2013). Nowadays, the manufacturing industry

is facing many challenges due to a host of problems, notably because of a lack of reliable

tracking systems to control, monitor, and manage the flow materials and items

(Ruankaew & Williams, 2013). In fact, material tracking and control systems are new to

5

the manufacturing industry, as many companies strive to improve their manufacturing

productivity and quality of products.

Without any anomalies in the expected physical material flows, the amount of

good available in an inventory system would increase each time an expected

replenishment is received and decrease each time a demand is satisfied. The existence of

several unknown outputs and inputs, such as missing, misplaced, or inaccurate items

(which are attributable to unreliable suppliers), the actual material flow would differ from

the nominal one (Ruankaew & Williams, 2013). Thus, perfect synchronization between

the physical flow and the associated data recorded in the information system is needed to

verify if events happened as planned (without any loss or delay of products) and to

identify the reasons for any deviations that took place.

In recent years, the use of mobile phones has been increasing rapidly, far

surpassing the use of personal computers (PCs). Therefore, it is not only appropriate but

also timely for manufacturing companies to capitalize on the accessibility and mobility of

mobile devices to keep track and obtain product data quickly and accurately. With mobile

information system, users are no longer required to physically go to the various process

stations of a manufacturing shop floor to collect data or information of product parts,

items, or components. In this study, the researcher propose a novel monitoring system,

designed and developed using a multi-disciplinary approach with the use of an embedded

system, RFID technology, Zigbee technology, wireless mesh network (WMN), android

operating system, user interface, and Java Application. Specifically, the development of

6

the proposed system involved the integration of several technologies, notably hardware,

mobile application (software), and networking. The system was applied for warehouse

management process to automatically and remotely trace and monitor product data

without any human interventions, which helped automate and improve the traceability

and acquisition of important information.

Currently, most existing systems rely on barcodes and handheld RFID devices,

making the tracking process agonisingly slow and susceptible to errors. Such problem is

inevitable because barcodes depend on limited line of sight scanning to trigger an event,

thus restricting the traceability of materials. Moreover, only a single barcode can be

scanned at a given time within a short range of distances. To make matter worse, existing

systems do not have a database that allows item tracking at various levels, and they are

inherently susceptible to environmental damage and have limited visibility.

Therefore, the proposed system would be able to overcome the above limitations

by using the latest Radio Frequency-Identification (RFID) technology. Essentially, an

RFID device has a tag affixed to a product that can be identified and tracked using radio

waves. In this regard, handheld communication devices are deemed inappropriate for

such tracking in complex warehouses as they do not support real-time database

transmission and have limited memory space to store large quantity of data. As a

workaround, USB devices can be used to transfer important product data to PCs.

Additionally, the use of Wi-Fi as a wireless platform can make the implementation of

such a tracking system quite expensive.

7

1.3 Research Questions

In this study, the researcher formulated two main research questions to guide the study as

follows:

1. Is the proposed tracking system applicable for the manufacturing industry?

2. How does the design of the proposed tracking system support the communication

between Android-based mobile phones and RFID sensors using the mesh network

platform?

1.4 Research Objectives

The main aim of this research is to design and develop an embedded architecture of the

proposed system based on the integration of Android mobile phones, passive RFID, and

Zigbee technology in the WSN as the platform for traceability of objects or parts.

Specifically, the researchers identified three research objectives as follows:

a. To design and develop the proposed system that can serve as a feasible solution to

tracking problem in the manufacturing industry.

b. To determine the capability of the proposed system based on 2.4 GHz Zigbee to

communicate with Android-based smart phone in a mesh network.

8

c. To test the performance of the proposed system in a real manufacturing

environment.

1.5 Research Motivation

According to the result survey conducted by Sulaiman, Umar, Tang, &

Fatchurrohman(2012), 38% of the surveyed companies indicated that they fully deployed

RFID systems in their factories, and another 23% of the companies indicated they were

planning to deploy such systems. In addition, 8% the companies stated that they intended

to use such systems in the near future. In contrast, the remaining 23% of the companies

indicated that they did not intend to deploy such RFD systems.

 These finding clearly show that the adoption of RFID technology in Malaysia in

quite low. As such, more efforts are required to encourage and help more manufacturing

companies in Malaysia to adopt the RFID technology. On the positive side, the findings

also indicate that a sizeable number of companies has some plans to introduce such

technology in the near future, thus relevant parties should focus such efforts on these

companies. Arguably, such companies might have realized the immense impacts that the

RFID technology would have on the manufacturing productivity. In view of this positive

finding, this research was carried out to help improve material flow traceability and

accuracy of a manufacturing company by automating the warehouse inventory tracking

9

and management process. Figure 1.2 summarizes the survey results of Malaysian

companies regarding the use of RFID technology (Sulaiman et al., 2012).

Figure 1.2. The Survey Result of Malaysia Companies Regarding The use of RFID

Technology (Sulaiman et al., 2012)

10

1.6 Research Contributions

The following are the contributions made by the present research.

1. Reducing fixed labor cost

By using WIBRED, manufacturing companies can eliminate transcription errors and non-

productive labor and delays caused by repetitive re-keying of production data into

enterprise systems. Such a novel automatic system helps eliminate manual data

collection, data review, transcription, or re-entry, which effectively minimize the

associated fixed and non-productive labor costs.

2. Enhanced knowledge

The creative features of this innovative system are based on four combinations of

technologies, enabling efficient, automated, and precise object tracking. Admittedly,

many industrial applications have been using RFID technology in systems to track

movements of human and product. However, this system can further improve such

tracking by using embedded passive RFID with Zigbee technology, WSN and Android

OS technology, which effectively helps create an effective solution to existing problems.

More importantly, the design of the system is based on real-time, distributed principles to

deliver latest information, data, or instructions to users, thus improving control and

reducing labor cost.

CHAPTER 2

LITERATURE REVIEW

2.1 Research Background

In this chapter, the researcher discusses the technology used in the development of the

tracking system, namely an embedded system, RFID, Android operating system, WMN

technology, and Zigbee technology protocol. Additionally, related works of existing real-

time locating systems and existing mobile RFID readers are discussed, especially in

terms of the differences in the features between existing mobile RFID readers and the

proposed solution. In fact, the proposed system was developed for industrial warehouse

application: therefore, technologies related to such application is discussed in detail.

12

According to Liukkonen, Havia, & Hiltunen(2012), modern manufacturing is

constantly facing new challenges due to the evolving production requirements, increasing

product variety and complexity, miniaturisation of component and products, new

environment regulations, and increasing time-based competition. In this regard, many

manufacturing companies have to deal with a host of challenges, such as information

gaps between individual manufacturing units, poor visualisation of production stages, and

the state of warehouse.

Of late, RFID technology is making a strong presence in manufacturing, given its

capability to enhance various manufacturing processes, making them more efficient and

productive. In their paper, Huang, Saygin, & Dai(2012) argue that RFID can be used to

reduce inventory levels, cut down lead times, and facilitate enterprise-wide operational

visibility throughout the entire product life cycle. Moreover, with such technology,

information about an object‘s current location, condition, and history can be stored and

retrieved real-time, resulting in better visibility of products that leads to improved

decision making (James, Cheng, & Huang, 2012).

Industry 4.0 is the name of the current trend of automation and data exchange in

manufacturing technologies, with the numeral ―4.0‖indicating the fourth industrial

revolution. Alternatively, it also means the ―Industrial Internet‖ or the ‗Digital Factory‘.

Fundamentally, Industry 4.0 focuses on the end-to-end digitisation of all physical assets

and their integration into digital ecosystems with value chain partners, as opposed to

Industry 3.0 that was mainly focused on the automation of single machines and

13

processes. According to Francisco Almada-Lobo(2015), Industry 4.0 envisages an

ecosystem of ―smart factory,‖ in which cyber-physical systems monitor the physical

processes of the factory and make decentralized decisions. Hence, the proposed system

was designed and developed with similar characteristics of the Industry 4.0, which can

help enhance interoperability among connected machines, devices, and people,

information transparency, technical assistance, and decentralized decision-making

(Deloitte, 2015; Dr. Reinhard Geissbauer, Vedso, & Schrauf, 2016).

2.2 Overview of Embedded System

Clearly, many workers and practitioners can recognize the increasing number of

intelligent functions of devices that help simplify their daily tasks. Nevertheless,

according to Sangiovanni-Vincentelli, Zeng, Natale, and Marwedel(2013), a majority of

personnel are almost oblivious to the number of problems faced by the industry in coping

with the increasing complexity of embedded functionality. Specifically, there is an urgent

need to enhance contents and add new intelligent functions to manufacturing processes to

achieve reduced manufacturing lead-time, robustness, and future extensibility. As such,

the use of embedded systems can help relevant industries to develop their own devices

based on the needs of their daily operations.

14

An embedded system can be defined as a combination of hardware and software

that forms a part of some larger system and are generally designed to perform one or

many tasks according to a fixed set of rules, programs, or plans of a working

organization. Notably, an embedded system consists of a specially designed micro-

processor, programmable read-only-memory (ROM) or random-access-memory (RAM),

and other circuitry. A more general-purpose definition of an embedded system is that it is

a device that controls, monitors or assists the operation of equipment, machinery, or

plant. In recent years, embedded systems have become an important feature in many

products, such as home appliances, automobiles, automated teller machines(ATMs),

missile guidance systems, and nuclear power plants, which are mostly controlled by such

system (Barr & Massa, 2009).

Figure 2.1 shows the block diagram of a generic embedded system. In this study,

the researcher focused on industrial manufacturing by proposing a new architecture of

embedded system.

Figure 2.1. Block Diagram of a Generic Embedded System (Medavarapu, 2004)

15

2.3 Introduction of RFID

Actually, RFID technology has been used in so many applications for over 60 years.

Essentially, it is a wireless technology or system that uses transmitted radio signals to

automatically tag, identify, track, and trace movements of an object (Abdullah, Ismail, &

Abdul, 2015). It functions in different frequency ranges based on the different types of

tag used. Specifically, RFID technology is classified as a wireless Automatic

Identification and Data Capture (AIDC), with which users can send and receive data with

no physically contacts occurring between interrogators and tags. Remarkably, it can hold

more information than data other carrier systems, such as Bar-Code system (Zare

Mehrjerdi, 2011).

2.3.1 History of RFID

The roots of RFID technology can be traced back to World War II. The Germans,

Japanese, Americans and British were all using radar to warn of approaching planes

while they were still miles away. However, there was a main problem in differentiating

between an enemy‘s plane and one‘s own plane. Fortunately, the Germans discovered

that if pilots rolled their planes as they returned to base, radio signals would be reflected

back (Srivastava, 2006). Table 2.1 shows the Milestone in the Development of RFID

technology.

16

Table 2.1

The Milestone in the Development of RFID Technology

Decade Advancement

1920s  Development of radar and early RFID, which was a combination of radio

broadcast technology and radar

1940s  The system was able to identify a friend‘s or a foe‘s military planes in the

second World War

1960s  Tagging was developed further to improve the safety and security in

transporting nuclear materials

1970s  The first US patent for active RFID tag with rewritable memory

 Passive transponder used to unlock a door without a key

 The technology was transferred to the public sector by Los Alamos

Scientific

 Civilian use of the system based on the results of two companies‘ research

1980s  First automated toll payment system based on RFID.

 Passive RFID system based on ultra-high frequency (UHF) radio waves to

track and identify cows

 First low frequency (125 kHz) systems which enable smaller transponders

 First high frequency (13.56 MHz) systems which offered greater range

and faster data transfer rates

1990s  First UHF system by IBM

 Auto-ID center was established at the Massachusetts Institute of

Technology in 1999, using low-cost tags in supply chain by David Brock

and Sanjay Sarma

2000s  Air interface protocols (Class 1 and Class 0), and the EPC numbering

schema were developed

 EPCglobal was established to commercialize EPC technology

2010s  Enhancement in the miniaturization and technology development

 Reduction in the cost of RFID technology development

 Utilization of the technology in numerous fields

Adaptation from (Mika, 2014).

17

2.3.2 RFID System

In general, an RFID system comprises three components, namely a host computer, a

coordinator, and a tag. An RFID tag or a transponder can be attached to a product as a

means of identification. This tag contains an integrated circuit for storing information,

including a serial number, configuration instructions, activity history, modulating and

demodulating a radio frequency (RF) signal, and other specialized facilities (Cornel

Turcu, Turcu, & Graur, 2008). Figure 2.2 shows the core components of RFID system.

Figure 2.2. Core Component of RFID System (Abdullah et al., 2015)

2.3.2.1 RFID Tag

An RFID tag is a tiny radio device that is also referred to as a transponder, a smart tag, a

smart label, or a radio barcode. The tag comprises a simple silicon microchip (typically,

less than half a millimetre in size) attached to a small flat aerial and mounted on a

substrate. The whole device can then be encapsulated in different materials, such as

18

plastic, depending on the intended use. The finished tag can be attached to an object, such

as an item, a box, or a pallet, and read remotely to ascertain its identity, position, or state.

The circuit is attached to a miniature antenna with a label to permit a tag to be

attached to a desired physical object. The RFID tag transmits its data in response to an

interrogation received from a read-write device called an RFID reader or an interrogator.

This device decodes the tag signal and transfers the data to a computer through a cable or

wireless connection. The tags and readers are designed with a specific operating

frequency. Based on wireless communication, all data may be read from a distance

between the RFID chip and the RFID reader. The reading range varies in accordance

with the operating frequency, the size of the reader antenna, the orientation of the RFID

tag toward the antenna, the tag position with respect to the antenna core, and the tag

type. There are three types of tags, namely passive tag, active tag, semi-passive tag, (Zare

Mehrjerdi, 2011). The three types of tags are explained below, and their differences are

summarized in Table 2.2.

1. Passive tags

Passive RFID tags do not contain a battery; hence, they draw the required power from the

radio wave transmitted by the reader. The reader transmits a low power radio signal

through its antenna to the tag, which in turn receives it through its own antenna to power

the integrated circuit (chip). They have a smaller memory capacity and are considerably

lower in cost, making them ideal for tracking lower cost items. Since the 1980s, logistic

19

and consumer goods industries have depended on passive RFID solution due to low cost

of tag and great versatility of the technology (Hakala, 2013).

2. Active tags

Active tags are battery powered. They broadcast a signal to the reader and can transmit it

over the great distances (100+ meters making it ideal to track high-value goods, such as

vehicles and large containers of goods. Shipboard containers are a good example of an

active RFID tag application.

3. Semi-passive tags

Semi-passive tags use a battery to run its chip's circuitry, but it communicates by drawing

power from the reader (Zare Mehrjerdi, 2011). The frequency range is higher compared

to passive tags.

Table 2.2

Differences among the Four Types of RFID Tags

Feature Active Passive Semi-passive

Power source Battery Induction from

electro-magic

Battery and

induction

Read distance Up to 30 meters 3-7 meters Up to 30 meters

Frequency High Medium High

Information 32 kb or more 2 kb Read Only 32 kb or more

20

Storage (Read/Write) (Read/Write)

Generally, active and semi-passive tags are more expensive than passive RFID

tags because the former contain more hardware. As such, active and semi-passive tags are

reserved for costly items that are used to read over great distances. Yet, this flexibility

does have a cost, as active tags require more maintenance and have a limited life span

based on on-board power supplies, normally lasting from5 to 10 years. In contrast,

passive RFID tags have lower production costs, allowing them to be applied to less

expensive items. In fact, improved passive tag technology has been the driving force for

the current wave of RFID adoption, spurred by substantial reduction in cost and increase

in operating range. In some cases, active tags and tags with sensors can be used to

monitor product quality. Another factor that also influences the cost of RFID tags is data

storage. In general, there are four classes of tag as follows:

1. CLASS 0 (Read-only) Tags are the simplest type of tags. They are programmed

with unique information (ID number) stored on the read-only chips, which cannot

be altered after manufacturing (Deavours, 2005).

2. CLASS 1 (With Read-Write) tags allow users to add information to the tag or

write over existing information when the tag is within the range of the reader.

Read-Write chips are more expensive that Read-only chips (Deavours, 2005).

21

3. CLASS 2 (Read Write) tags are the most flexible type of tag, enabling users to

read and write data into the tags‘ memory (Cristina Turcu, 2011).

4. CLASS 3 (Read-Write with on board sensors) tags either semi-passive or active

tags, which may contain sensors for recording parameters, such as temperature

and pressure, and they can record readings into tags‘ memory (Vhatkar & Bhole,

2010).

2.3.2.2 RFID Reader

An RFID reader is also called an interrogator or a scanner, and its complexity and

configuration depend on the functions it need to carry out, which can vary quite

significantly from one application to another (Duroc & Kaddour, 2012). It sends RF data

to and receives RF data from the tag via antennas. Moreover, the reader may have

multiple antennas to send and receive radio waves.

2.3.2.3 Host Computer

Data received by the readers are passed to a host computer, which may run specialist

RFID software or middleware to filter the data and route such data to the correct

application to be processed into useful information.

22

2.4 Wireless Communication

Wireless communication is the transfer of information between two or more points that

are not connected by an electrical conductor. In the last 14 years, such communication

has become an important feature in the manufacturing of commercial products, and it has

also emerged as a popular research topic. Evidently, wireless technologies have made

significant progress in recent years, allowing many applications to support high-speed

data communications and transmission using sophisticated mobile devices and smart

objects. To this end, various applications based on such technologies have been

developed to support a diverse range of communications (Saad, Cheikh, Mostafa, &

Abderrahmane, 2014). Interestingly, these technologies can be used in many situations

where mobility is essential and the use wires is not practical. Lately, the emergence of

radio frequency wireless technologies has rendered expensive wiring virtually eliminated.

Of late, wireless networks have been widely deployed in communication

industries, because wireless communication removes the restriction of wired connections

and supports fast access to the Internet. Essentially, wireless technology enables efficient

connectivity between two or more computers to communicate using standard network

protocols (Tomai & Toma, 2009).

Globally, wireless technologies have been used in many applications throughout

the world. For example, wireless communication via satellites helps connect

geographically dispersed countries or places more efficiently. For areas that are close

23

with one another (such schools, colleges, offices, factories, and industries), wireless

sensor networks, such as Bluetooth, Wireless Fidelity (Wi-Fi) and Zigbee, can be used to

communicate or transfer data among such various entities. In this regard, the main

advantages of wireless sensor networks are their reliability, authenticity, and lower cost,

compared to those of the wired technologies.

2.4.1 Wi-Fi Technology

Wi-Fi is a wireless technology that allows electronic devices to exchange data over a

network, such as the internet (Khanna & Gupta, 2013; Lee, Su, & Shen, 2007) . Such a

network is based on wireless local area networks (WLAN) technology using the IEEE

standard 802.11, including 802.11a, 802.11b, 802.11g and 802.11n,withwhich centralized

router devices that can share Wi-Fi signal (Abinayaa & Jayan, 2014; Anamika Vatsal &

Fatima, n.d.; Khanna & Gupta, 2013; Nagarajan & Dhanasekaran, 2015). In this respect,

Wi-Fi Alliance, which is the owner of such technology, promotes these standards with

the aim of improving the interoperability of wireless local area network products (Tomai

& Toma, 2009) Without doubts, Wi-Fi has been an integral component of a

communication infrastructure, which is attributed its robustness, expandability, cost-

effectiveness, broad coverage area, some non-line-of-sight (NLOS) transmission

capacity, small disturbance of links, and mesh topology (Lee et al., 2007). Moreover, it

can support high data-transfer rate up to 300 Mbps and throughput rate of 100 to 150

Mbps, depending on the standard used.

24

Nonetheless, in an indoor environment, Wi-Fi technology faces a common

problem called multipath interference due to reflection of signals from the furniture,

walls and other obstacles. Despite this problem, Wi-Fi remains popular for home and

business networks, because it allows local area networks (LANs) to operate without

cables and wiring as illustrate in Figure 2.3. Furthermore, it provides wireless broadband

internet access for many modern devices, such as laptops, smart phones, and tablets.

However, increasing the number of devices in a single Wi-Fi connection, the strength of

signals of each device becomes weak (Khanna & Gupta, 2013).

Figure 2.3. Wi-Fi Network (Abinayaa & Jayan, 2014)

25

2.4.1.1 Wi-Fi Architecture

Figure 2.4 shows the architecture of a Wi-Fi LAN consisting of the following

components:

1. End user: The device must be based on IEEE 802.11 board, such as radio network

interface cards: Personal Digital Assistant (PDA), smart phone and laptop.

2. Base Station/Access Point (BS/AP): a device with antenna that sends and receives

radio packets over wireless environment from the end user devices.

3. Basic Service Set (BSS): The cell coverage formed by radio antenna of the

Access Point device.

4. Distribution System (DS): The items that provide Internet access to Aps, with all

devices communicate and interconnect with each other through a network router.

5. Extended Service Set (ESS): The component that contains all BSSs, APs and DS

from a Wi-Fi LAN.

26

Figure 2.4. Wi-Fi Architecture (Tomai & Toma, 2009)

2.4.2 Bluetooth

Bluetooth is a robust wireless technology that requires low power and supports short-

range wireless connection between several types of devices, including mobile phones,

computers, entertainment systems, and other electronics (Aju, 2015; Idris & Muhammad,

2016; Lee et al., 2007). Such devices need to be placed approximately within 10 meters

to each other, and the typical data rate is 2 Mbps (Abinayaa & Jayan, 2014; Idris &

Muhammad, 2016). Such devices need to be placed approximately within 10 meters to

each other, and the typical data rate is 2 Mbps (Idris & Muhammad, 2016). Typically,

Bluetooth signals operate in the 2.4 GHz frequency band, where every device using

Bluetooth has a small microchip that can send both data and voice signals (Nagarajan &

27

Dhanasekaran, 2015). Actually, Wireless Personal Area Network WPAN has been

adopted solely for replacing cable technology.

In view of its capability, the use of Bluetooth technology is increasingly

expanding at a rapid rate, making its way into several domains, such as automation,

health and fitness, mobile telephony, personal computer (PC), and other peripheral

devices (Aju, 2015) as shown in Figure 2.5. Bluetooth operates in 2.4 GHz frequency

band all over the world. From the historical perspective, Bluetooth takes its name from

Harald Bluetooth, and it was developed by an Ericsson-led consortium, including

Toshiba, International Business Machines (IBM), Nokia and Intel. In early January 2000,

the technology was further promoted by the Bluetooth Special Interest Group (SIG)

comprising 1371 members (Verma, Singh, & Kaur, 2015).

