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ABSTRACT 

 

 

The aim of this research is to study the efficiency of the order-2 extrapolated implicit 

Runge-Kutta methods. The order-2 methods being considered are the implicit 

midpoint (IMR) and implicit trapezoidal (ITR) rules. These methods are applied with 

the polynomial and rational extrapolations actively and passively with smoothing to 

improve the accuracy. In order to reduce the round-off errors, a technique known as 

compensated summation with simplified Newton is implemented in all the numerical 

codes. The results are given based on numerical experiments that are carried out using 

MATLAB software. The findings showed that passive polynomial extrapolation by 

the IMR and ITR are more efficient than with active and passive rational 

extrapolation. The smoothing technique with extrapolation by the IMR and ITR gives 

better behavior than without the smoothing technique. It is therefore concluded that in 

solving chemistry, linear and nonlinear chemical and logistic curve problems, passive 

polynomial extrapolation with smoothing (PPXS) by the IMR gives better efficiency 

than the passive and active polynomial extrapolation by the 2-stage Radau IIA method 

(R2PX) and (R2AX). However, for higher dimensional nonlinear problems, R2AX 

and R2PX can be as efficient as the PPXS. The implication of this study is that, PPXS 

that has a cheaper implementation cost can be a very efficient method in solving linear 

and nonlinear stiff problems when compared with other higher order methods. 

Therefore, it is recommended to apply IMR with smoothing and extrapolation in the 

future research for comparison involving lower order methods. 
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KAEDAH TERSIRAT RUNGE-KUTTA PERINGKAT-2 YANG  

DITENTULUAR DENGAN TEKNIK PELICINAN 

BAGI MENYELESAIKAN PEMBEZAAN  

PERSAMAAN BIASA 

 

 

ABSTRAK 

 

 

Tujuan kajian ini dijalankan adalah untuk menentukan kecekapan peringkat-2 tersirat 

Runge-Kutta yang ditentuluar. Kaedah peringkat-2 yang dikaji adalah petua titik 

tengah tersirat (IMR) dan petua trapezoidal tersirat (ITR). Bagi meningkatkan 

ketepatan, kaedah ini digunakan dengan tentuluar jenis polinomial dan nisbah secara 

pasif dan aktif berserta dengan teknik pelicinan. Untuk mengurangkan ralat 

pembundaran, satu teknik yang dikenali sebagai lebihan penjumlahan menggunakan 

kaedah Newton yang telah dipermudahkan telah dilaksanakan dalam semua kod. 

Dapatan kajian yang diperolehi adalah berdasarkan ujikaji secara berangka yang 

dijalankan menggunakan perisian MATLAB. Hasil daripada dapatan kajian 

menunjukkan bahawa, pasif polinomial dengan penentuluaran bagi IMR and ITR 

memberikan keputusan yang paling cekap berbanding dengan tentuluar jenis nisbah 

secara aktif dan pasif. Teknik pelicinan dengan tentuluar bagi IMR dan ITR juga 

memberikan keputusan yang lebih baik berbanding dengan tentuluar tanpa teknik 

pelicinan. Kesimpulannya, dalam penyelesaian masalah kimia linear dan bukan linear 

serta masalah lengkung logistik, tentuluar pasif polinomial dengan pelicinan (PPXS) 

bagi IMR memberikan kecekapan yang paling tinggi berbanding dengan tahap dua 

Radau IIA yang menggunakan tentuluar pasif (R2PX) dan aktif (R2AX). Namun 

begitu, bagi penyelesaian masalah berdimensi tinggi, R2PX dan R2AX boleh 

memberikan kecekapan yang hampir sama dengan PPXS. Implikasi daripada kajian 

ini adalah PPXS yang mempunyai kos pelaksanaan yang lebih mudah boleh 

memberikan kecekapan yang sangat tinggi bagi penyelesaikan masalah kaku linear 

dan bukan linear jika dibandingkan dengan kaedah peringkat tinggi yang lain. Oleh 

yang demikian, adalah dicadangkan penggunaan IMR dengan teknik pelicinan dan 

tentuluar digunakan sebagai bandingan dengan kaedah peringkat rendah yang lain 

dalam kajian akan datang. 
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Numerical ODE

Ordinary differential equations (ODE) frequently occur as mathematical models in many

branches of science, engineering and economy. Unfortunately it is seldom that these

equations have solutions that can be expressed in closed form, so it is common to seek

approximate solutions by means of numerical methods. Nowadays this can usually be

achieved very inexpensively to high accuracy and with a reliable bound on the error

between the analytical solution and its numerical approximation.

1.1.1 Ordinary Differential Equations

Physical, biological or chemical processes often use differential equations to solve daily

problems. Ordinary differential equation, abbreviated ODE is a branch of differential

equations. It involve derivatives of unknown solutions. All derivatives in the differential

equations are with respect to a single independent variable. If the derivatives of differential
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equations are respect to more than one independent variables, then it is called partial

differential equations.