Figure 2.5. Bluetooth Network (Aju, 2015)

28

2.4.2.1 Bluetooth Connections

Two connectivity topologies are defined in Bluetooth, namely the piconet and scatternet

(Aju, 2015). Based on piconets, it can support up to eight active devices, with a

maximum of three synchronous connections oriented (SCO) link (SCO) link. Essentially,

the piconet is a WPAN formed by a Bluetooth device serving as a master in the piconet,

with one or more Bluetooth devices serving as slaves. Each piconet is defined by the

frequency-hopping channel based on the address of the master, where all devices

participating in communications in the piconet are synchronized using the clock master of

the master (Lee et al., 2007). Bluetooth devices can be connected via point-to-point

connection and point-to-multipoint connection to form a piconet (Patel, Patel, & Patel,

2011). Bluetooth radios connect with each other in piconets, which are formed by the

master radio simultaneously connecting up to eight slave radios. Scatternet comprises of

two or more piconets. It facilitates high densities of communicating devices, making it

possible for dozens of piconets to co-exist and independently communicate in close

proximity without significant performance degradation. It supports communication more

than 8 devices. Scatternet can be formed when a member of one piconet (either the

master or one of the slaves) elects to participate as a slave in a second, separate piconet

Figure 2.6 shows the Bluetooth topology of such connections. The Bluetooth radios are

symmetric such that any Bluetooth radio can become the master or slave radio, and the

piconet configuration is determined at the time of such formation. Typically, the

connecting radio will become the master; however, the "master/slave swap" function can

reverse such roles.

29

Figure 2.6. Bluetooth Topology (Patel et al., 2011)

Upon successful connection, a Bluetooth device can be in any of the four

following states: Active, Hold, Sniff, and Park mode, with the last three being power-

saving modes (Patel et al., 2011).

1. Active mode: A Bluetooth device actively participates on the channel.

2. Hold mode: A slave can perform processes, such as scanning, paging,

inquiring or attending another piconet or entering a low power sleep mode.

3. Sniff mode: The duty cycle of the slave‘s listen activity can be reduced,

thus enabling the master to only transmit in pre-specified time slots.

4. Park mode: This mode helps conserve power, which would be appropriate

for a device in the piconet that only needs to be randomly accessed.

30

2.4.3 Zigbee

Zigbee (IEEE 802.15.4) is a wireless technology that is based on the Institute of

Electrical and Electronics Engineers (IEEE) standard 802.15.4, which defines the

physical (PHY) and Medium Access Control (MAC) layers, and works on a low data rate

standard (Abdulla, 2012). According to (Narayanan, Muthumanickam, & Nagappan,

2015) Zigbee has many advantages compared to Bluetooth technology, characterised by

its diverse transmission range of 10 to 100 meter, low cost, and low power consumption

at low data rate (Bal, 2014).

Essentially, it uses inexpensive components that can run using 2.4 GHz radio

frequency, with data throughput of up to 250 kbps for transferring data between Zigbee

modules. Moreover, Zigbee wireless devices can operate for many years with the use of

battery power (Bal, 2014). As such, Zigbee technology is suitable for a wide range of

monitoring activities, including building automation, health monitoring, automated meter

reading equipment, grain storage, remote controls, heating and cooling control devices,

fans, and structural integrity (Kim & Ayurzana, 2009).

Figure 2.7 shows Zigbee architecture consisting of four layers. The top two layers

are the Application and the Network and Security layer. These layers‘ specifications are

governed by Zigbee Alliance, which provides several manufacturing standards for

relevant industries. The bottom two layers are the MAC and PHY layers. These layers‘

specifications are based on the IEEE 802.15.4-2006 standard to ensure uninterrupted

31

coexistence of devices without any interference with other wireless protocols, such as

Wi-Fi (Netalkar, Kaushal, Shekar, & Shet, 2014).

Figure 2.7. The Zigbee Architecture (Netalkar et al., 2014)

Given that Zigbee standard is based on IEEE 802.15.4, implementing a Zigbee

network entails compliance with similar requirements of the 802.15.4 network. With

IEEE 802.15.4 specification, the design of PHY level can help support low-cost and top-

level integrated demand. Table 2.3 summarizes the working band and data transmission

rate of the technology.

32

Table 2.3

Frequencies and Data Rates of Zigbee of the Technology

Band(ISM) Geographic

Coverage

Burst Data Rate No of Channels

2.4 GHz World Wide 250 kbps 16

868MHz Europe 20 kbps 1

915MHz Americas 40kbps 10

Adaptation

from(Dharmistha &

Vishwakarma,

2012)

Adaptation

from(Dharmistha &

Vishwakarma,

2012)

Adaptation

from(Dharmistha &

Vishwakarma,

2012)

Adaptation

from(Dharmistha &

Vishwakarma,

2012)

2.4.3.1 Zigbee Architecture

Fundamentally, the architecture of a Zigbee system consists of three different types of

(Netalkar et al., 2014) as follows :

1. Zigbee Coordinator (ZC): As the most capable device, ZC acts as a root and a

bridge of the network that controls the entire network formation and maintains the

security of the network. There is only one ZC in each network, and it is the device

that initiates the formation and establishment of such network.

2. Zigbee Router (ZR): ZR is an optional network that acts as intermediary devices

element whose major function is to extend the range of the network. It keeps a

routing table and controls the addressing/routing issues for the connected end

devices.

33

3. Zigbee End Device (ZED): A ZED performs specific sensing or control functions.

It also has the capability to communicate with the above two types of device,

which functions as parent nodes. This relationship allows the node to be asleep for

a significant amount of time, effectively extending the battery power. While

ZEDs are allowed to periodically cycle in a low-power sleep mode in networks,

ZRs and ZCs must always, in general, remain awake. With regard to the network

layer, both ZCs and ZRs participate in multi-hop routing activities, and ZEDs

only process messages to and from their own associated parent device within their

radio transmission range (C. Li, Wang, & Guo, 2010).

2.4.3.2 Zigbee Topologies

There are three network topologies that are specified for the Zigbee network, namely the

star, tree, and mesh topology (Aju, 2015; Dharmistha & Vishwakarma, 2012) as shown in

Figure 2.8.

Figure 2.8. Zigbee Topologies

34

1. Star Topology

In addition to end devices, routers can also be used. However, only the router‘s

application will be used, not its function. Therefore, the end devices or routers

become the children of the coordinator. The advantage of this topology lies in its

simplicity. By contrast, the disadvantage of this topology is that it does not

provide an alternative route for packet transmission and reception, thus increasing

the workload of the coordinator and causing congestion in the network.

2. Mesh Topology

This topology comprises the coordinator, routers, and end devices, with the

routers extending the network range over which packets will pass through

multiple hops to reach destinations and enabling communication between any

source and destination in the network. As such, this topology is also called peer-

to-peer multi-hop network. The advantage of this topology is that it provides

alternative paths for a packet to reach its destination if a previously selected path

failed to function. This topology is also called as a ―self-healing‖ network,

making the addition or removal of nodes easier.

3. Tree Topology

For the tree topology, the coordinator at the top is connected to several routers

and end devices, rendering them as the coordinator‘s children. Moreover, a router

can connect to several other routers and end device, thus extending the network.

Only the coordinator and routers can have children and become a parent. In

35

contrast, the end devices are not allowed to have children, thus disenabling them

to become a parent in this topology. Similar to the star topology, this topology

provides no alternative paths to nodes to reach their destinations, as a

malfunctioned parent will disable the communication between nodes in the

network, even if such nodes are geographically close. Furthermore, a defective

router will prevent its children from communicating with the rest of other nodes

in the network (Al-Harbawi, Rasid, & Noordin, 2009)

2.4.4 Comparison of Wireless Communications

Table 2.4 shows the comparison of four different wireless communications in terms of

their frequency, maximum data rate, maximum transmission distance, tracking location,

and supported topologies. Even though WiMax, Wi-Fi, Bluetooth, and Zigbee operate at

the same frequency of 2.4 GHz, no interference among them occurs because their

protocols are not the same.

Table 2.4

Comparison of Wireless Sensor Network Technologies

Name WiMax(4G) Wi-Fi Bluetooth Zigbee

Protocol
IEEE

802.16m

IEEE

802.11 G
IEEE 802.15.1

IEEE

802.15.4

Frequency
2.4 GHz,

10-66GHz
2.4 GHz 2.4 GHz

2.4 GHz,

915 MHz,

868 MHz

Maximum

Data Rate
300 Mbps 54 Mbps 732 kbps 250 kbps

36

Adaptation from (Saad et al., 2014; W.Fisher, 2013)

 Among all four wireless communications, Zigbee technology is selected because

of the read range, access protocol and supported topologies. Eventhough WiMax has

longer read range and support mesh and star topologies, but it did not support CSMA/CA

access protocol. CSMA/CA is effective in avoiding data collision and reliable in

transmission whereas the next data will only be send when the previous data reach its

destination safely.

2.5 IOIO OTG Board

IOIO (pronounced ―yo-yo‖) is a board that connects Android devices (running on

Android operating system (OS) version 1.5 and greater) to external hardware, such as

sensors, servos, touch displays, and built-in sensors (camera, global positioning system,

and accelerometer). With such connectivity, an Android application can control these

hardware through universal serial bus (USB), Bluetooth, other wired or wireless

connection (Matumo & Kisangiri, 2014; Syafeeq, Shazli, & Daud, 2015; Umare &

Nominal Range 0.3 – 49 km 10-100 m 10 m 10 - 1000 m

Supported

Topologies

Star,

Mesh,

Point-to-point

Tree Tree

Point-to-point,

Star,

Mesh

Access Protocol Request/Grant CSMA/CA CSMA/CA CSMA/CA

Application

Internet,

Monitoring,

Network Service

Data network,

Internet,

Monitoring

Cable

replacement

Monitoring,

Control

37

Padole, 2015). Furthermore, IOIO is unique as it does not require any firmware

configuration.

Recently, the development of IOIO-On-The-Go (IOIO-OTG), which is more

versatile than previous IOIO boards, helps leverage the USB On-The-Go specification by

connecting a host or as a slave to an Android device with a USB On-The-Go (USB-OTG)

cable and a software library (Java.jar file), enabling an Android application to manage all

communications that significantly simplifies the coding (Umare & Padole, 2015).

Lately, many of today‘s portable devices have begun using USB electrical

interface as a way of connecting to a PC. Although USB works well as a desktop

interface, however it is not well suited for portable devices as when the PC acts as a host

(master), all other devices will be reduced to peripherals (slave). This is inevitable

because a host cannot connect to other hosts, and likewise a peripheral cannot connect to

other peripherals. Otherwise, large currents will be required for such connection, and the

USB connectors will be too large for portable devices (Remple, 2003).

The main difference between previous IOIO boards (DEV-11343 ROHS) and

IOIO-OTG (DEV-13613 ROHS) is the ability of the latter to leverage the USB-OTG

specification to serve as a host or an accessory. Figure 2.9 shows the latest IOIO board. A

switch on the board can be used to switch the roles between a host and an accessory, but

most of the time the board can be set on auto mode, allowing it to detect its role in the

connection (Syafeeq et al., 2015). The following are the features of the latest IOIO board:

38

1. USB Host (Master): When the application is running on an Android device, the

IOIO-OTG will run on its own power source.

2. USB Accessory (Slave): When the application is running on a Windows, Linux,

or OSX machine, the IOIO-OTG will run on the device mode and present itself as

a virtual serial port.

Figure 2.9. IOIO Board

Essentially, the heart of the IOIO board is a microcontroller in which codes are

stored in flash memory by a process called microcontroller programming. Moreover,

IOIO can interact with peripheral devices in the same way as most microcontroller units

(MCUs) do. Additionally, digital Input/Output, pulse width modulation (PWM), Analog

Input, inter-integrated circuit (I2C), serial peripheral interface (SPI), and universal

asynchronous receiver/transmitter (UART) control can all be used with the IOIO (Umare

& Padole, 2015).

The IOIO firmware code comprises two main parts, namely bootloader and

application. The bootloader is the first code that runs every time the IOIO is restarted. It

39

establishes data connection with the Android device, and then uses the data connection to

check for the existence of new application codes on the Android device. Running the

IOIOLib codes in the application firmware, IOIO will be able to communicate with

Android devices by sending appropriate commands (Syafeeq et al., 2015).

2.5.1 USB OTG

USB 1.1, USB 2.0, USB OTG, Wireless USB, and OTG are technical specifications used

in the communication industry. Initially, the original USB 1.0 specification was released

in January 1996, and in April 2000, it underwent a major revision resulting in a new

revised specification called USB 2.0. Later, in July 2003, USB OTG addendum was

released, defining a new class of devices for portable, battery-powered products with

limited host capabilities. Finally, in May 2005, Wireless USB (WUSB) specification was

released (Harmon, 2007).

USB OTG is an add-on to the USB 2.0 specification that defines a new class of

devices that extends the functionality of a peripheral product to include limited host

capabilities. As the name implies, the original target of the specification was consumer

portable devices with which end users could share data when a computer was not

available (Harmon, 2007).

Various USB connectors that can be mounted on a USB host or on a USB

peripheral called ―receptacle‖, and the USB connectors can be attached to cables using a

40

―plug‖ as shown in Table 2.5 shows. A non-USB OTG device can always act as a USB

host or an A-device with an A-receptacle, to which only a Type-A plug can be inserted.

Similarly, a non-USB OTG of B-device can always act as a USB host with a B-

receptacle, to which only a Micro-B plug can be inserted. Furthermore, a USB OTG

device can act as either a USB host (A device) or a USB peripheral (B-device), with both

having a Micro-AB receptacle to which a Micro-A plug and Micro-B plug can be

inserted, respectively (Lokhande, Bamnote, Ingle, & Dharkar, 2014).

Table 2.5

USB Connector

Receptacle

Plug

USB

1.x/2.0

Standard

Type A

USB

1.x/2.0

Standar

d Type

B

USB

1.x/2.0

Mini A

USB

1.x/2.0

Mini B

USB 2.0

Micro A

USB 2.0

Micro B

Type

A

YES

Type

B

 YES

Mini

A

 YES

Mini

B

 YES

Micr

o AB

 YES YES

Micr

o B

 YES

Adaptation from (Lokhande et al., 2014)

41

Table 2.6 shows the descriptions of the USB pin of standard USB and Mini/Micro

USB. Clearly, the two types of USB pins differ in the number of pins, with the standard

and Mini/Micro USB consisting of 4 and 5 pins, respectively. In addition, Min/Micro

USB has an additional identification function, providing it with OTG capabilities to swap

two functions depending on its application (Lokhande et al., 2014).

Table 2.6

Description of USB Pins

Pin
Name Description

Standard Mini/Micro

1 1 VCC +5 V

2 2 D - Data -

3 3 D + Data +

 4 ID

OTG Identification:

 Host: connected to

ground

 Slave: not connected

4 5 GND Ground

Shell Shield

Adaptation from (Lokhande et al., 2014)

Moreover, cable orientation determines the role of each OTG device as either a

host or a peripheral at the connection, the role of which can be reversed via a dynamic

switching method called Host Negotiation Protocol (HNP). In this respect, a USB OTG

cable has the ability to switch such roles. Figure 2.10 shows the switching role of USB

OTG cable orientation, with the red square indicating the USB OTG. Given that the

Micro AB plug can fit both Micro A and Micro B receptacles, A device and B device can

therefore function as either a host or a slave, depending on the receptacle being connected

to each one. Figure 2.10 shows an A device and a B device functioning as a host and a

42

slave, respectively. Figure 2.11 shows a B device and an A device functioning as a host

and a slave, respectively. As acknowledged, USB OTG cable can help eliminate the steps

of the must pass of each device and extend the functionality of smart phones, rendering

such devices more adaptable to mobile computing (Harmon, 2007; Remple, 2003).

Figure 2.10. USB OTG Cable Orientation of an A Device and a B Device Acting as a

Host A Slave, Respectively (Harmon, 2007)

Figure 2.11. USB OTG Cable Orientation of a B Device and an A Device Acting as a

Host A Slave, Respectively (Harmon, 2007)

43

2.6 Mobile Device Operating System

In the early years of mobile computing, mobiles phones were only capable of sending and

receiving text messages and calls for communication purposes. As anticipated, mobile

technology has improved, and will continue to improve, with each improvement making

mobile devices more powerful, affordable, and appealing. For example, not only their

screens are getting bigger and better in quality but also their internal hardware is getting

more complex and powerful, effectively making them a formidable rival to laptops and

computers (Padhya, Desai, Pawade, & Student, 2007). Thus, it is hardly surprising that

mobile phone has become an integral part of the people‘s life. To date, the use of mobile

devices has become pervasive and almost ubiquitous, manifesting in various brands and

running on several operating systems (Joseph, Professor, Kurian, Manager, & Mahindra,

2013).

Obviously, the mobile operating system is the heart of smart phones, and

currently there are eight operating systems used, namely iOS, Windows Phone,

Blackberry, Android, Tizen, Sailfish OS, Firefox OS, and Ubuntu Touch. In fact, these

mobile operating systems are reliable and powerful, comparable to those of computer

operating systems. Essentially, the mobile operating system performs activities similar to

those of a computer operating system, such as office production activities using outlook

and communicator. Among the eight mobile operating systems, Apple‘s iOS, Google

Android, Windows Mobile, Symbian and Blackberry remain the most popular and

dominant systems used for mobile devices, such as smart phones and tablets in Malaysia

44

(Statista, 2018). In this information-driven era, they will continue to exert their influence

over a long period as evidenced by their continual phenomenal growths and potentials

(Padhya et al., 2007).

An OS is the most critical software element on any running processor-based

device. The OS manages the hardware and software resources within a device, performs

and manages basic tasks such as the recognition of input from the device keyboard and

generation of output to the device‘s screen and ensures different programs running at the

same time do not interfere with each other. Hence, it is responsible for the management

of memory and for communication within the device (Jindal & Munjal, 2012).

2.6.1 Symbian

In 2008, Symbian Ltd developed an open source operating system and licensed it to

several phone manufacturers, notably Nokia. Primarily, Symbian OS is designed to run

on minimum power and on low memory. Furthermore, it is a multitasking operating

system, and it has less dependency on peripherals (Jindal & Munjal, 2012). In compliance

with the agreed-upon standards of Symbian OS, applications running on various

technologies would be robust, portable, and interoperable. Moreover, memory

management is optimized for embedded software environment, and application support

for international environment is enabled by the built-in Unicode character sets. Symbian

45

uses microkernel approach to help manage system resources, such as memory, and carry

out time-slicing of applications and system tasks (Joseph et al., 2013).

Essentially, Symbian OS is built upon a common architecture consisting of a

nanokernel/microkernel core with basic localization and screen drivers. Base services sit

above the kernel, including low-level libraries, media frameworks, XML, file system

management, and hardware abstraction. OS services provide communication, telephony,

networking, multimedia, and graphics.

The above elements support the Application Services layer with application-

facing APIs for development and an interface layer to manage the user interface (UI). A

Java Virtual Machine (JVM) is also included above the OS services layer. Nokia provides

Software Development Kits (SDKs) for Symbian development that supports a variety of

languages, including C++ and Java (Okediran O, Arulogun O, & Ganiyu R, 2014).

Hence, such built-in multi-language support helps makes Symbian a more advantageous

compared to other OSs (Kumar Maji, Hao, Sultana, & Bagchi, 2010).

2.6.1.1 Symbian OS Architecture

In mobile computing, complex OSs will usually contain many important elements, such

as UI elements, to make mobile devices more robust. For example, Symbian OS

integrates the functionality of three different UI options. In essence, the Symbian‘s

46

system model is segmented into 3 main layers as shown in Figure 2.12 (Jindal & Munjal,

2012; Kumar Maji et al., 2010; L. Li, 2007) as follows:

OS Layer: This layer includes the Hardware Adaptation Layer (HAL) that

abstracts all higher layers from actual hardware and Kernel, including physical and

logical device drivers (Kumar Maji et al., 2010). It also provides programmable interface

for hardware and OS (through frameworks, libraries, and utilities) and higher level OS

services for communications, networking, graphics and multimedia.

Middleware Layer: This layer provides services (independent of hardware,

applications, or user interface) for applications and other higher-level programs. Services

can be application-specific, such as messaging and multimedia, or generic to a particular

device, such as web services, security, device management, and Internet Protocol (IP)

services.

Application Layer: This layer contains all the Symbian applications, such as

multimedia applications, telephony, and IP applications. In fact, Symbian OS is specially

designed for data-enabled mobile phones. According to Symbian Limited, such design

was needed as scaling down PC operating systems or expanding existing light-weight

operating systems would lead to too many fundamental compromises. Hence, Symbian

OS is designed to fulfil several special requirements of mobile phones as follows:

 Devices are small

47

 The target is for consumer mass market

 Devices can be used when connected to the wireless network and other devices

 Manufacturers must be able to use it on diverse range of products

 Hardware designs, user interfaces, and networks.

 It must be open for the third party development of additional applications and

services

 Handling user data must be reliable

 Communication in situations lacking resources

 All device resources, especially power consumption and memory, must be used

efficiently

Figure 2.12. Symbian OS Architecture (L. Li, 2007)

48

2.6.2 BlackBerry

BlackBerry is a mobile operating system developed by BlackBerry Ltd, which was

initially released on 30
th

January, 2013. Unlike Symbian, BlackBerry is a closed source or

a proprietary operating system. It is programmed in C, C++ and Java programming

languages (Padhya et al., 2007). The BlackBerry OS is the proprietary mobile operating

system developed by RIM (Research in Motion), exclusively for its BlackBerry smart

phones and mobile devices. It offers native support for corporate mail via Mobile

Information Device Profile (MIDP), which enables effortless wireless synchronisation

with Microsoft Exchange, Lotus Domino and email, contacts, calendar, notes and others,

through the BlackBerry Enterprise Server. This OS additionally supports Wireless

Application Protocol (WAP) 1.2. Uniquely, its network architecture is different from

other operating systems (Joseph et al., 2013).

BlackBerry provides end-to-end encryption, using two encryption options such as

Advanced Encryption Standard (AES) and Triple Data Encryption Standard (Triple

DES). Data sent to the BlackBerry smart phone are encrypted by BlackBerry Enterprise

Server using the private key retrieved from the user's mailbox. The encrypted information

travels securely through the network to the smart phone where it will be decrypted.

Additional authorization is also available when users access the application data or

corporate intranets (Joseph et al., 2013). However, the use of BlackBerry 10 has

increased slightly in some regions, but its global growth has gradually decreased,

dropping from 0.5% to 0.3% to 0% (Padhya et al., 2007).

49

2.6.2.1 BlackBerry OS Architecture

Figure 2.13 shows the core components of the architecture of BlackBerry 10 device.

1. CPU embedded bootloader: The CPU bootloader verifies the digital signature of

the bootloader code before running it.

2. Bootloader: The bootloader verifies the digital signature of the OS before running

it.

3. Microkernel: The microkernel is the minimal amount of software that the OS

requires to run.

4. Radio: The radio includes the drivers, stacks, and services required to support the

radio subsystems for voice, data, and other services.

5. Drivers and BSP: The drivers and BSP include the drivers and board ring up logic

to support the device hardware.

6. OS: The OS processes that exist outside of the kernel.

7. Platform and application services: Platform and application services include

security management, software installation and management, background services

for applications, media services, and more. Platform and application services are

required because applications will not be able to run services in the background or

to gain access to protected system components and services.

8. Application runtimes: Runtimes include virtual machines, libraries, services,

mapping layers, and more, with all applications run in isolated

50

sandboxes. BlackBerry10 devices support applications built with the native

SDK, Android, and HTML5.

9. App: The applications can be preloaded, user-installed, or deployed by users‘

organization.

Figure 2.13. BlackBerry 10 Device Architecture (BlackBerry, n.d.)

51

2.6.3 Windows Phone

Windows is a mobile operating system developed by Microsoft Corporation and designed

primarily for touch screen devices, such as smart phones and tablets. Initially, it was

released on 8
th

 November 2010, and its latest OS version released on 20
th

 November

2015 is known as Windows (Padhya et al., 2007). Currently, Windows is the most

popular computer operating system. In the last five years, Microsoft Corporation has

focused its efforts in the development of mobile operating systems (Joseph et al., 2013).

Arguably, today‘s Windows phones has the world‘s best UI, allowing users to

start an application with just a slight touch of their finger. Previously, such ease of use

was not possible, given that earlier versions of Windows phone OS were not compatible

with relatively large screens of Phablets and Tablets. Now, Nokia is working aggressively

to develop 6-inch Phablets, which will run on newer Microsoft OS. Currently, some of

the best Windows smart phones include Nokia Lumia 1020, Nokia Lumia 928, and HTC

Mobile Radar (Divyap & Venkata Krishnakumar, 2016).

Interestingly, Windows mobile offers a new user interface with ‗Metro‘ design.

For example, Windows CE (Compact Edition) was specifically designed for handheld

devices using Windows Application Program Interface (API). Later, in June 2012, the

company introduced newer versions of Windows 7 and Windows 8 mobile OS that

support many enhanced features, such as multi-core processor support, hi-fi screen

resolution, and larger storage support (Joseph et al., 2013).

52

2.6.3.1 Windows Phone Architecture

Windows Phone 7‘s architecture requires a hardware layer that meets Microsoft‘s

minimum system requirements, such as ARM7 CPU, a DirectX 9-capable GPU, 256MB

RAM and 8GB of flash memory, a 5-megapixel camera, a multi-touch capacitive display,

an A-GPS, an accelerometer, a compass, proximity and light sensors, and six physical

buttons (for back, start, search, camera, power/sleep, and volume). The Windows Phone

kernel handles low-level device driver, including basic security, networking, and storage.

It has three libraries (for an App Model for application management, a UI model for user-

interface management, and a Cloud Integration module for web search via Bing), location

services, and push notifications embedded into the J4 kernel. Application-facing APIs

include Silverlight, XNA, HTML/JavaScript and the Common Language Runtime (CLR)

that supports C# or VB .Net applications.

The kernel itself is a proprietary Windows OS designed for embedded devices that

combine Windows Embedded CE 6.0 R3 and Windows Embedded Compact 77.

Moreover, Windows Phone 8 has replaced the Windows CE kernel with newer kernel

based on Windows NT. In part, such replacement helps the former OS to mimic

Windows 8 desktop OS, allowing easier porting of applications between the two

operating systems. Figure 2.14 depicts the architecture of Windows phone (Okediran O et

al., 2014).

53

Figure 2.14. Microsoft‘s Windows Phone Architecture (Okediran O et al., 2014)

2.6.4 iOS

iOS is a powerful, expensive mobile operating system developed by Apple Inc. and is

designed primarily for touch screen devices, such as smart phones and tablets, whose

native language is C. iOS was initially released on 29th June, 2007, and the latest OS

version known as iOS 9.1 was launched on 8th December, 2015 (Padhya et al., 2007).

Currently, iOS is one of the leading mobile operating systems that is highly stable,

secure, and user friendly (Divyap & Venkata Krishnakumar, 2016; Joseph et al., 2013).

In addition, iOS works with Microsoft Exchange and standards-based servers to deliver

over-the-air push emails, calendars, and contacts. More importantly, it protects users‘

data by encrypting information in three separate areas, namely in transmission, at rest on

the device, and when backed up to iTunes (Joseph et al., 2013).

54

2.6.4.1 iOS Architecture

iOS was derived from Mac OS X, and thus shares the basic Darwin foundation, which is

an open source POSIX-compliant UNIX OS. As such, iOS can be considered a variant of

UNIX consisting of four abstraction layers, such as Core OS, Core Services, Media, and

Cocoa Touch6 (Okediran O et al., 2014) as depicted in Figure 2.15.

i. Core OS: This layer contains the kernel of the operating system, which includes

basic low-level features: system support—threads, sockets, IO, DNS, math,

memory—general security services—certificates, private/public keys, and

encryption—external hardware management, Bluetooth, and sound and image

processing.

ii. Core Services: This layer provides fundamental system-services, which are

subdivided into different frameworks based on C and Objective C. It comprises

basic application services, including accounts, contacts, networking, data

management, location, calendar events, store purchasing, SQLite, and XML

support.

iii. Media Layer: This layer contains several high-level frameworks to support 2D

and 3D graphics, audio and video technologies.

55

iv. Cocoa Touch: This layer consists of UIKIT, which is an Objective C-based

framework that provides a number of functionalities that is necessary for the

development of an iOS Application, such as the User Interface Management. It

also includes APIs for building applications that support multitasking processes,

touch input, notifications, interface views, and access to device data.

Figure 2.15. The Architecture of Apple‘s iOS (Okediran O et al., 2014)

2.6.5 Android

According to (Wang, Duan, Ma, & Wang, 2011), Android is a mobile operating system

developed by Android Inc. (which was the acquired by Google and later by the Open

Handset Alliance)running on the Linux kernel. Essentially, it is a software stack for

mobile devices that includes an operating system, middleware, and applications.

56

Android, Inc. was founded on October, 2003, in Palo Alto, California, United

States by AndyRubin (co-founder of Danger), Rich Miner(co-founder of Wildfire

Communications, Inc.), NickSears (once VP at T-Mobile), and Chris White (headed

design and interface development WebTV) (Bazard & Bhardwaj, 2011). Since its original

release, Android has undergone a series of of updates, typically focusing on fixing bugs

as well as adding new features. Generally, each new version of the Android operating

system is developed under a code name based on a dessert item.

2.6.5.1 Android Architecture

Figure 2.16 shows the architecture of Android operating system consisting of four layers,

namely Application, Application framework, Hardware Abstraction Layer, Libraries and

Android RunTime, and Linux Kernel described as follows:

1. Linux Kernal

It acts as the heart of the whole system that provides various functionalities, such

as memory management, process management, device management, security

settings in android system, and the entire essential device driver for the hardware

with which it interacts (Bala, Sharma, & Kaur, 2015).

57

2. Android Runtime

It includes a set of core libraries that provides most of the functionalities available

in the core libraries of the Java programming language. Every android application

runs on its own process with Dalvik Virtual machine (Gandhewar & Sheikh,

2010).

3. Application Framework

A software framework that is used to implement a standard structure of an

application for a specific operating system. This framework can reassemble

functions used by other existing applications with the help of managers, content

providers, and other services programmers, (Gandhewar & Sheikh, 2010).

4. Android Application

It comprises both the native applications and third party applications. Native

applications support the basic Android implementation, such as SMS client

application, Dialer, Web browser, and Contact manager. The third party

applications are largely installed by developers and programmers, the debugging

or testing of which are performed by users (Bala et al., 2015).

58

Figure 2.16. Android Architecture (Gandhewar & Sheikh, 2010; Wang et al., 2011)

2.6.6 Comparison of Operating System

The comparative analysis and market share analysis carried out in the fourth quarter of

2014 showed Android and Windows Phones to be superior compared to other OSs.

Currently, Android is the best Smartphone OS in the world today, and lately it has been

used as an educational tool. Being an open source operating system, Android can freely

and readily help users to install third party applications. Given such unconstrained

installation, the system is susceptible to cyber threats or malware attacks, such as virus,

59

worms, spyware, adware, and Trojan horse. As a workaround, experts insist on detecting

malware before installing an application.

From the historical perspective, mobile devices has added many of the core

components of a regular phone system, such as Central Processing Unit (CPU), memory,

and Liquid Crystal Display(LCD) screen, and telephone switching, to its design as early

in the 1990s (Hall & Anderson, 2009), The first addition was to store and access contacts.

Further improvements in mobile phone technology were carried out with the introduction

of virtual applications in the early part of this century, which was greatly driven by the

gadget convergence movement. Figure 2.17 shows the percentage of market share of

various mobile operating systems, clearly indicating that Android had the highest market

share at 81.3%, followed by Apple iOS and Microsoft Windows Phone at 13.4%and

4.1%, respectively. At 1% and 0.2%, Blackberry 1 and other OSs had the least market

share, respectively.

60

Figure 2.17. The Market Share of Mobile Operating Systems (Joseph et al., 2013)

Table 2.7 shows the comparison of smart phone operating systems of Android,

iOS, Symbian, Blackberry and Windows Phone. Evidently, Android dominated the smart

phone market with almost half of the share at 48.8%. Such finding is hardly surprising

given that it is an open-source operating system that is free. Moreover, Android

developers have developed many applications with special functions, which further

strengthen its dominance in the market (Hall & Anderson, 2009). Interestingly, Android

allows developers to write application codes in Java language that control mobile devices

using Google-developed Java libraries.

61

Table 2.7

The Comparison of Mobile Operating Systems

Operating

System
Android iOS Symbian Blackberry

Windows

Phone

Runs on

Smart

phones,

Tablet,

Computer,

TVs,

Cars and

wearable

devices

iPhone,

iPad,

iPod Touch

Smart

phones

Smart

phones

Zune

software

(not since

windows 8)

Source

Model

Open

source and

in most

devices

with

proprietary

components

Closed

Source

Closed

source,

previously

open source

Closed

source

Closed

source

SDK

Platform

Windows

XP,

Vista and 7;

Linux, Mac

OS X

Mas OS X

Snow

Leopard

10.6.4

Windows

XP

Professional

SP2;

Vista & 7

for

some SDKs

32-bit

Windows

XP, Vista

and 7

Windows

Vista & 7

OS Family Linux Darwin RTOS QNX

Windows

CE 7

Windows

NT 8

Market

Size
Very High High Very low Low Medium

Virtual

Machine
Allowed Not allowed Allowed Allowed Allowed

Application

store

Google Play

(Android

Market)

App

store

Nokia Ovi

Store

BlackBerry

app world

Windows

Market

Place

Adaptation from (Divyap & Venkata Krishnakumar, 2016; Okediran O et al., 2014;

Padhya et al., 2007)

62

One of the most important criteria for the development of the proposed system

was that Android allows the use of virtual machine, which is an open-source model used

in most devices with proprietary components. In fact, Android has been designed to serve

as a modern mobile platform that is truly open, on which innovative Android applications

can be developed using advanced hardware and software, thus bringing in good value to

customers.

2.7 Warehouse Management Process in Manufacturing Industry

According to Mika (2014), warehouse application is one of the earliest ways of

employing RFID technology in manufacturing. Fundamentally, warehouse management

includes all kind of operations related to manufacturing logistics, such as inventory

tracking, identification of components, control of materials flows, and management of

picking, receiving and shipping of materials. As stressed by Richards(2014), a warehouse

should be viewed as a temporary place to store inventory and as a buffer in supply chains,

with the primary aim to facilitate the movement of goods from suppliers to customers and

to match product availability with consumer demand.

Figure 2.18 show the process of warehouse environment and management. Of

late, supply chains have to rely on a number of technologies to achieve a higher level of

performance in satisfying consumer needs. The warehouse is divided into specified areas

according to technological operations in order to automate inbound, outbound and in-

63

stock operations. After receiving goods, the goods are put-away according to its shelf to

make it easier for the workers when taking the goods for packing. After the goods are

done packing, then it is ready for shipping.

Figure 2.18. The Warehouse Management Process

Figure 2.19 shows an example of the flow of materials and information through a

factory. Obviously, materials flow through many stages of manufacturing, from

procurement to finished goods, with inventories being prepared for shipment. The

material flow is essentially a process of tracking the journey that materials take, right

from the time they arrive at a manufacturing site to the point where customers receive the

64

finished product or item. In today‘s manufacturing, materials flow is an important

concept that is an integral part of advanced modelling of supply chain management.

Figure 2.19. The Flows of Materials and Information Through a factory (Matsubayashi

& Hiroshi, 2003)

As acknowledged by many, industrial material flow can easily become very

complex, entailing detailed record of materials passing through various stages of the

manufacturing process. As such, data need to be current and accurate, enabling

manufacturing personnel to make informed, correct decisions based on the latest version

of information. More importantly, such data should be in such a form that it can be used

efficiently and effectively at the right time and place. In fact, production monitoring

65

requires efficient collection and distribution of data of real-time of events to the shop

floor.

In this regard, traceability is the ability to verify the history, location, or

application of an item by means of documented or recorded identification using

identification tags (such as RFID tags and barcode). Technologies that can be applied in

traceability solutions include RFID (Radio Frequency Identification), Barcode, and GPS.

Effectively, traceability can be applied in various industries to track and trace products or

raw materials from point-to-point across the supply chain. By implementing traceability

solutions, companies can achieve better transparency, improved efficiency, and enhanced

security. In general, the most common areas in which traceability solutions are applied

include logistics, supply chain, and food processing. Figure 2.20 shows the basic flow of

materials. Initially raw materials are being purchased. The receiving raw material will be

stored in warehouse of the raw materials before being process. Production will process

the raw materials into finished goods. Quality assurance will ensure the finished goods

have no mistakes and defects. Before shipped the finished goods, the finished goods are

stored in the warehouse of the finished goods.

66

Figure 2.20. Flowchart for the Basic Material Flow

According to Attaran (2012), the application of RFID in the supply chain

management process would help manufacturing companies to reap ten benefits as

summarized in Table 2.8.

Table 2.8

Supply Chain Management Processes and RFID Benefits

Supply Chain Management Processes RFID Benefits/ Success Variables

I. Demand Management  Fast and accurate information

retrieval

 Better decisions

II. Order Fulfilment  Enhanced visibility along the

supply chain

 Better-quality information

III. Manufacturing Flow  Accurate asset tracking

 Enhanced process automation

IV. Reverse Logistics  Improved productivity

 Improved quality and reliability

V. Supplier Relationship

Management
 Reduced operating costs

 Improved competitive position

Adaptation from Attaran, 2012.

67

2.8 Research Gaps

As discussed, embedded active RFID and wireless mesh network are two distinct

wireless technologies that can help improve manufacturing environment. In particular,

such embedded system can help manufacturing personnel in detecting the movement of

secure containers and in managing asset management, inventory tracking, warehouse

security management, and others. With RFID technology, manufacturing companies can

gain improved accuracy, enhanced work-in-process traceability, better tracking and

controlof assets, reduced corrective costs, and minimal human intervention. Based on the

literature review, many of industrial applications of RFID technology are largely focused

on product tracking systems. In contrast, the proposed system was based on the

integration of RFID technology, Zigbee, and WSM that resulted in an embedded system

called WIBRED, with enhanced tracking and locating capabilities. With such

capabilities, the proposed system can be applied in various application areas, notably in

manufacturing warehouse in which real-time mobile tracking to search and locate

missing or misplaced manufacturing objects or parts in a plant can be carried out

remotely and accurately. Specifically, WIBRED can function as an automatic tracking

system to help improve the materials flow process, by tracking and monitoring

movements of production components, parts, or assemblies in real time.

Many R&D members now interested to investigate in mobile RFID performance.

The Zigbee technology integrated with mobile communication system and embedded

passive and active RFID gave birth to mobile RFID to provide services to users in

68

manufacturing industry. The purpose of this work is to design new mobile RFID

technology namely WIBRED works on WMN platform for warehouse monitoring

purpose. Furthermore this work also to design automatic identification and tracking

system for material flow process based on the problem occurs. Then, the automatic

tracking system will be validated either the system will be functional or otherwise.

Additionally this invention enhances the capabilities of RFID adopted through WSN

platform. These materials are tracked in the real time movement and be analysed on the

efficiency of the automatic system.

CHAPTER 3

DESIGN AND DEVELOPMENT

3.1 Overview

The proposed system has two parts, namely the hardware and the software. In this

chapter, the researcher discusses the methods involved in the development of the

hardware and software, including the main components used for such development.

Initially specifications based on the idea of the development and the main

components were drafted. Essentially, the proposed system was designed to run on two

modes, namely station mode and mobile mode. The specifications of the key components

of the proposed system are listed in Table 3.1.

70

Table 3.1

Specifications of the Key Components

Key Components Specifications

Smart Phone Android OS (Version 1.5 above)

IOIO -OTG N/A

Passive Reader NOVA

Relay Controller N/A

Wireless Transceiver XBee

PC
Windows Vista/7/8/10 (32-bit or 64-bit versions)

Mac OS X v10.6 and higher versions (64-bit only)

Software development of the system consists of two parts. The first part involved

the use of Java language of Android Studio Software to develop an Android application

for temporary UART communication. The second part involved the development of a

database using Tool Command Language (TCL) software.

3.2 Research Procedure

The waterfall model is a relatively linear sequential design approach for certain areas

of engineering design. Waterfall model was proposed by Royce in 1970 which is a linear

sequential software development life cycle (SDLC) model. This model is named

“Waterfall” because its diagrammatic representation looks like a cascade of waterfall

(Akshita Dubey, Amisha Jain, & Aditi Mantri, 2015; Saxena & Upadhyay, 2016).

Waterfall model is best used when there is clear depiction of what the final product

should be (Saxena & Upadhyay, 2016). Figure 3.1 shows the research methodology used

https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Design
https://en.wikipedia.org/wiki/Engineering_design

71

to develop the proposed system based on Waterfall model consisting of several stages as

follows:

1. Requirement

In this phase, a literature review and an informal discussion with the industry

expert were conducted to determine problems encountered by the industry in

tracking objects in manufacturing plants. Guided by the above findings, the

researchers formulated several problem statements, research goals, and objectives

(see Chapter 1 for details). Discussions of research on existing products in the

market and technology review have been discussed in Chapter 2.

2. Design

The related information gathered from the literature was used to determine the

appropriate research methodology in designing the proposed system (the details of

which are discussed in Chapter 3). In addition, the key components of the

proposed system hardware had to be decided to help determine that the method of

integration of relevant technologies. As for the software, the type of software

developer suitable for the design of the mobile application and database was also

required to be determined in view of the many types of software available.

72

3. Implementation

This development phase comprises two parts, namely hardware development and

software development. The steps of both developments had to be determined to

ensure smooth integration of such steps to help achieve the target objectives.

Furthermore, the development of the proposed system was carried out with high

degree of flexibility to allow any modifications to be made to the system.

4. Verification

The proposed system could be implemented such that it could run on mobile and

fixed mode, depending on the intended requirements. Irrespective of the mode

used, the system would be used tracking application.

5. Maintenance

In this phase, experimental testing of the proposed technology and prototype

evaluation based on real world manufacturing process were performed. From the

testing, the results were analysed to know measure the performance of the

proposed system (see Chapter 4 for the details of the experimental setup and the

discussion).

73

Figure 3.1. The Research Methodology of the Study Based on Waterfall Model

74

3.3 Hardware Development Design

In any system development, a feasibility study is essential to help the researcher to

determine the correct components to purchase. Initially, an assembly of components of

the breadboard needed to be determined to ensure the functionalities of the proposed

system could be transferred to the Veroboard. Later, the performance of the hardware

was verified through hardware debugging and hardware testing performed on the

Veroboard to ensure the target objectives could be achieved. Figure 3.2 shows the

process of the hardware development.

75

Figure 3.2. The Process of the Hardware Development

76

Figure 3.3 shows the differences in the attributes between the proposed system

and the existing system (Vhatkar & Bhole, 2010). The existing system with the RFID

Reader B-SL architecture functions by delivering internal location-based services for

mobile devices using passive RFID technology. The combination of wireless and RFID

technology enables an RFID reader to track and send information by PDAs or mobile

devices via Wi-Fi.

A better solution to developing and implementing the proposed system would be

based on Wireless Mesh Sensor (WMS) and Android mobile application. With such

implementation, the proposed system could be efficiently used in manufacturing

departments for traceability and monitoring purposes. To facilitate such use, the proposed

system required data centralization, through which every department of the

manufacturing company would be able to share information in real time.

Figure 3.3. Comparison of Existing System and Proposed System

77

Figure 3.4 shows the block diagram of the architecture of the proposed system for

smart data processing adopted for mobile tracking application. Arguably, designing a

new embedded system for complex tracking of material flows would entail a new

different approach that would focus on seeking and identifying manufacturing objects or

parts search. Such process could be effectively carried out with the use of a common

database, through which relevant data would be transmitted and received.

Essentially, the proposed system consists of three main parts, namely input,

process, and output. The input and output of the proposed system are the signals from the

passive tags and item description of the tagged object, respectively. In between the input

and the output, lies the process part comprising smart phones, IOIO board, passive

reader, relay controller, wireless transceiver, and database.

Figure 3.4. The Block Diagram of the Proposed System

The proposed system is powered by a 5 VDC power bank to IOIO board, with

voltages (VIN) range between 5 VDC and 15 VDC (Ben-Tsvi, 2014). Therefore, the

wireless transceiver is powered with 3.3 VDC, while the relay controller board and

passive reader are powered by a 5 VDC power bank as depicted in Figure 3.5.

78

Figure 3.5. The Architectural of Proposed System Design

Figure 3.6 shows the block diagram of the development of the proposed system,

including both the hardware and software. In developing the proposed system, five

development phases were performed. Phase 1 included the communication between a

smart phone and an IOIO-OTG board, while Phase 2 involved the communication among

a smart phone, an IOIO-OTG board, and a passive reader. Phase 3 involved the

communication between a passive reader and a wireless transceiver. In Phase 4, database

setting and database scripting were carried out, and the final phase saw the combination

of all the key components to ensure successful communication of the proposed system.

The details of these phases are discussed in the following subsections.

79

Figure 3.6. The Block Diagram of the Hardware Development

3.3.1 Phase 1

Phase 1 comprises key components, namely a smart phone and an IOIO board, with the

latter serving as a medium to enable communication between the smart phone and a

passive reader as illustrated in Figure 3.7. Theoretically, both components do not

communicate with each other because the smart phone is not equipped with UART

communication. Therefore, IOIO-OTG acts as a USB host and is connected to Android

devices with a USB slave.

80

Figure 3.7. Phase 1 of Hardware Development

In general, an OTG USB can serve as either a Slave or a Master. In contrast, an

IOIO-OTG USB and a smart phone can serve as a Master and a Slave, respectively. In

these roles, the former and latter can send and receive data to be controlled, respectively.

Nevertheless, not all smart phones are equipped with USB OTG to serve as a USB

81

Master. Therefore, in this study, an IOIO-OTG was used as an intermediary between a

transceiver and a smart phone such that they could communicate with one another.

3.3.1.1 IOIO-OTG with Smart Phone Integration

Figure 3.8 shows the illustration of the hardware development. Importantly, an Android

device must be able to run on USB Debugging Mode in Android after connecting the

device directly to a computer with a USB cable. Such mode helps facilitate a connection

between an Android device and a computer with Android SDK (software development

kit). As shown, such connection was established to test the UART communication of the

IOIO-OTG with the Android device.

To establish communication, the IOIO board was powered with 5 VDC and

connected to the Android device using IOIO-OTG USB. As the proposed system required

two UART connections, the UART tests were carried out for two UARTs. Two UARTs

are needed because UART1 is for connection between IOIO board and passive reader

while UART2 is connected between IOIO board and wireless transceiver. UART1 was

connected to pin 10 and 11, while UART2 was connected to pin 13 and 14. To test

whether the UART communication was successful, a computer was used because it could

support such communication with the use of a number of software applications, such as

X-CTU, HyperTerminal, Tera Term, and PuTTY.

82

Figure 3.8. IOIO-OTG with Smart Phone Integration

Certainly, USB Debugging Mode can help improve access to Android devices

when coding new applications, as programmers will definitely not write codes directly on

such devices. Instead, they will develop an appropriate environment for the Android SDK

to write codes of applications on a computer. Using the USB Debugging Mode, the

programmer can transfer the applications to a device for testing. This direct transfer is

made possible because USB Debugging Mode establishes a direct connection between an

Android device and a computer, making both to be ready for high-level actions. Some

Android devices do not automatically load the Developer Options. Therefore the

programmer needs to activate such options by tapping the text “Build Number” seven

times as shown in Figure 3.9. Figure 3.10 shows the flow of USB Debugging Mode on

Android devices.

83

Figure 3.9. Enabling the Developer Options

Figure3.10 . Enable USB Debugging

84

Figure 3.11 shows the setup of the UART communication test performed in this

study. This test of an Android application helped ensure that data could be transmitted

and received accordingly to establish successful communication. In fact, only after

correct messages and commands had been successfully received, the development

proceeded to Phase 2, which is the second phase of the development. In this study,

Android Studio was used to develop the Android applications.

Figure 3.11. UART Communication Test

To test communication between the Android device and the IOIO board, a simple

application of UART communication was developed. With more than one USB OTG

85

application, a layer would appear on the screen to allow users to select their preferred

applications shown in Figure 3.12, or a default application would be automatically

displayed. For this study, the developed application could support Android OS 6.0 and

higher versions of the OS.

Figure 3.12. Selections of Preferred Application

86

3.3.2 Phase 2

Phase 2 involved the use of key components of smart phone, an IOIO board, a passive

reader, and a PC. Figure 3.13 shows the connection among the three key components. For

the IOIO board, it comprises two different outputs, which are 3.3 V and 5 V; while its

input power ranges from 5 to 15 VDC. Therefore, IOIO board consumes 5 VDC from the

power bank or adapter, while passive reader is powered with 5 VDC from the output

power source of IOIO board.

Figure 3.13. Phase 2 of the Hardware Development

87

3.3.2.1 Passive Reader

Before developing the prototype, the passive reader command had to be determined,

requiring a connection as illustrated in Figure 3.14.

Figure 3.14. Connection of Passive Reader with PC

Figure 3.15 shows the List of Firmware Command, which is equipped with

request command for programming applications.

Figure 3.15. List of Firmware Command

88

Figure 3.16 shows the response received from the firmware when sending the

SelectTag command, which helped ease the researcher in determining the correct

response from the developed application.

Figure 3.16. Response of SelectTag Command

Next, the PC debug development used the X-CTU firmware because X-CTU was

able to send and receive data via virtual COMPORT, and it could send HEX/ASCII

codes. Figure 3.17 shows the screenshot of a scanning tag with the PC using the X-CTU

firmware.

89

Figure 3.17. Scanning Tag with the PC using X-CTU Firmware

3.3.3 Phase 3

Phase 3 involved the enhancement of the proposed system developed in Phase 2 by

integrating it with Zigbee wireless transceiver as depicted in Figure 3.18. In its original

form, the system had limited read range communication, which depended on the antenna

of the reader. The original system was clearly not practical for long range communication

applications.

Furthermore, the database containing the details of tagged objects was located in

the PC. Therefore, wireless communication was entailed to retrieve relevant details. Even

90

though all Android devices support Wi-Fi communication, they are not suitable for

tracking objects because the radius of Wi-Fi communication is small, which is only

applicable for home networking.

Figure 3.18. Phase 3 of the Hardware Development

3.3.3.1 Relay Controller

Relay Controller is to conserve the energy of the battery and also provides flexibility in

switching between two modes. Figure 3.19 shows the schematic of the relay controller.

91

The transistor setup works as an inverting gate to conserve battery when the proposed

system module functions in the mobile mode. In mobile mode, IOIO board does not sleep

and whenever mobile phone is connected, IOIO board will function as a master and

mobile phone function as a slave. Therefore it consumes high power. The relay will be

switched off to help reduce power consumption in stationary mode. However, when the

proposed system operates in the stationary mode, the relay will be turned on. Effectively,

the proposed system will switch to mobile mode when it is connected to a mobile phone,

and it will switch to stationary mode when the mobile phone is disconnected.

Figure 3.19. Schematic of Relay Controller

As highlighted, the mobile mode will be activated when the hardware is

connected to mobile phones for tracking purposes. Figure 3.20 shows the block diagram

92

of the communication in mobile mode, and Figure 3.21 shows the communication in

stationary mode. In mobile mode, the relay will be enabled when the wireless transceiver

and passive reader are disconnected from the IOIO. The main controller in mobile mode

will be the developed mobile application; whereas, in stationary mode, the main

controller will be the PC application.

Figure 3.20. Communication in Mobile Mode

Figure 3.21. Communication in Stationary Mode

93

3.4 Software Design and Development

An android application was used as a user interface in the Android device. Pressing the

application’s button would allow the Android device to scan the tags and retrieve their

details from the database. The development of this application was divided into several

phases involving a number of processes. The complete source codes of the developed

software are shown in Appendix A. Figure 3.22 shows the flow of the processes of the

software development.

94

Figure 3.22. The Processes of the Software Development

95

Essentially, the software development consisted of three phases, which were

carried out with the use of two types of software, namely Android Studio and TCL

Scripting. Android Studio was used to develop the mobile application, while TCL

scripting was employed for the development of the database. As stated, Android Studio

was used to create the mobile application for this project research. In addition to be being

non-proprietary, this software has fewer issues relating to bugs and is more stable

compared to its rivals, such as Eclipse. Thus, it is not surprising that Android Studio has

attracted a lot of followers among android application developers since 2013.

Actually, Android Studio is the official IDE for Android application development

based on IntelliJ IDEA. Android Studio functions with SDK tools, such as SDK

Manager, offering several procedures, which include alternative instructions for using the

SDK tools rather than using the command line. To run the software, Android Studio

needs to be installed with Java SE Development Kit (Rojatkar, Jengathe, Khairnar, &

Lengure, 2016; Singh, Sharma, & Singh, 2016).

On the other hand, TCL is a scripting language and an interpreter of respective

language that is designed to be more efficient for embedded applications. Moreover, the

interpreter has been extended from UNIX to DOS and Macintosh environments. As a

scripting language, TCL is similar to other UNIX shell languages, such as the Bourne

Shell, C Shell, Korn Shell, and Perl. With sound programmability, such shell programs

enable smooth execution of programs (variables, control flow, procedures) to build

complex scripts that assemble programs into a new tool tailored for users’ needs.

96

Moreover, TCL has the ability to easily add TCL interpreter to applications, thus

making it more robust and flexible compared to other shell programs. As such, TCL can

play the role of an extension language to help configure and customize applications.

Additionally, TCL has simple constructs, which are quite similar with those of C, thus

easing the process of adding new TCL primitives by writing C procedures(Welch, Jones,

& Hobbs, 2003).

Figure 3.23 shows the four phases involved in the software development of the

proposed system. Phase 1 involved the development of a temporary application for

UART communication test. In Phase 2, a mobile application for tracking and monitoring

purposes was developed. In fact, Android Studio software was used in this development

in the first and second phase. Phase 3 involved TCL scripting to develop a database that

was located on the computer. The complete development of software to fulfil the

objectives of the proposed system was realized in Phase 4.

97

Figure 3.23. The Block Diagram of the Software Development

3.4.1 Phase 1

Given that an Android device is not equipped with serial communication features, an

interface must therefore be developed to enable such a device to communicate with other

devices through it. To support serial communication of Android devices with electronic

circuits, a simple Android application was developed in this study.

Figure 3.24 shows the Android application layout of the Android device. As

illustrated, the red box indicates the LED button, which when pressed would turn on the

LED on the IOIO board. The green box indicates the Text Area where texts would be

inserted. On pressing the Send button, a string of texts would be sent and displayed on the

Receive Message section of the interface as highlighted by the blue box.

98

Figure 3.24. The Android Layout of Development in Phase 1

Initially, the temporary application called HelloIOIO for testing the

communication between Android devices with the IOIO board was developed.

Essentially, two files were used for such testing, namely MainActivity.java and main.xml.

The MainActivity.java contains codes that controlled the activity carried out in this

project. Additionally, a subclass of Abstract IOIO Activity was created to implement the

IOIO framework for the specific activity of the application.

On the other hand, the main.xml file contains information about the arrangement

of the user interface for the activity. Several command texts were created to perform a

number of functions, such as ToggleButton to turn on the light emitting diode (LED)

indicator, TextView to display received text and default text, Button to send text, and

99

EditText to insert text. Furthermore, transmit and receive pins of IOIO board was short-

circuited. Figure 3.25 shows the flow of communication between the Android application

and the electronic circuit.

Figure 3.25. The Flow of Communication between Android Application and Electronic

Circuit

100

Figure 3.26 shows a looping test carried out to test the transmission and reception

process between the Android device and the IOIO board. To send a message to the

transmit pin of IOIO board, first it must be inserted in the Text box, and followed by

pressing the Send button. Subsequently, the receive pin would send the received message

to the Android application and display it on the Received Message section of the

application’s interface.

Figure 3.26. Looping Test for Transmit and Reception Process

101

3.4.2 Phase 2

The development activity in Phase 2 also used Android studio. Given that UI threads of

Android are sensitive, all the IOIO processing activities were created into separate

classes, namely MainActivity Java class and the Java classes as summarised in Table 3.2.

Table 3.2

Java classes

No Java Class Brief Description

1 BUF_DATA
Managing buffer

2 CircularBuf

3 MainActivity MAIN

4 MyDialogTAGDetails Pop-up window for tag details

5 Uart_ContRD_RFID_Thread

Managing Thread 6 Uart_ContRD_TAGINFO_Thread

7 Uart_ContRD_Thread

3.4.2.1 Main

MainActivity.javacontains several codes that controlled the activities carried out in this

study. Figure 3.27 shows the taxonomy of MainActivity.java.

102

Figure 3.27. Taxonomy of MainActivity Java Class

For MainActivity.java, the first command line to be used is called onCreate after

setting the local resources and variables. This command will be called when the Activity

has been created. After invoking onCreate on the superclass, this command will

associates the layout with the Activity and then create a link to a member variable that

holds a reference to the TextView, Button, ListView and ImageView as shown in Figure

103

3.28. In addition, the onCreate command will create an adapter and convert an array to

view and attach the adapter to the ListView.

Figure 3.28. The Layout of MainActivity.java

The first class that was displayed after setting local resources and variables was

the MyHandler static nested class, which was the same thread of posted messages. As the

messages contained target Handler, the handler could not collect garbage-collected.

Moreover, given that the Handlerwas static, the Activity could not be garbage-collected

even after it was destroyed. The method for MyHandlernested class was handleMessage,

which handled messages by using switch case functions. Figure 3.29 shows the flowchart

of the handleMessage class.

104

Figure 3.29. The Flowchart of handleMessage class

The next class of MainActivity was the Looper() that extended the thread activity

of BaseIOIOLooper. This was the thread of all IOIO activities that were carried out that

would run every time the application was resumed and aborted. The method setup()

would be called right after a connection with the IOIO had been established. However,

loop() would be called repetitively until the IOIO was disconnected.

105

3.4.2.2 Thread

Two types of extended thread classes for two different activities would run separately,

namely the tag ID thread and the read tag information thread. Both threads were created

by extending the Thread class, with which the override run() method must be used.

Figure 3.30 shows the taxonomy of the Read Tag ID thread, and Figure 3.31 shows the

taxonomy of the Read Tag Info Thread.

Figure 3.30. The Taxonomy of Read Tag ID Thread

106

Figure 3.31. The taxonomy of Read Tag Info Thread

3.4.3 Phase 3

Phase 3 was the development of the database using TCL programming language. TCL is

a high-level, general-purpose, and dynamic programming language. The development

was performed by setting the serial port communication and configuring options on a

channel. The details of ID channel are shown in Figure 3.32. Specifically, the blocking,

buffering, mode, eofchar, and in translation of the ID channel was configured as

summarized in Table 3.3.

107

Figure 3.32. Details of ID channel

Table 3.3

The Details of the ID Channel

Channel ID Descriptions

Blocking Boolean determines whether I/O operations on the channel can cause the

process to block indefinitely

Buffering

Newvalue
full
the I/O system will buffer output until the flush command is invoked

line
the I/O system will automatically flush output for the channel

whenever a newline character is output

none
the I/O system will flush automatically after every output operation

Mode Format: baud rate, parity, data, stop.

Eofchar default value for -eofchar is the empty string in all cases except for

files under Windows. In that case the -eofchar is Control-z (\x1a) for

reading and the empty string for writing

Translation Mode Binary

No end-of-line translations are performed

cr

The end of a line in the underlying file or device is represented by a

single carriage return character

crlf

The end of a line in the underlying file or device is represented by a

carriage return character followed by a linefeed character

108

The following event handler setup involved setting the event handlers, such as

matched, command, and datato“0”. Then, the variables returnName and

returnDescription were set to “TR” and “TD” setup, respectively. Subsequently, the

event handlers were set toif else loop by checking the existence of a read handler. If the

read handler was present, the file event handler would be set to be readable to start the

delimiter. Otherwise, the handler would be set to while loop.

In the while loop mode, the process would wait until the variable was matched

with the message that arrived. If the matching of message and debug variable had

occurred, the process would debug the message. Otherwise, the process would decode the

received message and set the channel to “done 1” if no matching message had occurred

and the debug variable was equal to “1”. Figure 3.33 shows the flow of the database

development.

109

Figure 3.33. The Flow of the Database Development

110

3.4.3.1 Decoding Message

Packet message was divided into 4 different parts, namely delimiter, packet length,

command and tag ID as shown in Figure 3.34. Table 3.4 summarizes the description of

each part of the packet message.

Figure 3.34. The Parts of the Packet Message

Table 3.4

The Descriptions of the Packet Message

Packet Byte Value Descriptions

Delimiter 2 02

Message will only be

decoded when the

delimiter value equals to

02 or else it will be

considered as rubbish

Packet Length 2 31

To determine the

maximum message to be

decoded

Command 2
TR – assemble packet

TD – fetch from database

Differentiate two

processes

Tag ID 25 25 digits
Can be modified according

to users

111

Table 3.5 shows sample data stored in the database. When the system received the

command TR, only the Tag ID would be displayed as highlighted in Figure 3.35.

Table 3.5

The Sample Data Stored in the Database

Tag ID Part Number Quantity Description

0000000000000000000000001 A0010-0008 10pcs Philips Screw

Driver;

Medium size;

0000000000000000000000002 A0010-0002 1000pcs Philips Screw;

Diameter:

5mm;

Length: 30mm;

0000000000000000000000003 W0001-0012 1000pcs Wire 12AWG;

Wire;

Length:

10meters;

112

Figure 3.35. The Descriptions of TR and TD in the Database

3.4.4 Phase 4

Phase 4 is the final phase of developing Android app for the proposed system. This phase

is the completed phase where all the connections and communications between the key

components are involve. The proposed system is named Wireless Mobile RFID Reader

(WiBRED). After the developed mobile application using Android Studio has been

completed, the application is save as mobile RFID reader.APK. The application can also

be shared with other smart phone via Bluetooth or USB-PC connection. Figure 3.36 show

WiBRED mobile application has been installed on smart phone of Android operating

system.

113

Figure 3.36. The WiBRED Icon Displayed on the Interface

3.4.4.1 WiBRED Application Layout

Figure 3.37 illustrates the layout of the WiBRED applications consisting of a scan button,

a connector indicator, and a display area.

114

Figure 3.37. The WiBRED Application Layout

The application would notify the user that an accessory was not connected by

making the indicator button red as shown in Figure 3.38. Red was chosen because it

signifies the “stop/off” state or condition (Martinez-Conde & Macknik, 2014).

Additionally, the text “Accessory is not connected” would appear if the hardware was not

plugged in a smart phone. If the indicator button was also red even after the user had

plugged in the hardware, it meant that a connection error had occurred in the accessory,

not the hardware.

115

Figure 3.38. Red Indicate No Accessory Connected

On the hand, the indicator button would turn green when the hardware was

connected as shown in Figure 3.39. Green was chosen because it represents the “start/on”

state or condition (Martinez-Conde & Macknik, 2014). In addition, the text “Accessory is

connected” would be displayed when the hardware was properly connected to the smart

phone and there was no connection error in the circuit.

Figure3.39 . Green Indicate an Accessory is Connected

Passive tags were tagged on the materials palettes, and as they passed through the

portal, the passive reader would sense and record the tags’ data, which were then

transferred to the wireless transceiver. Then, the wireless transceiver will transfer the data

to the coordinator. Effectively, such reception and transmission of passive and active

RFID data over a long distance using the mesh network enabled the active reader to

116

receive data in real time and send the data to a PC, on which data collected, were

centralized.

In addition, the proposed system had a special designation, allowing it to

communicate with the Android mobile phone. As it was attached to the active reader,

data collected would appear on the phone screen during the process of searching objects,

thus preventing users from going to the base station to check the number of tags that had

been collected by the RFID system. As such, users (notably the manager of a company)

could monitor the daily production performance through his or her smart phone, as data

transmission could be performed wirelessly. Furthermore, the database would be updated

in real time, making RFID an efficient method for asset tracking and inventory

management. In particular, RFID smart label solutions would help manufacturing

personnel to monitor and control the flow of materials in real time with ease. Figure 3.40

shows the flow of operational process of the WiBRED application.

117

Figure 3.40. The Flow of Operational Process of the WiBRED Application

Pressing the scan tag button would display the available tagged object within a

detected range on the phone screen as shown in Figure 3.41. To retrieve the details of the

118

tagged object, the user must click the respective tags accordingly. Figure 3.42 shows a

description of a tagged object (in this case was a screwdriver).

Figure 3.41. To Scan at Tagged Object

Figure 3.42. A Display of the Description of a Tagged Object

119

3.5 Summary

The research methodology used to develop the proposed system was based on ADDIE

model, encompassing both relevant hardware and software. For the hardware

development, three phases were carried out. First, hardware development began by

integrating an IOIO board and a smart phone to ensure the passive reader would be able

to communicate with the smart phone, as the latter was not equipped with UART

communication. Then, a passive reader was embedded onto the integrated IOIO board.

Finally, the board was embedded with an active reader, which effectively made the

former as a host to control the transmission of data.

Similarly, three phases were performed in the software development. First,

Android Studio software was used to develop a novel mobile application to establish

serial communication between Android devices and a passive reader. Secondly, a loop

back test of the mobile application was carried out by short-circuiting the reception and

transmission pins of the IOIO board. The proposed system was developed after the

communication between such components was tested to be successful. Thirdly, TCL

programming language was used to develop the database. To differentiate between

processes, two commands were set to different values, namely “TR” for assemble packet

and “TD” for fetching information from the database. Upon successful communication

testing of the proposed system, the mobile application was saved as an APK file, which

was later installed on the Android smart phone.

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Overview

In this chapter, the researcher discusses the results and discussions of the WiBRED

system. As discussed in Chapter 4, the testing of the system was carried out in a real

world environment based on two operational modes, namely stationary and mobile mode.

Testing was performed on all related components of the system, such as a mobile phone,

WiBRED, tags, routers, a coordinator, and a host computer. Performance measure

focused on repeatability, which is a variation in measurements taken by a single person or

an instrument on a specific item under particular conditions. Therefore, taking ten

measurements has been the norm for consistent and reliable calculations. Clearly, taking

121

50 measurements would better than taking a smaller number of measurements, such as

20, but if the readings are between 4 and 10, such smaller number is deemed sufficient

(Salahinejad & Aflaki, 2007). Therefore in this chapter, the measurements are taking ten

measurements.

4.2 Application Interface Setup

To conserve the energy of a rechargeable battery, WiBRED is designed to run on two

modes of operation, namely mobile mode and stationary mode. On stationary mode, the

system can support fixed RFID readers. On mobile mode, WiBRED can enable support

higher mobility of the RFID reader via OTG USB connection with a rechargeable battery.

A mobile application supporting Android OS was developed to scan and store details of

tagged objects in a data server. Such a process was carried out in several stages. First,

when a tag detected the tagged object, its identification (ID) would be compared to all

information stored in the database. Then, the identity of the tagged object would be

displayed on the phone screen when the ID matched with one particular information in

the database. In fact, the details of the tagged object would only be displayed when

specifically requested by the user. For successful communication, the COM port and

baud rate of the server should match with the COM port and baud rate of the passive

RFID reader. Figure 4.1 shows the configuration of the database, entailing the user to

change the COM port and baud rate in order to match with those of the RFID reader.

122

Figure 4.1. Database Configuration

USB OTG is designed to connect a mobile phone to its accessory. The received

ID from the tags would be transmitted to WiBRED and to the server terminal to find the

matched tag’s ID. Figure 4.2 shows the block diagram of the general hardware setup

based on the mobile mode of operation.

Figure 4.2. The General Hardware Setup

123

4.3 Anti-Collision Test

The main purpose of anti-collision test was to test the capability of multiple readings at

one particular time. This test was conducted in a laboratory where all the relevant

hardware, including a rechargeable battery, a computer, a power adapter, and WiBRED,

were placed on a table. Data collection was carried out based on the two operational

modes (stationary mode and mobile mode) for 10 times to allow better analysis on the

measured data. On each mode, two different antennas, namely Antenna 1 and Antenna 2,

were used. Figure 4.3 shows the configuration of the test setup.

Figure 4.3. Anti-Collision Test Setup

124

Figure 4.4 shows two different antennas used in the test, running with the same

range of frequencies from 902 to 928 MHz. However, the antennas used had different

sizes, with Antenna 1 and Antenna 2 measuring 5 cm by 5 cm and 450 mm x 450mm x

75 mm, respectively. The description of antenna parameters are listed in Table 4.1

Table 4.1

Antenna Parameters

Parameters Antenna 1 Antenna 2

Size 5 cm by 5 cm 450*450*75mm

Operating Frequency
902-928 MHZ

865MHz-868MHz

902-928 MHZ

865MHz-868MHz

Gain 5 dBi 12 dBi

Polarization Circular Linear

Figure 4.4. Antenna 1 And Antenna 2 Used In The Test

125

The percentage of the data received based on both stationary and mobile mode

was calculated using Equation 4.1 as follows:

Percentage of data received:

4.3.1 Stationary Mode

On stationary mode, the controller application on the PC was used to detect if there were

any differences in the number of data received based on the distance between the tag and

the reader. In this test, such distances were set to 5 cm, 10 cm, and 15 cm for Antenna

1and to 1 m, 2 m, and 3 m for Antenna 2. The test was repeated for 10 times using 4 tags.

Equation 4.1 was used to calculate the percentage of data received. Figure 4.5 shows a

screenshot of the firmware that acted as a controller application, indicating that the data

were randomly received.

126

Figure 4.5. The Results Of Anti-Collision Test Based On Stationary Mode

Table 4.2.

Percentage of Data Received for Stationary Mode

Antenna Distances Percentage of Data Received (%)

1

5 cm 100

10 cm 100

15 cm 75

2

1 m 100

2 m 95

3 m 80

127

The above findings show that the efficiencies of the anti-collision test in

stationary mode of Antenna 1 at 5 cm, 10 cm and 15 cm distances were 100%, 100% and

75% respectively. Antenna 1 m, 2 m, and 3 m were 100%, 95%, and 80%, respectively.

4.3.2 Mobile Mode

On the mobile mode, the mobile application developed and installed on the mobile phone

was used. Given that no date and time were displayed when tag information was

received, the time of the clock was recorded every time the test was performed, which

was repeated 10 times based on a one-minute interval. Figure 4.6 shows three screenshots

of the test at three different times, namely at 00:18, 00:20, and 00:21.

Figure 4.6. The Results Of Anti-Collision Test Based On Mobile Mode

128

Table 4.3

Percentage of Data Received for Mobile Mode

1 Distances Percentage of Data Received (%)

1

5 cm 100

10 cm 100

15 cm 77.5

2

1 m 100

2 m 97.5

3 m 87.5

The above findings show that the efficiencies of the anti-collision test of mobile

mode of Antenna 1 at 5cm, 10cm and 15cm distances were 100%, 100% and 77.5%

respectively. Antenna 1 m, 2 m, and 3 m were 100%, 97.5%, and 87.5%, respectively.

4.4 Comparison of results of the Anti-Collision test

The transceiver was equipped with CSMA/CA algorithm (SKYEMODULE, 2014). Thus

enabling WiBRED to perform the anti-collision test successfully. Based on Figure 4.7

and Figure 4.8, clearly there were no significant differences between the percentages of

data received based on the two types of antenna used in the test.

129

Figure 4.7. Comparison of Results Of The Anti-Collision Test Based On Antenna 1

Figure 4.8. Comparison of Results Of The Anti-Collision Test Based On Antenna 2

130

Both graph shows that there is no significance difference between stationary and

mobile mode. Hence the graphical patterns shows that as the distance increase, the

efficiency of anti-collision for both modes decreases (Lindholm & Auster, 2007).

4.5 Maximum Read Range Measurement

WiBRED was placed in an actual environment in which it would operate after testing.

Therefore, the testing was carried out to determine the maximum readable distance over

which WiBRED would operate in indoor of NLOS and line-of-sight (LOS) environments.

Essentially, WiBRED supports two types of wireless communication, namely passive and

active communication. As such, maximum read range was tested for both types of

communication. Figure 4.9 shows the passive and active wireless communication as

represented by labels “A” and “B”, respectively

Figure 4.9. Test Setup for Read Range Measurement

131

The test in the indoor LOS environment was carried out inside an industrial

building of a company. However, the company prohibited the shooting of photos of the

production areas for security reasons. It is important to note that several factors, such as

the antenna’s orientation, characteristic, material, and position, would affect the accuracy

of read range measurement.

Hence, the researcher adhered to the following guidelines to prevent any errors in

the measurement:

 The heights of RFID tag and reader have to be the same at all time.

 The orientations of RFID tag and reader antenna must be the same at all

time.

 The same antenna must be used for RFID tag and reader at all time.

 The antenna of RFID tag and reader must have the same maximum output

power at all time.

4.5.1 Stationary Mode

The reader was placed at a fixed location, while the tag was moved until the reader was

not able to receive information from the tag. The measurement was repeated 10 times in

the test. The antenna used the Ultra High Frequency RFID (UHF RFID), ranging from

902 to 928 MHz. Table 4.4 summarizes the test results of the NLOS and LOS

propagations of passive and active RFID.

132

Table 4.4

The NLOS and LOS Propagations Based on Stationary Mode

Environment Passive (cm) Active (m)

 Antenna 1 (cm) Antenna 2 (m)

Propagation Type NLOS LOS NLOS LOS NLOS LOS

Average

Maximum Read

Range

10.8 14.3 2.61 3.45 40.6 72.72

4.5.2 Mobile Mode

The reader was placed at a fixed location, while the tag was moved until the reader was

not able to receive information from the tag. The measurement was repeated 10 times,

with the antenna operating in the UHF RFID frequencies, ranging from 902 to 928 MHz.

Table 4.5 summarizes the results of the average maximum read range for the

indoor environment. Clearly, the comparison between the LOS and NLOS propagations

shows that the former had longer detection range than that of the latter.

Table 4.5

The NLOS and LOS Propagations Based on Mobile Mode

Environment Passive Active

 Antenna 1 (cm) Antenna 2 (m)

Propagation Type NLOS LOS NLOS LOS NLOS LOS

Average Maximum

Read Range
10.7 14.6 2.60 3.50 44.80 74.54

133

4.5.3 Comparison of Station and Mobile Read Range

The following figures show the comparison between the read range measurements of

NLOS and LOS based on the two modes. Figure 4.10 and Figure 4.11 show the read

range measurements of the passive communication using different Antenna, while Figure

4.12 shows the comparison for read range of active, indicating that there was no

significant difference in such measurements between the two modes.

Figure 4.10 . The Read Range Result of Passive RFID using Antenna 1

134

Figure 4.11. The Read Range Result of Passive RFID using Antenna 2

Figure 4.12. The Read Range Result of Active RFID

135

 The findings shows that there no significance difference between stationary and

mobile mode for read range measurement result. Between two propagations; NLOS and

LOS shows significance difference. This is because LOS deploys when there is no

obstruction between transmitter and receiver. Therefore, due to less attenuation in LOS

communication, it offers good signal strength.

4.6 Wireless Mesh Network Test

This section describes the test of the performance of the monitoring application in a real

world environment using all the RFID components, such as WiBRED, routers, and

coordinator. This test was in fact carried out in the UPSI E-learning building. The whole

network of the mesh topology comprised 4-hops as illustrated in Figure 4.13. Mesh

topology was employed because the router of the network would have to communicate

with the farthest router, which might be located beyond the permitted distances of the

router. Furthermore, such a topology only permits data packets to pass through multiple

hops in a network to route data from any source in any direction in different average

traffic loads.

136

Figure 4.13. Layout of Wireless Mesh Sensor Network in Multi-Hop Environment

WMN has the capability of self-healing that guarantees network coverage at all

time, despite some of its nodes may be defective or turned off. As such, the test was

carried out by switching off one router at a time. WMN is similar to peer-to-peer

topology where the use of an intermediate device that relays data with removed dead

spots constitutes an expandable network (Eu, Tan, & Seah, 2009; Hamidian et al., 2009).

The tag was passed through a series of spots, from spot A to spot J, at which 10 data were

sent at a time from each spot.

137

Table 4.6

Self-healing Capability of WMN

Spot Station Mode Mobile Mode

Router

Closed
A B C D E F G H I J A B C D E F G H I J

1 √

2 √

3 √

4 √

5 √

6 √

7 √

8 √

9 √

As highlighted, both modes were capable of self-healing in the wireless mesh

network. Moreover, messages could be relayed across all levels (from level 1 to level 5)

at every spot.

4.7 Tags Collection Time

The purpose of this test was to measure the tag collection time based on stationary and

mobile modes, which indicate the performance of monitoring and tracking of the mobile

application. Of late, the collection of ID tags has become more imperative as it provides

important information critical to the wellbeing of a manufacturing organisation. More

specifically, such wireless collection of ID tags helps improve material management,

138

product identification, and work-in process tracking, which would be difficult to handle if

manual data entry or barcode technology was used. In this study, testing was performed

on several numbers of tags, namely 1, 5, 10, 15, 20, and 25 tags. Table 4.7 and Figure

4.12 show the tags collection time of several numbers of tags based on stationary and

mobile modes.

Table 4.7

Tags Collection Time Based on Stationary and Mobile Modes

No. of

Tags

Collection Time (ms)

Station Mobile

1 136.74 104.00

5 217.96 145.90

10 261.29 154.80

15 278.48 162.80

20 321.62 170.60

25 367.47 192.50

Figure 4.14. Tags Collection Time Based on Stationary and Mobile Modes

139

 From the findings shows that stationary and mobile mode shows significant

difference in tags collection time. The duration of tags collection time for mobile mode is

less compared to stationary mode.

4.8 Energy Analysis

This section discusses the performance of WiBRED in terms of energy consumption. One

of the methods to measure current is to use a resistor across a current output and measure

the voltage according to Ohm’s Law (Wines & Braathen, 2008) as follows: V = IR,

where I is the current flowing through a resistor of a known value. Figure 4.15 shows the

setup used in the measurement of energy consumption. The current was measured using a

1-Ω resistor placed in series at the lower side of a circuit, which was from the circuit to

the ground, as shown in Figure 4.15. This resistor was chosen because low resistance

allows the measurement of large signal, while keeping the voltage fluctuation under

control. Moreover, such small value of resistance can minimize additional voltage drop

(Shinghal, Noor, Srivastava, & Singh, 2011). A digital oscilloscope was connected across

the resistor to measure the current, and a multi-meter was used to measure the idle and

sleep modes of the circuit. When using a multimeter to measure current of idle and sleep

mode, the only way that can be used to detect the level of current flowing is to break into

the circuit so that the current passes through the meter Idle mode is measured when the

system is waiting for executing task but the key components are at nominal state while

140

sleep mode is when the key components shuts itself down. Testing was only performed

on mobile mode, because it did not have to rely on a fixed power source.

Figure 4.15. The Setup of the Energy Consumption Measurement (Jain &Braathen,

2011; Selvig, 2007)

Figure 4.16 shows the waveform that was captured by the oscilloscope during the

scan tag process. The measurement of the waveform was repeated 10 times to obtain an

average waveform of the voltage for each type of transmission during each cycling

process.

141

Figure 4.16. The Waveform of Scan Tag Process

Table 4.8 shows the average current consumption for the active period. The

sequence were divided into different phases in which the approximate current and

duration of each phase was measured. Such sequential measurements were carried out

because the waveform had multiple peaks (Jain & Braathen, 2011). Table 4.8

summarizes the current consumption during the scan tag process, with each event having

specific values of the current consumed and time used.

142

Table 4.8

The Current Consumption during Transmission and Reception

No Description

Transmit Receive

Current

(mA)

Duration

(ms)
(mA)*(ms)

Current

(mA)

Duration

(ms)
(mA)*(ms)

1 Start Scan Tag 300 180 54000

2 Receive ACK 400 120 48000

3
Determine

Delimiter
300 180 54000

4
Receive

Delimiter
 400 120 48000

5
Determine

Packet Length
300 180 54000

6
Receive Packet

Length
 400 120 48000

7
Determine

Command
300 180 54000

8
Receive

Command
 400 140 56000

9
Determine Tag

ID
350 160 56000

10 Receive Tag ID 400 120 48000

SUM 880 272000 620 248000

AVERAGE

CURRENT
309.09 400

4.8.1 Calculated Current Consumption

The current consumption was divided into four modes: sleep, transmit, receive, and

measure. The sleep mode was activated when the tag was asleep and other components

were in their respective save modes. This mode was not applicable to the IOIO board,

because it served as a host on mobile mode. Furthermore, the IOIO board would be

disconnected from the Android device if it were to be on the sleep mode. Table 4.9 shows

the current consumption of WiBRED.

143

Table 4.9

Calculated Current Consumption per Circuit

Mode

IOIO

Board

(mA)

Passive

reader

(mA)

Wireless

transceiver

(mA)

Relay (mA) Total (mA)

Sleep - 10 0.101 40 50.101

Transmit 1000 450 40 40 1530

Receive 1000 450 50 40 1540

The theoretical total current consumption of each mode (receive, transmit, and

sleep) was equal to the sum of current consumption of each device. To estimate the

current consumption, it was assumed that the mobile reader sent commands every 60

seconds, while the tag listened to these commands. The reason for using a sampling

period of 60 seconds is that the application of the proposed system is meant for tracking

objects in manufacturing plants. Equation 4.2 was used to calculate the duration of the

sleep mode as follows:

The time of each mode was converted to percentage as presented in Table 4.10.

144

Table 4.10

Percentage of Time usage for Each Mode

4356 Time (s) Percentage of Time In 60s (%)

Sleep 58.5 97.500

Transmit 0.88 1.467

Receive 0.62 1.033

Total 60 100

The average current was calculated from the usage percentage and current

consumption of each mode. The time listed in Table 4.11 was multiplied with the

corresponding current consumption listed in Table 4.9, and the sum of all currents gives

the average current consumption (Bengtsson, 2007). Table 4.11 shows that the calculated

current consumption of WiBRED in a period of 60s was 87.201 mA.

Table 4.11

The Calculated Current Consumption of the Tag in a Period of 60 S

Mode
Percentage of

Time In 60s (%)

Calculated Current Consumption

Total per circuit

(mA)

% Current

consumption per

circuit (mA)

Sleep 97.500 50.101 48.848

Transmit 1.467 1530 22.445

Receive 1.033 1540 15.908

Total 100 87.201

145

4.8.2 Measured Current Consumption

For the real-time application of the system, the measured current consumption during

transmits, receive and sleeps are tabulated in Table 4.12. Clearly, the calculated and

measured values would be different as all components used had some tolerances, which

were more pronounced for passive components. Therefore, such differences suggest that

the calculated total circuit resistance would be slightly higher than the theoretical one.

The datasheet specification was based on fixed current at certain voltage range and

temperature, but in real life, the voltage of a power source would decrease as current is

being drawn over time.

Table 4.12

The Measured Current Consumption

Mode
Measured Current Consumption

(mA)

Sleep 90.2

Transmit 309.09

Receive 400.00

Within a period of 60s, the total current consumption was calculated to be

96.611mA as shown in Table 4.13. The calculation of the current was carried out by

adding the multiplied percentages of measured current consumption in the period of 60 s.

146

Table 4.13

The Measured Current Consumption of the Tag in a Period Of 60 S

Mode

Percentage of

Time In 60s

(%)

Measured Current Consumption

mA
[mA] * [% of

Time In 60s]

% of

Comparison

Sleep 97.500 90.2 87.945 91.030

Transmit 1.467 309.09 4.534 4.690

Receive 1.033 400.00 4.132 4.277

Total 100 96.611 100

4.8.3 Rechargeable Battery Lifetime Estimation

The WiBRED was equipped with a rechargeable battery with a capacity of 10,000 mAh,

and the average current consumption was 96.611 mA. Therefore, the rechargeable battery

lifetime estimation was calculated according to the formula as follows:

4.9 Comparison of WiBRED with Existing Systems

Table 4.14 shows the comparison of WiBRED performance and features with those of

existing systems. The comparison descriptions are the operating frequency, OS platform,

power source, design flexibility, read range and functionality.

147

Table 4.14

Comparison of WiBRED with Existing Systems

Hardware

Name

Embedded

RFID and

WSN

Operating

Frequency

Android

Platform

Battery

capacity/

supply

voltage

Flexible

design,

adding &

modification

software &

hardware

Operation

Range
Function

MINI ME

UHF RFID

Reader

RFID only
902-

928MHz
√

5 VDC

(powered by

USB)

X 5 to 50 cm
Read,

Write

Audio Jack

UHF RFID

Portable

Reader

RFID only
860-

960MHz

Support

iOS and

Android

USB,

5V/0.5A
X 0.5 m

Read,

Write

WiBRED √

860-

960MHz,

2.4 GHz

√

2-5.5 VDC

(powered by

rechargeable

battery)

√

Passive: 10

cm – 3 m

(flexible

based on

antenna

used)

Active:

>100 m

Read,

Write,

Database

RFID

Reader

B-

SL(Vhatkar

& Bhole,

2010)

RFID +

Wi-Fi

135 kHz,

2.4 GHz

PDA/

mobile

device

(J2ME

emulator

Not mention √ 10-15 cm Read

Handheld

Reader

(Abdulla,

2012)

√ 2.4 GHz

Android

(Version

1.5

above)

Not mention √

Indoor: 40

m

Outdoor:

120 m

Read

WiBRED is embedded of RFID and WSN technology and supports Android OS

platform same as handheld reader by Abdulla, 2012. However, it does not support passive

RFID like other existing system. WiBRED has operating voltage range of 2-5.5 V

148

compared to other system with fixed voltage range. Moreover it has the flexibility of

modifying the hardware and software based on application required. WiBRED also

equipped with database for storing of tags descriptions.

4.10 Summary

The following is the summary of the findings of the test performed in the real world

environment:

 Anti-collision plays an important role in detecting multiple tags at a time to ensure

packets received will not collide. As such, the transceiver module was programmed

with the CSMA anti-collision algorithm. The test conducted used two types of

antennas working in the frequency range of 860-960 MHz. However, they differed in

size, with Antenna 1 measuring 5 cm x 5 cm and Antenna 2 measuring 25 cm x 25

cm. For Antenna 1, the anti-collision efficiencies at the distances of 5 cm, 10 cm and

15 cm were100%, 100%, and 75% based on stationary mode. At the same distances

but on the mobile mode, the anti-collision efficiencies remained the same (at 100%),

except for the distance of 15 cm which saw the efficiency climb to 77.5%. The anti-

collision efficiencies of Antenna 2 at the distances of 1 m, 2 m, and 3 m based on the

stationary mode were 100%, 95%, and 80%. At the same distances, the anti-collision

efficiencies of the same antenna were 100%, 97.5%, and 87.5%, respectively.

149

 The proposed system is designed to function as a tracking application for

manufacturing plants. However, for security reasons, photo shooting in the

production areas was prohibited. As revealed, the test findings show that the

difference in the read range measurements between stationary and mobile mode was

not significant. Additionally, it was observed that Antenna 1 was capable in detecting

objects up to 15 cm, while Antenna 2 was capable in detecting the same object up to

3.5 m.

 The WiBRED is a flexible system capable of working effectively in any types of

frequency within the range of 860-960 MHz. The working frequency of the integrated

antenna depends on the specification of the tag’s antenna, thus meeting the industrial

needs in tracking multiple types of products.

 The proposed system was also tested on the WMN test bed consisting of several

essential hardware, such as the WiBRED system, routers, and a coordinator. Given

that WMN has a self-healing capability, whenever any router was switched off, the

ID could still be transmitted from L1 to L5. The test was also conducted on both

stationary and mobile mode, the results of which confirm that both modes can operate

on the WMN platform.

 The tag collection time test was performed to measure the time of collecting tags on

both stationary and mobile mode. In fact, such a test (which is important in the

manufacturing industry) can help determine the performance of a monitoring and

150

tracking application. The analysis performed on data collected showed that the

application took less time for such collection when on mobile mode compared with

that of the stationary mode. Furthermore, the maximum number of tags collected was

25.

 For energy consumption test, the proposed system was only tested on mobile mode.

Moreover, the sleep mode of the proposed system was set at 90.2 mA, which was

quite high because the IOIO board that served as a host would remain active, not

asleep. The calculation of the energy consumption was based on the assumption that

the proposed system would continuously transmit data to the coordinator every 60s.

The analysis performed showed that the current consumption for 60s sampling rate

was 96.611 mA, effectively helping there chargeable battery to last 4.3 days.

Arguably, the battery lifespan can be extended if the interval of transmission is

stretched to more than an hour.

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The proposed system, namely WiBRED, has been demonstrated to be a potent, novel

system that can improve the monitoring of warehouse management and control of

material flow in the manufacturing industry. What makes WiBRED innovative and

effective is that this system is embedded with active and passive RFID running on the

WMN platform. As such, this system can serve as a cost-effective RFID smart label

solution to help manufacturing personnel to monitor and control material flow in real

time. Moreover, WiBRED can be connected to an Android smart phone (running on

Android OS version 1.5 and above) via IOIO-OTG, providing high mobility and

flexibility for manufacturing personnel to track goods in a warehouse.

152

Interesting, WiBRED can operate on two modes, namely stationary and mobile

mode, thus enhancing its utility in manufacturing. Equi pped with this ability, this system

can help conserve the power of a rechargeable battery when running on mobile mode.

Equally interesting is that connecting an Android smart phone to a USB IOIO cable will

switch the system from stationary mode to mobile mode – which will occur

spontaneously and automatically. WiBRED will be on stationary mode when it remains

fixed (or stationary) and disconnected from the Android smart phone. On this mode, a

portable power bank or a fixed power source can be used to charge the system.

As revealed, the active reader of WiBRED is able to detect manufacturing objects

up to 70 m, which seems adequate for tracking purposes in large manufacturing plants.

More revealingly, the read range of the active reader can be extended further by adding

routers, because WiBRED can perform effectively on the WMN platform and has the

capability of self-healing when one router is switched off at a time from level 1 to level 5.

On the other hand, the passive reader of WiBRED has been programmed with a

CSMA anti-collision algorithm, providing the system with some flexibility to work with

any types of antenna within the frequency range of 860-960 MHz. For both modes of the

WiBRED, the antennas will be able to detect multiple tags over some distances of up to

15 cm and to 3.5 m using Antenna 1 and Antenna 2, respectively. Obviously, the

appropriate type of antenna to be used will depend on the specifications of tag antenna

and the type of tagged products used in the manufacturing industry.

153

Equally revealing is that the tag collection time for both modes differed quite

significantly, with mobile mode taking less time to detect tags compared to that of

stationary mode. As such, only the mobile mode of the WiBRED was tested for power

consumption, indicating that the power consumption of the whole circuit of WiBRED

was 96.11 mA based on a transmission sampling rate of 60s.

5.2 Future Work

Arguably, in its current form, WiBRED has several drawbacks, which can be addressed

in future research. As such, future studies should focus on the following

recommendations:

1. Develop the cloud computing so that companies can either reduce or eliminate the

size of their own data centres. With reduction of numbers of servers, can reduce

the software cost and the number of staff without impacting the organization’s IT

capabilities.

2. Make improvements to existing smart system that will enable it to pinpoint the

locations of tracked objects with higher precision.

154

REFERENCES

Abdulla, R. M. T. (2012). Design And Implementation Of Multi-Hop Active RFID System

With Embedded Wireless Sensor Network. Universiti Sains Malaysia.

Abdullah, S., Ismail, W., & Abdul, Z. (2015). Implementation of Wireless RFID for

Production Line Management System in a Real Environment. Wireless Personal

Communications, 83(4), 3119–3132.

Abinayaa, V., & Jayan, A. (2014). Case Study on Comparison of Wireless Technologies

in Industrial Applications. International Journal of Scientific and Research

Publications, 4(1), 2250–3153.

Aju, O. G. (2015). A Survey of ZigBee Wireless Sensor Network Technology: Topology,

Applications and Challenges. International Journal of Computer Applications,

130(9), 975–8887.

Akshita Dubey, Amisha Jain, & Aditi Mantri. (2015). COMPARATIVE STUDY:

WATERFALL V/S AGILE MODEL. International Journal of Engineering Sciences

& Research Technology (IJESRT)., 4(1), 70–75.

Al-Harbawi, M., Rasid, M. F. A., & Noordin, N. K. (2009). Improved Tree Routing

(ImpTR) Protocol for ZigBee Network. IJCSNS International Journal of Computer

Science and Network Security, 9(10).

Anamika Vatsal, E., & Fatima, M. (n.d.). Impact of Frequency Offset on Interference

between Zigbee and Wifi for Smart Grid Applications. IOSR Journal of Electronics

and Communication Engineering, 7(5), 2278–8735.

Attaran, M. (2012). Critical Success Factors and Challenges of Implementing RFID in

Supply Chain Management. Supply Chain and Operations Management, 10(1), 144–

167.

Bachelor, B. (2014). RFID news roundup : A Summary of Tags Comprise Half of Global

RFID Market.

Bal, M. (2014). An industrial Wireless Sensor Networks framework for production

monitoring. In 2014 IEEE 23rd International Symposium on Industrial Electronics

(ISIE) (pp. 1442–1447). IEEE.

Bala, K., Sharma, S., & Kaur, G. (2015). A Study on Smartphone based Operating

System. International Journal of Computer Applications, 121(1), 17–22.

155

Barr, M., & Massa, A. (2009). Programming Embedded Systems (2nd ed.). O’Reilly

Media.

Bazard, M., & Bhardwaj, S. (2011). Overview on Android – The New Mobile Operating

System. SGI Reflections-International Journal of Science, Technology and

Management., 2(1), 25–34.

Ben-Tsvi, Y. (2014). Power Supply OTG.

Bengtsson, N. (2007). Development and Implementation of a Low Power Wireless Sensor

Network. Linköpings University.

BlackBerry. (n.d.). BlackBerry 10 device architecture. Retrieved August 7, 2017, from

https://help.blackberry.com/en/blackberry-security-overview/latest/blackberry-

security-overview/awi1402929620791.html

Deavours, D. D. (2005). UHF EPC Tag Performance Evaluation A Production of the

Report #2 in the Series.

Deloitte. (2015). Industry 4.0: Challenges and solutions for the digital transformation

and use of exponential technologies. Zurich. Retrieved from

https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/manufacturing/ch-

en-manufacturing-industry-4-0-24102014.pdf

Dharmistha, M., & Vishwakarma, D. (2012). IEEE 802.15.4 and ZigBee: A Conceptual

Study. International Journal of Advanced Research in Computer and

Communication Engineering, 1(7).

Divyap, K., & Venkata Krishnakumar, S. (2016). Comparative Analysis Of Smart Phone

Operating Systems Android, Apple iOS And Windows. International Journal of

Scientific Engineering and Applied Science, (22), 2395–3470.

Dr. Reinhard Geissbauer, Vedso, J., & Schrauf, S. (2016). 2016 Global Industry 4.0

Survey What we mean by Industry 4.0 / Survey key findings / Blueprint for digital

success. Retrieved from www.pwc.com/industry40

Duroc, Y., & Kaddour, D. (2012). RFID potential impacts and future evolution for green

projects. Energy Procedia, 18, 91–98.

Eu, Z. A., Tan, H.-P., & Seah, W. K. G. (2009). Routing and relay node placement in

wireless sensor networks powered by ambient energy harvesting. In Proceeding

156

WCNC’09 Proceedings of the 2009 IEEE conference on Wireless Communications

& Networking Conference (pp. 2003–2008).

Francisco Almada-Lobo. (2015). The Industry 4.0 revolution and the future of

Manufacturing Execution Systems (MES). Journal of Innovation Management, 4(3),

16–21.

Gaikwad, P. P., Gabhane, J. P., & Professor, A. (2015). International Journal on Recent

and Innovation Trends in Computing and Communication A Review on IOT

Techniques for Automating Devices. International Journal on Recent and

Innovation Trends in Computing and Communication, 3(4), 1773–1777.

Gandhewar, N., & Sheikh, R. (2010). Google Android: An Emerging Software Platform

For Mobile Devices. International Journal on Computer Science and Engineering

(IJCSE), 1(1), 12–17.

Hakala, M. (2013). White Paper : A comparison of Real-Time Location Systems (RTLS)

and Technologies. Ekahau.Inc (Vol. 1).

Hall, S. P., & Anderson, E. (2009). Operating systems for mobile computing. Journal of

Computing Sciences in Colleges, 25(2), 64–71.

Hamidian, A., Palazzi, C. E., Chong, T. Y., Navarro, J. M., Körner, U., & Gerla, M.

(2009). Deployment and Evaluation of a Wireless Mesh Network. In Advances in

Mesh Networks, 2009. MESH 2009. Second International Conference on (pp. 66–

72). Athens, Glyfada, Greece: IEEE.

Harmon, D. (2007). Enabling high-speed USB OTG functionality on TI DSPs.

Huang, G. Q., Saygin, C., & Dai, Q. Y. (2012). Special issue on “RFID-Enabled

Manufacturing: Insights and Lessons from Industrial Cases.” International Journal

of Computer Integrated Manufacturing, 25(1), 1–2.

Idris, Y., & Muhammad, N. A. (2016). A Comparative Study of Wireless

Communication Protocols: Zigbee vs Bluetooth. International Journal of

Engineering Science and Computing, 6(4), 3741–3744.

Jain, S., & Braathen, M. (2011). Measuring the Power Consumption on CC2530ZNP

Using CC2530 ZNP Mini Kit.

James, C. C., Cheng, C.-H., & Huang, P. B. (2012). Supply chain management with lean

production and RFID application: A case study. ELSEVIER, 40(9), 3389–3397.

Jia, X., Feng, Q., Fan, T., & Lei, Q. (2012). RFID technology and its applications in

Internet of Things (IoT). In 2012 2nd International Conference on Consumer

157

Electronics, Communications and Networks (CECNet) (pp. 1282–1285). IEEE.

Jindal, G., & Munjal, S. (2012). The Wane of Dominant (Symbian Operating System).

International Journal of Advanced Research in Computer Science and Software

Engineering, 2(9), 2277–128.

Joseph, J., Professor, A., Kurian, S. K., Manager, P., & Mahindra, T. (2013). Mobile OS

– Comparative Study. Journal of Engineering, Computers & Applied Sciences

(JEC&AS) ISSN, 2(10), 2319–5606.

Jou, Y., Wee, H., & Chen, H. (2009). A neural network forecasting model for

consumable parts in semiconductor manufacturing. Emerald Insight, 99(3), 296–

227.

Khanna, G., & Gupta, G. (2013). A Review on Techniques for Establishing Coexistence

between WiFi and Zigbee. International Journal of Science and Research (IJSR)

ISSN (Online Index Copernicus Value Impact Factor, 14(7), 2319–7064.

Kim, H., & Ayurzana, O. (2009). Improvement of data receive ratio in remote water

meter system by upgrading sensor. International Journal of Control, Automation

and Systems, 7(1), 145–150.

Kumar Maji, A., Hao, K., Sultana, S., & Bagchi, S. (2010). Characterizing Failures in

Mobile OSes: A Case Study with Android and Symbian. In Proceeding ISSRE ’10

Proceedings of the 2010 IEEE 21st International Symposium on Software Reliability

Engineering (pp. 249–258).

Lee, J.-S., Su, Y.-W., & Shen, C.-C. (2007). A Comparative Study of Wireless Protocols:

Bluetooth, UWB, ZigBee, and Wi-Fi. In IECON 2007 - 33rd Annual Conference of

the IEEE Industrial Electronics Society (pp. 46–51). IEEE.

Li, C., Wang, Y., & Guo, X. (2010). The Application Research of Wireless Sensor

Network Based on ZigBee. In 2010 Second International Conference on Multimedia

and Information Technology (Vol. 2, pp. 89–92). IEEE.

Li, L. (2007). Symbian OS Architecture.

Lindholm, J., & Auster, P. J. (2007). Site fidelity and movement of adult Atlantic cod

Gadus morhua at deep boulder reefs in the western Gulf of Maine, USA . Marine

Ecology Progress Series, 342, 239–247. Retrieved from http://www.int-

res.com/abstracts/meps/v342/p239-247/

Liukkonen, M., Havia, E., & Hiltunen, Y. (2012). Computational intelligence in mass

158

soldering of electronics – A survey. Expert Systems with Applications, 39(10),

9928–9937.

Lokhande, S. E., Bamnote, G. R., Ingle, P. S., & Dharkar, S. D. (2014). SUPER SPEED

DATA TRAVELLER USB 3.0. International Journal of Electronics,

Communication & Soft Computing Science and Engineering, 2(6), 2277–9477.

Martinez-Conde, S., & Macknik, S. L. (2014, October 16). How the Color Red Influences

Our Behavior. Scientific American Mind, 25(6), 21–23.

Matsubayashi, M., & Hiroshi, W. (2003). Mechanism of a Factory with Illustrations. (W.

Waku, Ed.). Waku Consulting Co. Ltd.

Matumo, M., & Kisangiri, M. (2014). Design of a Power Quality Monitoring System

Based on IOIO and Android Application. Network and Complex Systems, 4(4), 36–

46.

Medavarapu, C. (2004). An Architecture For Embedded System Communication.

Louisiana State University.

Mika, L. (2014). RFID technology in manufacturing and supply chain. International

Journal of Computer Integrated Manufacturing, 28(8), 861–880.

Nagarajan, R., & Dhanasekaran, R. (2015). Analysing the Effect of Interference in

Wireless Industrial Automation System (WIAS), 10(6).

Narayanan, L., Muthumanickam, D. ., & Nagappan, D. . (2015). Animal Health

Monitoring System Using Raspberry Pi and Wireless Sensor. International Journal

of Scientific Research and Education, 3(5), 3386–3392.

Netalkar, P. P., Kaushal, Y., Shekar, N., & Shet, V. (2014). Zigbee Based Wireless

Sensor Networks for Smart Campus. International Journal of Modern Engineering

Research, 4(7), 55–62.

North, P. (2013). How to Better Monitor Work Floor Performance, Streamline Tracking

Processes and Obtain Accurate, Up-to-the-minute Data (Increasing Efficiency and

Accuracy of Production Labor Costs) The Challenges of Tracking Shop Floor

Labor. Retrieved from www.points-north.com

Okediran O, O., Arulogun O, T., & Ganiyu R, A. (2014). Mobile Operating Systems and

Application Development Platforms: A Survey. J. of Advancement in Engineering

and Technology, 1(4).

159

Padhya, B., Desai, P., Pawade, D., & Student, B. (2007). Comparison of Mobile

Operating Systems. International Journal of Innovative Research in Computer and

Communication Engineering (An ISO Certified Organization), 3297(8), 15281–

15286.

Patel, S. K., Patel, H. R., & Patel, R. S. (2011). Bluetooth usage with Architecture view

& security measures. International Journal of P2P Network Trends and

Technology, 1(3), 30–35.

Porkodi, R., & Bhuvaneswari, V. (2014). The Internet of Things (IoT) Applications and

Communication Enabling Technology Standards: An Overview. In 2014

International Conference on Intelligent Computing Applications (pp. 324–329).

IEEE.

Remple, T. B. (2003). USB on-the-go interface for portable devices. In 2003 IEEE

International Conference on Consumer Electronics, 2003. ICCE. (pp. 8–9). IEEE.

Richards, G. (2014). Warehouse Management: A Complete Guide to Improving

Efficiency and Minimizing Costs in the Modern Warehouse. Kogan Page.

Rojatkar, D. V, Jengathe, G. M., Khairnar, A. B., & Lengure, S. A. (2016). Android

Application Devlopment Software – Android Studio And Eclipse. International

Journal For Engineering Applications and Technology, 9–12.

Ruankaew, T., & Williams, P. (2013). The Impact of Inventory Inaccuracy in the Food

Manufacturing Industry: A Case Study. Business Management Dynamics, 2(10), 28–

34.

Saad, C., Cheikh, E. A., Mostafa, B., & Abderrahmane, H. (2014). Comparative

Performance Analysis of Wireless Communication Protocols for Intelligent Sensors

and Their Applications. IJACSA) International Journal of Advanced Computer

Science and Applications, 5(4).

Salahinejad, M., & Aflaki, F. (2007). Uncertainty Measurement of Weighing Results

from an Electronic Analytical Balance. Measurement Science Review, 7(6).

Sangiovanni-Vincentelli, A., Zeng, H., Natale, M. Di, & Marwedel, P. (2013). Embedded

Systems Development: From Functional Models to Implementations. Springer

Science & Business Media.

Saxena, A., & Upadhyay, P. (2016). Waterfall vs. Prototype: Comparative Study of

SDLC. Imperial Journal of Interdisciplinary Research, 2(6), 2454–1362.

Selvig, B. (2007). Measuring power consumption with CC2430 & Z-Stack.

160

Shinghal, K., Noor, A., Srivastava, N., & Singh, R. (2011). Power Measurements Of

Wireless Sensor Networks Node. International Journal of Computer Engineering &

Science ©IJCES ISSN, 1(1), 2231–6590.

Singh, A., Sharma, S., & Singh, S. (2016). Android Application Development using

Android Studio and PHP Framework. International Journal of Computer

Applications Recent Trends in Future Prospective in Engineering & Management

Technology, 975–8887.

SKYEMODULE. (2014). SKYEMODULE NOVA DATASHEET, 48.

Srivastava, N. (2006). RFID Introduction, Present and Future applications and Security

Implications. Electrical Engineering Department, George Mason University,4400

University Drive, Fairfax, Virginia 22030, (C), 1–10.

Statista. (n.d.). • Malaysia - types of smartphone OS used for personal purposes | Survey

2016. Retrieved April 18, 2018, from

https://www.statista.com/statistics/563660/malaysia-types-of-smartphone-operating-

systems-used-for-personal-purposes/

Sulaiman, S., Umar, U. A., Tang, S. H., & Fatchurrohman, N. (2012). Application of

Radio Frequency Identification (RFID) in Manufacturing in Malaysia. In

International Conference on Advances Sciences and Contemporary Engineering

2012 (ICASCE 2012) (Vol. 50, pp. 697–706).

Syafeeq, M., Shazli, A., & Daud, S. M. (2015). Vehicle Mobile Detection in a Building

Parking Area using Smart- Phone Bluetooth Signal Technology. Open International

Journal of Informatics (OIJI) Iss, 3(2).

Tomai, N., & Toma, C. (2009). Issues in WiFi Networks. Journal of Mobile, Embedded

and Distributed Systems, 1(1), 3–12.

Turcu, C. (2011). Deploying RFID - Challenges, Solutions, and Open Issues. InTech

Open (2nd ed.). Rijeka, Croatia: InTech.

Turcu, C., Turcu, C., & Graur, A. (2008). Improvement of Supply Chain Performances

Using RFID Technology. Stefan Cel Mare University of Sueava, Romania,

(December).

Umare, M. K. B., & Padole, D. D. V. (2015). The Design and Implementation of

Handheld Multipurpose Scope Using Bluetooth IOIO Board. International Journal

of Advanced Research in Computer Engineering & Technology (IJARCET), 4(4).

161

Verma, M., Singh, S., & Kaur, B. (2015). An Overview of Bluetooth Technology and its

Communication Applications. International Journal of Current Engineering and

Technology E International Journal of Current Engineering and Technology,

55(33), 2277–4106.

Vhatkar, K. N., & Bhole, G. . (2010). Internal Location Based System for Mobile

Devices Using Passive RFID and Wireless Technology. In Computer Technology

Department,Veermata Jijabai Technology Institute,Mumbai, India.

W.Fisher, M. (2013). Characteristics Of Simulated Zigbee Networks. Southern

Connecticut State University.

Wang, C., Duan, W., Ma, J., & Wang, C. (2011). The research of Android System

architecture and application programming. In Proceedings of 2011 International

Conference on Computer Science and Network Technology (Vol. 2, pp. 785–790).

IEEE.

Welch, B., Jones, K., & Hobbs, J. (2003). Practical Programming in Tcl and Tk (4th

Editio). Prentice all.

Wines, M., & Braathen, M. (2008). Measuring the Power Consumption on eZ430-

RF2480.

Zare Mehrjerdi, Y. (2011). RFID and its benefits: a multiple case analysis. Assembly

Automation, 31(3), 251–262.

APPENDICESS

A Source Code of MainActivity.java

import android.app.DialogFragment;

import android.app.Fragment;

import android.app.FragmentTransaction;

import android.content.Context;

import android.os.Bundle;

import android.os.Handler;

import android.os.Message;

import android.util.Log;

import android.view.Menu;

import android.view.MenuInflater;

import android.view.MenuItem;

import android.view.View;

import android.widget.AdapterView;

import android.widget.Button;

import android.widget.ImageView;

import android.widget.ListView;

import android.widget.TextView;

import android.widget.Toast;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.lang.ref.WeakReference;

import java.util.ArrayList;

import java.util.Objects;

import ioio.lib.api.DigitalOutput;

import ioio.lib.api.IOIO;

import ioio.lib.api.Uart;

import ioio.lib.api.exception.ConnectionLostException;

import ioio.lib.util.BaseIOIOLooper;

import ioio.lib.util.IOIOLooper;

import ioio.lib.util.android.IOIOActivity;

public class MainActivity extends IOIOActivity {

//Layout resource

TextView tv_connected_;

 Button bt_scanTag_;

 ListView lv_scanedItem_;

 ImageView iv_led_;

static final char[] scantag =

{0x02,0x00,0x08,0x00,0x22,0x01,0x01,0x82,0x00,0x51,0xEE}; //

static final char[] autotune_packet =

{0x02,0x00,0x06,0x00,0x20,0x15,0x03,0xE1,0x11};

int scan_loop;

 ArrayList<User>list = new ArrayList<>();

 ArrayList<String>list_id = new ArrayList<>();

 UserAdapter adapter = null;

private static MyHandler mRFIDProgressHandler;

//Local variable

byte state;

static final byte ST_SCANTAG = 1;

static final byte ST_REQ_TAGINFO = 2;

static final byte ST_WAIT_TAGINFO = 3;

static final byte ST_UPDATELIST = 4;

static final byte ST_SEND_SCANTAG = 5;

static final byte ST_DONE = 6;

byte state_descript;

static final byte ST_GETTAGDETAILS = 1;

static final byte ST_WAITTAGDETAILS = 2;

static final byte ST_UPDATETAGDETAILS = 3;

static final byte ST_DONE_DESCR = 4;

 User details_tag_item;

int count_taginfo_request;

long task_endTime;

boolean send_auto_tune;

boolean autoTuneDone = false;

boolean ioioConnected = false;

 DialogFragment autoTuneFragment;

 DialogFragment autoTuneFragmentComplete;

 DialogFragment tagdetailsFragment;

 FragmentTransaction ft;

 String tag_description;

public static final String TAG = "MobileRFIDReaderTASK";

private static class MyHandler extends Handler { //MyHandler :

static class Handler : object which either can be service or activity

private final WeakReference<MainActivity>mActivity;

public MyHandler (MainActivity activity) {

mActivity = new WeakReference<>(activity);

 }

@Override

public void handleMessage(Message msg) {

 MainActivity activity = mActivity.get();

if (activity != null) {

// ...

switch (msg.what) {

case Uart_ContRD_RFID_Thread.SET_DATA:

if (activity.state == ST_SCANTAG) {

 String text = (String) msg.obj;

if (!activity.list_id.contains(text)) {

 activity.list_id.add(text);

 }

//activity.list.add(new User(text,"NoText"));

Log.d(TAG,"ADD ITEM");

 }

break;

case Uart_ContRD_RFID_Thread.SCANCOMPLETE:

 activity.count_taginfo_request =

activity.list_id.size();

 Log.d(TAG,"LIST ID COUNT -> " +

activity.count_taginfo_request);

//activity.count_taginfo_request = activity.list.size();

if (activity.scan_loop == 4) {

if (activity.count_taginfo_request <1){

 activity.list.clear();

 activity.list.add(new User("ScanNothing",

"ScanNothing"));

 activity.state = ST_UPDATELIST;

 Log.d(TAG,"SCAN COMPLETE with NO ITEM");

 }else {

 activity.state = ST_REQ_TAGINFO;

//activity.state = ST_UPDATELIST;

Log.d(TAG,"SCAN COMPLETE with ITEM");

 }

 }else {

 activity.state = ST_SEND_SCANTAG;

 }

break;

case Uart_ContRD_RFID_Thread.SCANFAIL:

 activity.list.clear();

 activity.list.add(new User("ScanFAIL", "ScanFAIL"));

 activity.state = ST_UPDATELIST;

break;

case Uart_ContRD_TAGINFO_Thread.SET_TAGINFO:

if (activity.state == ST_WAIT_TAGINFO){

 User tagData = (User) msg.obj;

if (activity.list_id.contains(tagData.id)){

 activity.list.add(tagData);

 activity.state = ST_REQ_TAGINFO;

 }

 --activity.count_taginfo_request;

if (activity.count_taginfo_request == 0)

 activity.state = ST_UPDATELIST;

 }

break;

case Uart_ContRD_RFID_Thread.AUTOTUNE_COMPLETE:

 activity.autoTuneDone = true;

break;

case Uart_ContRD_TAGINFO_Thread.SET_TAGDETAILS:

if (activity.state_descript == ST_WAITTAGDETAILS) {

 User tagDetails = (User) msg.obj;

if (Objects.equals(activity.details_tag_item.id,tagDetails.id)){

 activity.tag_description = tagDetails.name;

 } else {

 activity.tag_description = "Unkown Replied

TAG ID";

 }

 activity.state_descript = ST_UPDATETAGDETAILS;

 }

break;

 }

super.handleMessage(msg); //change to default handleMesage

}

 }

 }

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

// Setup layout resource

tv_connected_ = (TextView) findViewById(R.id.tv_connected);

bt_scanTag_ = (Button) findViewById(R.id.bt_scanTag);

lv_scanedItem_ = (ListView) findViewById(R.id.lv_scanedItem);

iv_led_ = (ImageView) findViewById(R.id.iv_led);

// Create the adapter to convert the array to views

adapter = new UserAdapter(this,list);

// Attach the adapter to a ListView

lv_scanedItem_.setAdapter(adapter);

lv_scanedItem_.setOnItemClickListener(new AdapterView.OnItemClickListener()

{

@Override

public void onItemClick(AdapterView<?> parent, final View view,

int position, long id) {

if (state_descript == ST_DONE_DESCR) {

state_descript = ST_GETTAGDETAILS;

details_tag_item = (User) parent.getItemAtPosition(position);

task_endTime = System.currentTimeMillis() + 3000;

 Log.d(TAG, "CurrentTime = " + System.currentTimeMillis()

+ "; EndTime = " + task_endTime);

 } else {

 toast("Preparing in progress....");

 }

 }

 });

mRFIDProgressHandler = new MyHandler(this);

 }

@Override

public boolean onCreateOptionsMenu(Menu menu) {

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.main_menu, menu);

return true;

 }

@Override

public boolean onOptionsItemSelected(MenuItem item) {

//handle item selection

switch (item.getItemId()){

case R.id.auto_tune:

send_auto_tune = true;

return true;

default:

return super.onOptionsItemSelected(item);

 }

 }

@Override

public boolean onPrepareOptionsMenu(Menu menu) {

 MenuItem item = menu.findItem(R.id.auto_tune);

if (ioioConnected)

 item.setEnabled(true);

else

item.setEnabled(false);

return true;

 }

/**

 * This is the thread on which all the IOIO activity happens. It will be

run

 * every time the application is resumed and aborted when it is paused.

The

 * method setup() will be called right after a connection with the IOIO

has

 * been established (which might happen several times!). Then, loop()

will

 * be called repetitively until the IOIO gets disconnected.

 */

class Looper extends BaseIOIOLooper implements View.OnClickListener { //

 /** The on-board LED. */

private DigitalOutput led_;

private DigitalOutput relay_;

private Uart uart;

private Uart uart2;

private InputStream in_; //the input stream defined for the uart

connection

private OutputStream out_;

private InputStream in2_; //the input stream defined for the uart

connection

private OutputStream out2_;

private Uart_ContRD_RFID_Thread workers_;

private Uart_ContRD_TAGINFO_Thread workers2_;

/**

 * Called every time a connection with IOIO has been established.

 * Typically used to open pins.

 *

 * @throws ConnectionLostException

 * When IOIO connection is lost.

 *

 * //@see ioio.lib.util.IOIOLooper# setup()

 */

@Override

protected void setup() throws ConnectionLostException {

int pin_RX1_ = 10;

int pin_TX1_ = 11;

int pin_RX2_ = 13;

int pin_TX2_ = 14;

 showVersions(ioio_, "IOIO connected!");

try {

bt_scanTag_.setOnClickListener(this);

led_ = ioio_.openDigitalOutput(0, true);

led_.write(Boolean.FALSE);

relay_ = ioio_.openDigitalOutput(1, true);

relay_.write(Boolean.TRUE);

uart = ioio_.openUart(pin_RX1_, pin_TX1_, 38400, Uart.Parity.NONE,

 Uart.StopBits.ONE);

uart2 = ioio_.openUart(pin_RX2_, pin_TX2_, 38400, Uart.Parity.NONE,

 Uart.StopBits.ONE);

in_ = uart.getInputStream();

out_ = uart.getOutputStream();

in2_ = uart2.getInputStream();

out2_ = uart2.getOutputStream();

 enableUi(true);

 }

catch (ConnectionLostException e) {

 e.printStackTrace();

//can display some error when connection is lost, but not used at this

stage. Does nothing

}

state = ST_DONE;

state_descript = ST_DONE_DESCR;

//RFID

workers_ = new

Uart_ContRD_RFID_Thread(in_,mRFIDProgressHandler,"worker_SCANTAG");

workers_.start();

//XBEE

workers2_ = new

Uart_ContRD_TAGINFO_Thread(in2_,mRFIDProgressHandler,"worker_TAGINFO");

workers2_.start();

 }

/**

 * Called repetitively while the IOIO is connected.

 *

 * @throws ConnectionLostException

 * When IOIO connection is lost.

 * @throws InterruptedException

 * When the IOIO thread has been interrupted.

 *

 * @see ioio.lib.util.IOIOLooper#loop()

 */

@Override

public void loop() throws ConnectionLostException, InterruptedException {

if (state == ST_REQ_TAGINFO){

 String scanned_ID = list_id.get(count_taginfo_request-1);

char[] scanned_ID_char = scanned_ID.toCharArray();

int message_length = scanned_ID_char.length + 2;

char [] req_tag_cmd = new char[message_length+3];

 req_tag_cmd[0] = 0x02;

 req_tag_cmd[1] = 0x00;

 req_tag_cmd[2] = (char) message_length;

 req_tag_cmd[3] = 'T';

 req_tag_cmd[4] = 'R';

 System.arraycopy(scanned_ID_char, 0, req_tag_cmd, 5,

scanned_ID_char.length);

 send_string(req_tag_cmd, "UART2");

 String req_tag_cmd_str = new String(req_tag_cmd);

 Log.d(TAG,"SendNameMSG => " + req_tag_cmd_str);

state = ST_WAIT_TAGINFO;

 }else {

 Thread.sleep(100);

 }

if (state == ST_SEND_SCANTAG){

scan_loop = scan_loop +1;

 send_string(scantag, "UART1"); //send the command

state = ST_SCANTAG;

 }

if (state == ST_UPDATELIST){

 runOnUiThread(new Runnable() {

@Override

public void run() {

adapter.notifyDataSetChanged();

bt_scanTag_.setEnabled(true);

 }

 });

 Log.d(TAG, "ST_UPDATELIST");

state = ST_DONE;

 }else if ((state != ST_DONE) && (System.currentTimeMillis()

>task_endTime)){

if (state == ST_SCANTAG){

 Log.d(TAG,"TimeOUT at State ST_SCANTAG, TIME = " +

System.currentTimeMillis());

list.add(new User("TAGScanTimeOut", "TAGScanTimeOut"));

state = ST_UPDATELIST;

 }

else if (state == ST_WAIT_TAGINFO) {

 Log.d(TAG,"TimeOUT at State ST_WAIT_TAGINFO, TIME = " +

System.currentTimeMillis());

list.add(new User("TAGInfoRequestTIMEOUT", "TAGInfoRequestTIMEOUT"));

state = ST_UPDATELIST;

 }

else {

 Log.d(TAG,"TimeOUT at TIME = " + System.currentTimeMillis());

list.add(new User("SCANTimeOut", "SCANTimeOut"));

state = ST_UPDATELIST;

 }

 }

if (send_auto_tune) {

send_auto_tune = false;

 send_string(autotune_packet,"UART1");

ft = getFragmentManager().beginTransaction();

 Fragment prev_autotuneFragment =

getFragmentManager().findFragmentByTag("dialog_autotune");

if (prev_autotuneFragment != null) {

ft.remove(prev_autotuneFragment);

 }

ft.addToBackStack(null);

// Create and show the dialog.

autoTuneFragment = MyDialogAutoTune.newInstance();

autoTuneFragment.show(ft, "dialog_autotune");

 }

if (state_descript == ST_GETTAGDETAILS){

char[] scanned_ID_char = details_tag_item.id.toCharArray();

int message_length = scanned_ID_char.length + 2;

char [] req_tag_cmd = new char[message_length+3];

 req_tag_cmd[0] = 0x02;

 req_tag_cmd[1] = 0x00;

 req_tag_cmd[2] = (char) message_length;

 req_tag_cmd[3] = 'T';

 req_tag_cmd[4] = 'D';

 System.arraycopy(scanned_ID_char, 0, req_tag_cmd, 5,

scanned_ID_char.length);

 send_string(req_tag_cmd, "UART2");

 String req_tag_cmd_str = new String(req_tag_cmd);

 Log.d(TAG,"SendNameMSG => " + req_tag_cmd_str);

state_descript = ST_WAITTAGDETAILS;

 }else if (state_descript == ST_UPDATETAGDETAILS){

state_descript = ST_DONE_DESCR;

// DialogFragment.show() will take care of adding the fragment

 // in a transaction. We also want to remove any currently

showing

 // dialog, so make our own transaction and take care of that

here.

ft= getFragmentManager().beginTransaction();

 Fragment prev =

getFragmentManager().findFragmentByTag("dialogTAGDETAILS");

if (prev != null) {

ft.remove(prev);

 }

ft.addToBackStack(null);

// Create and show the dialog.

tagdetailsFragment =

MyDialogTAGDetails.newInstance(details_tag_item.name,details_tag_item.id,tag

_description);

tagdetailsFragment.show(ft, "dialogTAGDETAILS");

 } else if ((state_descript == ST_WAITTAGDETAILS) &&

(System.currentTimeMillis() >task_endTime)) {

 Log.d(TAG, "TimeOUT TIME = " + System.currentTimeMillis());

//list.add(new User("ScanTIMEOUT", "ScanTIMEOUT"));

tag_description = "Unable to retrieve tag description from server. Please

try it again...";

state_descript = ST_UPDATETAGDETAILS;

 }

if (autoTuneDone) {

autoTuneDone = false;

autoTuneFragment.dismiss();

 FragmentTransaction ft2 =

getFragmentManager().beginTransaction();

 Fragment prev_autotuneFragment =

getFragmentManager().findFragmentByTag("dialog_autotune");

if (prev_autotuneFragment != null) {

 ft2.remove(prev_autotuneFragment);

 Log.d(TAG,"remove prev autotune dialog");

 }

// Create and show the dialog.

autoTuneFragmentComplete = MyDialogAutoTuneComplete.newInstance();

autoTuneFragmentComplete.show(ft2, "dialog_autotune");

 }

 }

/**

 * Called when the IOIO is disconnected.

 *

 * @see ioio.lib.util.IOIOLooper#disconnected()

 */

@Override

public void disconnected() {

 enableUi(false);

 toast("IOIO disconnected");

 }

/**

 * Called when the IOIO is connected, but has an incompatible

firmware version.

 *

 * @see ioio.lib.util.IOIOLooper#incompatible(IOIO)

 */

@Override

public void incompatible() {

 showVersions(ioio_, "Incompatible firmware version!");

 }

//function to send string

private void send_string(final char[] string,final String choice)//final

String string)

{

byte[] bytes = new byte[string.length];

for (int i = 0; i < string.length; i++) //the char array is converted

into a byte array to send

bytes[i] = (byte) string[i];

if (choice.equals("UART1")) {

try {

out_.flush();

out_.write(bytes); //write byte array on outputstream

out_.flush();

 } catch (IOException e) {

 e.printStackTrace();

 toast("IO failed");

 }

 }else{

try {

out2_.flush();

out2_.write(bytes); //write byte array on outputstream

out2_.flush();

 } catch (IOException e) {

 e.printStackTrace();

 toast("IO failed");

 }

 }

 }

private void enableUi(final boolean enable) {

// This is slightly trickier than expected to support a multi-IOIO use-case.

runOnUiThread(new Runnable() {

@Override

public void run() {

if (enable) {

if (numConnected_++ == 0) {

//iv_led_.setVisibility(View.VISIBLE);

iv_led_.setBackgroundColor(getResources().getColor(R.color.green));

 String temp_str = "Accessory is CONNECTED";

tv_connected_.setText(temp_str);

bt_scanTag_.setEnabled(true);

ioioConnected = true;

 }

 } else {

if (--numConnected_ == 0) {

//iv_led_.setVisibility(View.INVISIBLE);

iv_led_.setBackgroundColor(getResources().getColor(R.color.red));

 String temp_str = "Accessory is not connected";

tv_connected_.setText(temp_str);

bt_scanTag_.setEnabled(false);

ioioConnected = false;

 }

 }

 }

 });

 }

@Override

public void onClick(View v) {

switch(v.getId()) {

case R.id.bt_scanTag:

if (state == ST_DONE) {

scan_loop = 0;

bt_scanTag_.setEnabled(false);

 send_string(scantag, "UART1"); //send the command

state = ST_SCANTAG;

task_endTime = System.currentTimeMillis() + 5000;

 Log.d(TAG, "CurrentTime = " +

System.currentTimeMillis() + "; EndTime = " + task_endTime);

list.clear();

list_id.clear();

 runOnUiThread(new Runnable() {

@Override

public void run() {

adapter.notifyDataSetChanged();

 }

 });

 toast("SCANTAG START");

 }else {

 toast("SCANTAG pending to complete.");

 }

break;

 }

 }

 }

/**

 * A method to create our IOIO thread.

 *

 * //@see ioio.lib.util.AbstractIOIOActivity#createIOIOThread()

 */

@Override

protected IOIOLooper createIOIOLooper() {

return new Looper();

 }

private void showVersions(IOIO ioio, String title) {

 toast(String.format("%s\n" +

"IOIOLib: %s\n" +

"Application firmware: %s\n" +

"Bootloader firmware: %s\n" +

"Hardware: %s",

 title,

 ioio.getImplVersion(IOIO.VersionType.IOIOLIB_VER),

 ioio.getImplVersion(IOIO.VersionType.APP_FIRMWARE_VER),

 ioio.getImplVersion(IOIO.VersionType.BOOTLOADER_VER),

 ioio.getImplVersion(IOIO.VersionType.HARDWARE_VER)));

 }

private void toast(final String message) {

final Context context = this;

 runOnUiThread(new Runnable() {

@Override

public void run() {

 Toast.makeText(context, message, Toast.LENGTH_LONG).show();

 }

 });

 }

private int numConnected_ = 0;

 }

B Source Code of Getting Tag ID

import android.os.Handler;

import android.os.Message;

import android.util.Log;

import java.io.IOException;

import java.io.InputStream;

import java.util.Arrays;

class Uart_ContRD_RFID_Thread extends Thread {

private Handler handler_;

private boolean run_ = true;

private final InputStream in_;

//String display_str;

String name_;

 CircularBuf buf_data = new CircularBuf(1000);

byte packet_SOF;

byte packet_complete;

int packet_length;

 Message msg = null;

static final int SET_DATA = 2;

static final int SCANCOMPLETE = 3;

static final int AUTOTUNE_COMPLETE = 4;

static final int SCANFAIL = -1;

static final byte [] SCANTAGPASS = { (byte) 0x81,0x0F};

static final byte [] TAG_INFO = {0x01,0x01,(byte) 0x82,0x00};

static final byte [] AUTOTUNE = {0x15,0x03};

//String messageRcv;

public Uart_ContRD_RFID_Thread(InputStream in, Handler handler,String name)

{

super(name);

in_ = in;

name_ = name;

handler_ = handler;

 }

@Override

public void run() {

 Log.d("UartThread", "Uart Thread [" + getName() + "] is running.");

try {

packet_complete = 1;

packet_SOF = 0;

packet_length = 12;

while (run_) {

try {

int availableBytes = in_.available();

if (availableBytes >0) {

byte[] readBuffer = new byte[availableBytes];

int result = in_.read(readBuffer, 0, availableBytes);

for (int i = 0; i < availableBytes; i++){

buf_data.add(readBuffer[i]);

 }

while(Parsing());

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 Uart_ContRD_RFID_Thread.sleep(50);

 }

 } catch (InterruptedException e) {

 e.printStackTrace();

 } finally {

 Log.d("UartThread", "Uart Thread [" + getName() + "] is exiting.");

 }

 }

public void abort() {

run_ = false;

 interrupt();

 }

/*

 * Parses any valid messages in the circular buffer. Returns false when

there are no more messages to parse

 */

boolean Parsing()

 {

/*

 * (packet.complete = TRUE) indicates that all previous UART messages

have completed processing

 * and so the buffer is searched for a new SOF (start of frame) delimiter

 */

if (packet_complete != 0)

 {

/*

 * Find next SOF in buffer

 */

while((packet_SOF != 0x02) && (buf_data.count >0))

 {

packet_SOF = buf_data.get();

 }

/*

 * Get the length of the UART message

 */

if(buf_data.count >1) {

byte temp_msb = buf_data.get();

packet_length = ((int) buf_data.get()) + ((int) temp_msb)*256;

/*

 * packet.complete = FALSE indicates that we are waiting for the

rest of the packet to be processed

 */

packet_complete = 0;

 }

/*

 * If the entire message is in the buffer, check the message and parse

it

 */

if(buf_data.count >= packet_length)

 {

 CheckMessage(packet_length);

packet_complete = 1;

packet_SOF = 0;

/*

 * Could be more messages to parse, so return TRUE

 */

return Boolean.TRUE;

 }

/*

 * There are not enough bytes left in the buffer to parse any more

messages, so return FALSE

 */

return Boolean.FALSE;

 }

else

{

/*

 * If the entire message is in the buffer, check the message and parse

it

 */

if(buf_data.count >= packet_length)

 {

 CheckMessage(packet_length);

packet_complete = 1;

packet_SOF = 0;

/*

 * Could be more messages to parse, so return TRUE

 */

return Boolean.TRUE;

 }

/*

 * There are not enough bytes left in the buffer to parse any more

messages, so return FALSE

 */

return Boolean.FALSE;

 }

 }

// decode Receive Message

void CheckMessage(int length){

byte [] packet_data = new byte[length-4];

byte [] packetID = new byte[2];

 packetID[0] = buf_data.get();

 packetID[1] = buf_data.get();

for (int i = 0; i < length-4; i++){

 packet_data[i] = buf_data.get();

 }

 Log.d("UartThread", "String Length = [" + length + "]");

 StringBuilder log_str = new StringBuilder();

 log_str.append(String.format("%02X", packetID[0]));

 log_str.append(String.format("%02X", packetID[1]));

for (byte b : packet_data) {

 log_str.append(String.format("%02X", b));

 }

 Log.d("UartThread", "String Received = [" + log_str + "]");

byte crc_msb = buf_data.get();

byte crc_lsb = buf_data.get();

if (packetID[0] == TAG_INFO[0] && packetID[1] == TAG_INFO[1]

&& packet_data[0] == TAG_INFO[2] && packet_data[1] == TAG_INFO[3]){

 Log.d("UartThread", "GET DATA");

int tagID_length = ((int) packet_data[2])*256+((int) packet_data[3]);

 StringBuilder sb = new StringBuilder();

byte[] temp_data_array = Arrays.copyOfRange(packet_data,4,4+tagID_length);

// end byte exclusive

for (byte b : temp_data_array) {

 sb.append(String.format("%02X", b));

 }

msg = Message.obtain(handler_,SET_DATA,sb.toString());

handler_.sendMessage(msg);

 }else if (packetID[0] == SCANTAGPASS[0] && packetID[1] ==

SCANTAGPASS[1]) {

 Log.d("UartThread", "SCANCOMPLETE");

//msg = Message.obtain(handler_, SCANCOMPLETE, null);

handler_.sendEmptyMessage(SCANCOMPLETE);

 }else if (packetID[0] == AUTOTUNE[0] && packetID[1] == AUTOTUNE[1]) {

 Log.d("UartThread", "AUTOTUNE Complete");

//msg = Message.obtain(handler_, AUTOTUNE_COMPLETE, null);

handler_.sendEmptyMessage(AUTOTUNE_COMPLETE);

 }else{

 Log.d("UartThread", "SCANFAIL");

//msg = Message.obtain(handler_,SCANFAIL,null);

handler_.sendEmptyMessage(SCANFAIL);

 }

 }

}

C Source Code of Tag Info Thread

import android.os.Handler;

import android.os.Message;

import android.util.Log;

import java.io.IOException;

import java.io.InputStream;

class Uart_ContRD_TAGINFO_Thread extends Thread {

private Handler handler_;

private boolean run_ = true;

private final InputStream in_;

//String disp_str;

String name_;

 CircularBuf buf_data = new CircularBuf(400);

byte packet_SOF;

byte packet_complete;

int packet_length;

 Message msg = null;

static final int SET_TAGINFO = 8;

static final int SET_TAGDETAILS = 9;

static final char [] TAGINFO_CMD = {'T','R'};

static final char [] TAGDETAILS_CMD = {'T','D'};

public Uart_ContRD_TAGINFO_Thread(InputStream in, Handler handler,String

name) {

super(name);

in_ = in;

name_ = name;

handler_ = handler;

 }

@Override

public void run() {

 Log.d("UartThread", "Uart Thread [" + getName() + "] is running.");

try {

packet_complete = 1;

packet_SOF = 0;

packet_length = 12;

while (run_) {

try {

int availableBytes = in_.available();

if (availableBytes >0) {

byte[] readBuffer = new byte[availableBytes];

int result = in_.read(readBuffer, 0, availableBytes);

for (int i = 0; i < availableBytes; i++){

buf_data.add(readBuffer[i]);

 }

while(Parsing());

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 Uart_ContRD_TAGINFO_Thread.sleep(50);

 }

 } catch (InterruptedException e) {

 e.printStackTrace();

 } finally {

 Log.d("UartThread", "Uart Thread [" + getName() + "] is exiting.");

 }

 }

public void abort() {

run_ = false;

 interrupt();

 }

/*

 * Parses any valid messages in the circular buffer. Returns false when

there are no more messages to parse

 */

boolean Parsing()

 {

/*

 * (packet.complete = TRUE) indicates that all previous UART messages

have completed processing

 * and so the buffer is searched for a new SOF (start of frame) delimiter

 */

if (packet_complete != 0)

 {

/*

 * Find next SOF in buffer

 */

while((packet_SOF != 0x02) && (buf_data.count >0))

 {

packet_SOF = buf_data.get();

 }

/*

 * Get the length of the UART message

 */

if(buf_data.count >1) {

byte temp_msb = buf_data.get();

packet_length = ((int) buf_data.get()) + ((int) temp_msb)*256;

/*

 * packet.complete = FALSE indicates that we are waiting for the

rest of the packet to be processed

 */

packet_complete = 0;

 }

/*

 * If the entire message is in the buffer, check the message and parse

it

 */

if(buf_data.count >= packet_length)

 {

 CheckMessage(packet_length);

packet_complete = 1;

packet_SOF = 0;

/*

 * Could be more messages to parse, so return TRUE

 */

return Boolean.TRUE;

 }

/*

 * There are not enough bytes left in the buffer to parse any more

messages, so return FALSE

 */

return Boolean.FALSE;

 }

else

{

/*

 * If the entire message is in the buffer, check the message and parse

it

 */

if(buf_data.count >= packet_length)

 {

 CheckMessage(packet_length);

packet_complete = 1;

packet_SOF = 0;

/*

 * Could be more messages to parse, so return TRUE

 */

return Boolean.TRUE;

 }

/*

 * There are not enough bytes left in the buffer to parse any more

messages, so return FALSE

 */

return Boolean.FALSE;

 }

 }

// decode Receive Message

void CheckMessage(int length){

byte [] packet_data = new byte[length-2];

byte [] packetID = new byte[2];

 packetID[0] = buf_data.get();

 packetID[1] = buf_data.get();

for (int i = 0; i < length-2; i++){

 packet_data[i] = buf_data.get();

 }

char [] packet_data_char = (new String(packet_data).toCharArray());

 String packet_data_str = new String(packet_data_char);

 Log.d("TAGINFOThread", "String Length = [" + length + "]");

 Log.d("TAGINFOThread", "String Received = [" + packet_data_str + "]");

if (packetID[0] == (byte) TAGINFO_CMD[0] && packetID[1] == (byte)

TAGINFO_CMD[1]){

int delimiter_indx = 0;

for (int i = 0; i<packet_data_char.length;i++) {

if (packet_data_char[i] == ';') {

 delimiter_indx = i;

break;

 }

 }

char [] id_char = (new String(packet_data,0,delimiter_indx).toCharArray());

char [] info_char = (new String(packet_data,delimiter_indx+1,length-3-

delimiter_indx).toCharArray());

 String id_str = new String(id_char);

 String info_str = new String(info_char);

 User data = new User(id_str,info_str);

msg = Message.obtain(handler_, SET_TAGINFO, data);

handler_.sendMessage(msg);

 } else if (packetID[0] == (byte) TAGDETAILS_CMD[0] && packetID[1] ==

(byte) TAGDETAILS_CMD[1]) {

int delimiter_indx = 0;

for (int i = 0; i<packet_data_char.length;i++) {

if (packet_data_char[i] == ';') {

 delimiter_indx = i;

break;

 }

 }

char [] id_char = (new String(packet_data,0,delimiter_indx).toCharArray());

char [] details_char = (new String(packet_data,delimiter_indx+1,length-3-

delimiter_indx).toCharArray());

 String id_str = new String(id_char);

 String details_str = new String(details_char);

 User data = new User(id_str,details_str);

msg = Message.obtain(handler_, SET_TAGDETAILS, data);

handler_.sendMessage(msg);

 }

 }

}

D Source Code of Tag Info Thread

import android.os.Handler;

import android.os.Message;

import android.util.Log;

import android.widget.TextView;

import java.io.IOException;

import java.io.InputStream;

import java.util.Arrays;

class Uart_ContRD_Thread extends Thread {

int BUFFER_SIZE = 100;

private final TextView rcvTxtView_;

private Handler handler_;

private boolean run_ = true;

private final InputStream in_;

 String disp_str;

 String name_;

 CircularBuf buf_data = new CircularBuf(50);

byte packet_SOF;

byte packet_complete;

int packet_length;

 Message msg = null;

static final int SET_DATA = 123;

 String messageRcv;

public Uart_ContRD_Thread(InputStream in, TextView rcvTxtView, Handler

handler,String name) {

super(name);

in_ = in;

name_ = name;

rcvTxtView_ = rcvTxtView;

handler_ = handler;

 }

void CheckMessage(int length){

byte [] packet_data = new byte[length];

for (int i = 0; i < length-2; i++){

 packet_data[i] = buf_data.get();

 }

byte crc_msb = buf_data.get();

byte crc_lsb = buf_data.get();

 StringBuilder sb = new StringBuilder();

byte[] temp_data_array = Arrays.copyOf(packet_data,length-2);

for (byte b : temp_data_array) {

 sb.append(String.format("%02X ", b));

 }

//char[] Temp = (new String(packet_data, 0,length-2)).toCharArray();

 //messageRcv = new String(sb.toString());

 //disp_str = rcvTxtView_.getText() + name_+": "+ messageRcv + "\n";

disp_str = rcvTxtView_.getText() + name_+": "+ sb.toString() + "\n";

rcvTxtView_.post(new Runnable() {

@Override

public void run() {

rcvTxtView_.setText(disp_str);

 }

 });

msg = Message.obtain(handler_,SET_DATA,sb.toString());

handler_.sendMessage(msg);

 }

/*

 * Parses any valid messages in the circular buffer. Returns false when

there are no more messages to parse

 */

boolean Parsing()

 {

/*

 * (packet.complete = TRUE) indicates that all previous UART messages

have completed processing

 * and so the buffer is searched for a new SOF (start of frame) delimiter

 */

if (packet_complete != 0)

 {

/*

 * Find next SOF in buffer

 */

while((packet_SOF != 0x20) && (buf_data.count >0))

 {

packet_SOF = buf_data.get();

 }

/*

 * Get the length of the UART message

 */

if(buf_data.count >1) {

byte temp_msb = buf_data.get();

packet_length = ((int) buf_data.get()) + (int) temp_msb*256;

/*

 * packet.complete = FALSE indicates that we are waiting for the

rest of the packet to be processed

 */

packet_complete = 0;

 }

/*

 * If the entire message is in the buffer, check the message and parse

it

 */

if(buf_data.count >= packet_length)

 {

 CheckMessage(packet_length);

packet_complete = 1;

packet_SOF = 0;

/*

 * Could be more messages to parse, so return TRUE

 */

return Boolean.TRUE;

 }

/*

 * There are not enough bytes left in the buffer to parse any more

messages, so return FALSE

 */

return Boolean.FALSE;

 }

else

{

/*

 * If the entire message is in the buffer, check the message and parse

it

 */

if(buf_data.count >= packet_length)

 {

 CheckMessage(packet_length);

packet_complete = 1;

packet_SOF = 0;

/*

 * Could be more messages to parse, so return TRUE

 */

return Boolean.TRUE;

 }

/*

 * There are not enough bytes left in the buffer to parse any more

messages, so return FALSE

 */

return Boolean.FALSE;

 }

 }

@Override

public void run() {

 Log.d("UartThread", "Uart Thread [" + getName() + "] is running.");

try {

packet_complete = 1;

packet_SOF = 0;

packet_length = 12;

while (run_) {

try {

int availableBytes = in_.available();

if (availableBytes >0) {

byte[] readBuffer = new byte[availableBytes];

int result = in_.read(readBuffer, 0, availableBytes);

for (int i = 0; i < availableBytes; i++){

buf_data.add(readBuffer[i]);

 }

while(Parsing());

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 Uart_ContRD_Thread.sleep(50);

 }

 } catch (InterruptedException e) {

 e.printStackTrace();

 } finally {

 Log.d("UartThread", "Uart Thread [" + getName() + "] is exiting.");

 }

 }

public void abort() {

run_ = false;

 interrupt();

 }

}

E Source Code of Tag Description Dialog Box

importandroid.app.DialogFragment;

import android.os.Bundle;

import android.util.Log;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.Button;

import android.widget.TextView;

/**

 * Created by user on 25/5/2016.

 */

public class MyDialogTAGDetails extends DialogFragment implements

View.OnClickListener {

 String name_;

 String id_;

 String description_;

 TextView tv_name_;

 TextView tv_id_;

 TextView tv_description_;

 Button bt_back_;

/**

 * Create a new instance of MyDialogFragment, providing "num"

 * as an argument.

 */

static MyDialogTAGDetails newInstance(String name, String ID, String

description) {

 MyDialogTAGDetails f = new MyDialogTAGDetails();

// Supply num input as an argument.

Bundle args = new Bundle();

 args.putString("name", name);

 args.putString("ID", ID);

 args.putString("description", description);

 f.setArguments(args);

return f;

 }

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

name_ = getArguments().getString("name");

id_ = getArguments().getString("ID");

description_ = getArguments().getString("description");

int style = DialogFragment.STYLE_NORMAL;

 setStyle(style, 0);

 }

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {

 View v = inflater.inflate(R.layout.popup_tagdetail, container,

false);

//View v = inflater.inflate(R.layout.popupwin,null);

View tv = v.findViewById(R.id.title);

 String title_str = "Item Description";

 Log.d("MyDialogTAGDETAILS",title_str);

 getDialog().setTitle(title_str);

tv_name_ = (TextView) v.findViewById(R.id.tv_name);

tv_id_ = (TextView) v.findViewById(R.id.tv_id);

tv_description_ = (TextView) v.findViewById(R.id.tv_description);

tv_name_.setText(name_);

tv_id_.setText(id_);

tv_description_.setText(description_);

bt_back_ = (Button) v.findViewById(R.id.bt_back);

bt_back_.setOnClickListener(this);

return v;

 }

@Override

public void onClick(View v) {

 dismiss();

 }

}

F Source Code of Database

set start_delimiter [binary format H* 02]

global debug

set debug 1

global database

array set database {}

set database(0) "000000000000000000000001 {SCREW Driver} {Part Number:

A0010-0008; Quanlity: 10pcs; Description: Philips Screw Driver. Medium size}"

set database(1) "000000000000000000000002 {SCREW} {Part Number: A0010-

0002; Quanlity: 1000pcs; Description: Philips Screw; Diameter: 5mm; Length:

30mm}"

set database(2) "000000000000000000000003 {WIRE 12AWG} {Part Number:

W0001-0012; Quanlity: 100pcs; Description: Wire 12AWG; Wire Length:

10meters}"

set database(3) "000000000000000000000004 {WIRE 18AWG} {Part Number:

W0001-0018; Quanlity: 100pcs; Description: Wire 18AWG; Wire Length:

10meters}"

set databse_size [array size database]

PRIVATE channel read event handler for send_expect. Should

not be called by user.

proc private_send_exp_reader {fh start_delimiter} {

global send_exp

 global debug

 global smatched

if {[eof $fh]} {

close $fh

set send_exp($fh.matched) -1

 puts "close"

return

 }

append send_exp($fh.buffer) [read $fh]

 set delimiter_detect [string first $start_delimiter $send_exp($fh.buffer) 0]

 if {$delimiter_detect > 0} {

 set last [expr [string length $send_exp($fh.buffer)] - 1]

 set $send_exp($fh.buffer) [string range $send_exp($fh.buffer)

$delimiter_detect $last]

 }

 # ------- debug MSG -------

 if {$debug == 1} {

 puts "delimiter detect -> $delimiter_detect"

 puts "Buffer -><[binary encode hex $send_exp($fh.buffer)]>"

 puts "Buffer Length -> [string length $send_exp($fh.buffer)]"

 }

 # -------------------------

 if {$delimiter_detect >=0} {

 set packet_length [binary encode hex [string index

$send_exp($fh.buffer) 2]]

 scan $packet_length %x packet_length

 set current_len [string length $send_exp($fh.buffer)]

 if {$current_len >= [expr $packet_length + 3]} {

 set send_exp($fh.matched) 1

 set send_exp($fh.command) [string range

$send_exp($fh.buffer) 3 4]

 set send_exp($fh.data) [string range $send_exp($fh.buffer) 5

[expr 4 + $packet_length]]

 set smatched 1

 if {$current_len > [expr $packet_length + 3]} {

 set send_exp($fh.buffer) [string range

$send_exp($fh.buffer) [expr 4 + $packet_length] end]

 } else {

 set send_exp($fh.buffer) {}

 }

 # ------- debug MSG -------

 if {$debug == 1} {

 puts "packet length -> $packet_length"

 puts "Matched => $send_exp($fh.matched)"

 puts "command => $send_exp($fh.command)"

 puts "data => $send_exp($fh.data)"

 puts "BufferRemain -><$send_exp($fh.buffer)>"

 }

 # -------------------------

 }

 }

}

Return the current contents of the send_expect buffer

@param fh

channel identifier that was used with send_expect

@returns string

the current contents of the buffer for the channel

proc send_exp_getbuf {fh} {

global send_exp

return $send_exp($fh.buffer)

}

Reset the send_expect buffer, returning its contents

@param fh

channel identifier that was used with send_expect

@returns string

the current contents of the buffer for the channel

proc send_exp_resetbuf {fh} {

global send_exp

set buf $send_exp($fh.buffer)

set send_exp($fh.buffer) {}

return $buf

}

Close out a send_expect session, closing I/O event handler

@param fh

channel identifier that was used with send_expect

@returns

the channel identifier passed as the fh parameter

proc send_exp_end {fh} {

global send_exp

fileevent $fh readable {}

foreach v [array names send_exp $fh.*] {

catch [list unset send_exp($v)]

 }

return $fh

}

assemble packet for request

proc assemble_packet {CMD_R ID DATA start_delimiter} {

 set temp $CMD_R

 append temp $ID ";" $DATA

 set length [string length $temp]

 set length_ascii [binary format H* [format %04X $length]]

 set packet $start_delimiter

 append packet $length_ascii $temp

 return $packet

}

decode message

proc decode_message {fh databse_size start_delimiter debug} {

 global send_exp

 global database

 global cmd

 set packet [assemble_packet $send_exp($fh.command) $send_exp($fh.data)

"ITEM IS NOT FOUND IN DATABASE" $start_delimiter]

 if {$send_exp($fh.command) == $cmd($fh.cmd_returnName)} {

 # ------- debug MSG -------

 if {$debug == 1} { puts "cmd return name correct" }

 # -------------------------

 for {set k 0} {$k< $databse_size} {incr k 1} {

 if {$send_exp($fh.data) == [lindex $database($k) 0]} {

 set packet [assemble_packet $send_exp($fh.command)

$send_exp($fh.data) [lindex $database($k) 1] $start_delimiter]

 #puts -nonewline $fh $packet

 # ------- debug MSG -------

 # if {$debug == 1} {

 puts "name matched"

 puts "Packet Return -><$packet>"

 # }

 # -------------------------

 }

 }

 } elseif {$send_exp($fh.command) == $cmd($fh.cmd_returnDescription)} {

 # ------- debug MSG -------

 if {$debug == 1} { puts "cmd return description correct" }

 # -------------------------

 for {set k 0} {$k< $databse_size} {incr k 1} {

 if {$send_exp($fh.data) == [lindex $database($k) 0]} {

 set packet [assemble_packet $send_exp($fh.command)

$send_exp($fh.data) [lindex $database($k) 2] $start_delimiter]

 #puts -nonewline $fh $packet

 # ------- debug MSG -------

 # if {$debug == 1} {

 puts "name matched"

 puts "Packet Return -><$packet>"

 # }

 # -------------------------

 }

 }

 }

 puts -nonewline $fh $packet

}

MAIN

set fh [open "\\\\.\\COM3" RDWR]

#set fh [open COM3: RDWR]

fconfigure $fh -blocking 0 -buffering none \

 -mode 38400,n,8,1 -translation binary -eofchar {}

global send_exp

global smatched

set smatched 0

set send_exp($fh.matched) 0

set send_exp($fh.command) 0

set send_exp($fh.data) 0

global cmd ##global variables

set cmd($fh.cmd_returnName) "TR"

set cmd($fh.cmd_returnDescription) "TD"

set up our Read handler before outputting the string.

if {![info exists send_exp($fh.setReader)]} {

fileevent $fh readable {private_send_exp_reader $fh $start_delimiter}

set send_exp($fh.setReader) 1

 puts "fileevent set"

}

while 1 {

 vwait smatched

 if {$smatched == 1} {

 # ------- debug MSG -------

 if {$debug == 1} {

 puts "receive matched"

 }

 # -------------------------

 decode_message $fh $databse_size $start_delimiter $debug

 set $send_exp($fh.matched) 0

 set smatched 0

 }

 # ------- debug MSG -------

 if {$debug == 1} {

 puts "done 1"

 }

 # -------------------------

}

G Measurement Results

Table 0.1 Wireless transceiver RFID for Station Mode

No. of

Repeat
1 2 3 4 5 6 7 8 9 10 Average

NLOS

(m)
40.16 41.59 40.67 40.06 43.13 38.55 38.67 40.45 41.02 41.67 40.60

LOS

(m)
71.17 72.45 71.34 70.63 74.76 75.24 70.34 73.23 73.18 74.84 72.72

Table 0.2 Wireless transceiver RFID for Mobile Mode

No. of

Repeat
1 2 3 4 5 6 7 8 9 10 Average

NLOS

(m)
45.66 44.29 43.19 45.32 45.77 44.37 46.05 45.45 43.59 44.28 44.80

LOS

(m)
72.34 74.56 77.21 75.49 74.83 73.56 72.65 74.81 75.61 74.37 74.54

Table 0.3 Passive reader RFID for Mobile Mode for Antenna 1

No. of

Repeat
1 2 3 4 5 6 7 8 9 10 Average

NLOS

(cm)
11.3 10.6 10.7 10.5 10.8 10.6 10.7 10.8 10.6 10.4 10.7

LOS

(cm)
14.7 14.3 14.3 14.5 14.8 14.4 14.6 15.5 14.6 14.4 14.6

Table 0.4 Passive reader RFID for Mobile Mode for Antenna 2

No. of

Repeat
1 2 3 4 5 6 7 8 9 10 Average

NLOS

(m)
2.14 2.32 2.61 2.45 2.63 2.75 2.81 2.83 2.99 2.49 2.60

LOS

(m)
3.33 3.82 3.17 3.29 3.45 3.76 3.92 3.23 3.27 3.77 3.50

Table 0.5 Passive reader RFID for Station Mode for Antenna 1

No. of

Repetitions
1 2 3 4 5 6 7 8 9 10 Average

NLOS (cm) 10.2 10.5 11.2 10.6 10.8 10.5 11.2 11.6 11.3 10.3 10.8

LOS (cm) 14.3 14.9 15.0 14.1 13.6 13.6 13.7 14.5 14.4 14.7 14.3

Table 0.6 Passive reader RFID for Station Mode Antenna 2

No. of

Repetitions
1 2 3 4 5 6 7 8 9 10 Average

NLOS (m) 2.53 2.67 2.71 2.83 2.45 2.72 2.76 2.99 2.16 2.23 2.61

LOS (m) 3.45 3.23 3.29 3.57 3.67 3.12 3.89 3.29 3.52 3.47 3.45

Table 0.7 Tags Collection Time for Station Mode

No. of

Tags
1 2 3 4 5 6 7 8 9 10 AVG

1 127.8 144.3 148.2 131.4 139.3 128.4 149.8 138.9 139.9 119.4 136.74

5 263.4 235 223.3 240.6 237.2 239.1 150.3 154.6 222.3 213.8 217.96

10 252.9 276.7 266 252.8 268.7 292.6 256.1 268.6 235.5 243 261.29

15 290 276.1 264.8 256.2 289.3 274.8 262.1 278.4 293.6 299.5 278.48

20 369.4 323.4 312.6 308 256.9 300.1 356.4 324.7 352 312.7 321.62

25 388.3 376.21 323.76 376.26 352 366.45 351.01 372.39 380.23 388.04 367.47

Table 0.8 Tags Collection Time for Mobile Mode

No. of

Tags
1 2 3 4 5 6 7 8 9 10 AVG

1 108 88 104 120 108 92 108 88 104 120 104.00

5 144 152 136 140 150 152 144 150 136 155 145.90

10 164 148 148 156 168 148 148 156 164 148 154.80

15 160 166 156 172 160 160 166 160 156 172 162.80

20 180 158 172 156 176 176 176 156 176 180 170.60

25 183 180 189 200 210 183 200 180 200 200 192.50

Anti-Collision Antenna 1 for Stationary Mode

For the distance of 5 cm, the percentage of data received was calculated as follows:

For the distance of 10 cm, the percentage of data received was calculated as

follows:

The distance of the anti-collision test was extended to 15 cm. At this distance,

the percentage of data received was calculated as follows:

The above findings show that the efficiencies of the anti-collision testat the

distances of 5 cm and 10 cm were 100%, and such efficiency dropped to 75% when

the distance was extended to 15 cm.

Anti-Collision Antenna 2 for Stationary Mode

For the distance of 1 m, the percentage of data received was calculated as follows:

For the distance of 2 m, the percentage of data received was calculated as

follows:

The distance of the anti-collision test was extended to 3 m. At this distance,

the percentage of data received was calculated as follows:

Anti-Collision Antenna 1 for Mobile Mode

For the distance of 5 m, the percentage of data received was calculated as follows:

For the distance of 10 m, the percentage of data received was calculated as

follows:

The distance of the anti-collision test was extended to 15 cm. At this distance,

the percentage of data received was calculated as follows:

The above findings show that the efficiencies of the anti-collision test at the

distances of 5 cm and 10 cm were 100%, and such efficiency dropped to 77.5% when

the distance was extended to 15 cm.

Therefore anti-collision efficiency is 100% at 5 cm and 10 cm distance while

at 15 cm the efficiency is 77.5%.

Anti-Collision Antenna 2 for Mobile Mode

For the distance of 1 m, the percentage of data received was calculated as follows:

For the distance of 2 m, the percentage of data received was calculated as

follows:

The distance of the anti-collision test was extended to 3 m. At this distance,

the percentage of data received was calculated as follows:

The above findings show that the efficiencies of the anti-collision test at the distances

of 1 m, 2 m, and 3 m were 100%, 97.5%, and 87.5%, respectively.

	1_muka depan.pdf (p.1-2)
	1_FRONT GOLD.pdf (p.1)
	2_TITLE.pdf (p.2)

	2_KEASLIAN.pdf (p.3-4)
	BORANG PENGESAHAN PENYERAHAN.pdf (p.1)
	PERAKUAN KEASLIAN.pdf (p.2)

	3_ACK AND ABSTRAK.pdf (p.5-7)
	4_TOC AND LIST.pdf (p.8-23)
	5_CHAPTER.pdf (p.24-176)
	5_CHAPTER 1.pdf (p.1-10)
	6_CHAPTER 2.pdf (p.11-68)
	7_CHAPTER 3.pdf (p.69-119)
	8_CHAPTER 4.pdf (p.120-150)
	9_CHAPTER 5.pdf (p.151-153)

	6_reference and appendex.pdf (p.177-220)
	10_REFERENCES.pdf (p.1-8)
	11_APPENDIX.pdf (p.9-44)