Consider an ODE in the form of

y′ = f (x,y), y(x0) = y0, f : [x0,xn]×R
N → R

N. (1.1)

In this equation,x is the independentor time variable andy is the dependent

variable. Functionf is used to determine the unknown functiony satisfying ODE.x0 is

the initial time,y0 is the initial value,RN is a set of real number andN is a set of positive

integers. If the value ofx0 andy0 are given, then equation (1.1) is known as initial value

problems.

Although ordinary differential equation can be solved analytically like separable

variable method, factorization method, substitution method and many more, but it is

difficult to solve nonlinear equations especially higher order equations analytically. In

this case numerical method is preferable. Hence, numerical method can be used to get the

approximation of the solution when the exact solution is unknown.

Some famous numerical methods are Runge-Kutta methods, linear multistep meth-

ods and general linear methods. Runge-Kutta method is a one step methods due to Runge,

Heun and Kutta (Butcher, 2008).

Linear multistep method on the other hand is an extended of Euler method by

allowing the approximation solution at a point to depend on the solution values and

derivative values at several previous step values. It was introduced by Bashforth and

Adam (1883) for solving practical problems of capillary action.
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General linear methods was introduced by Butcher (1966). It is used to obtain a

general formulation of methods that possess the multivalue attributes of linear multistep

methods as well as the multistage attributes of Runge-Kutta methods. It is also known

as multistage-multivalue methods. Multivalue method is a method that collect input

in vectors forms at the beginning of step and a similar collection is passed on as an

output from the current step and as input into the following step. Multistage method

is a computation in forming the output quantities.

In this research, only Runge-Kutta method will be focused. A brief introduction

to Runge-Kutta methods is given in Subsection 1.1.2.

Certain applications in science and engineering involve completing physical phe-

nomena with having widely different time scales especially problems involving combustion,

energy conservation, temperature and density conditions (Faou et al., 2004) and (Kadoura

et al., 2014). Stiffness is a special problem that can arise in the solution of ODE. A

stiff system is one involving rapidly changing components together with slowly changing

ones. A stiff problem is often referred as a problem with "widely differing time constant"

or as a system "with a large Lipschitz constant" (Hall and Watt, 1976). If the derivatives

δ f
δy are continuous and bounded, the Lipschitz constant is defined as

L =
∣∣∣∣δ f

δy

∣∣∣∣> ρ
(

δ f
δy

)
,

whereλ is defined as eigenvalues ofδ f
δy andρ is defined as

ρ = |λi |, i = 1,2, ..n.
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To understand stiffness, consider the Dahlquist test equation (Wanner, 2006) as given in

equation (1.2),

y′ = qy, y(x0) = y0, (1.2)

whereq should be focused because it is a negative real part of a complex number. When

Re(q) is small and negative, it corresponds to a slow decaying component, whereas when

Re(q) is large and negative it corresponds to a rapidly decaying components. A problem

is said to be stiff if the presence of the large negativeRe(q)’s results in using a much

smaller stepsize as requested by stability (Gorgey, 2012) and (Butcher, 2008).

For any numerical methods there are errors that can either destroy the solutions or

contributes to the solutions. The good errors can be divided into two types. These errors

are local and global errors. Local error is error committed by the method in a single step

when the values at the beginning of that step are assumed to be exact. Global error is

defined as accumulation of local errors aftern steps. The accumulation does not mean the

summation of local error at eachn steps but it is bounded by the sum of the bounds on the

local errors. Local error,ln can be written as

ln = un(xn)−yn, (1.3)

where,un is the solution curve andyn is exact solution curve. The global error,εn is given

by

εn = y(xn)−yn,

wherey(xn) is solution curve atn steps. With equation (1.3),εn becomes

εn = y(xn)−un(xn)+ ln. (1.4)
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whereεn is the actual error aftern steps. Hence, there are two components of global error,

one is due the to local error at the present step and the other is due to the local error at the

previous steps.

The bad errors are the roundoff errors. These errors if it is not well taken can

destroy the numerical solutions. Detailed about roundoff errors is given in Chapter 3.

1.1.2 Introduction to Runge-Kutta Methods

In general Runge-Kutta (RK) method is defined as

Yi = yn−1+h
s

∑
j=1

ai j f (xn−1+ c jh,Yj) i = 1,2,. . . ,s, (1.5a)

yn = yn−1+h
s

∑
j=1

b j f (xn−1+ c jh,Yj) j = 1,2,. . . ,s. (1.5b)

The general formula is a one step method that can be illustrated schematically with the

following diagram:

yn−1

xn−1 xn−1+ c1h

Y1

xn−1+ cih

Yi

xn−1+ csh

Ys yn

xn
• • • • •

< h >

whereYi represent the internal stage values andyn represent the update ofy at thenth step.

Assumed that the row-sum condition holds:

ci =
s

∑
j=1

ai j , i = 1,2,. . . ,s. (1.6)

General formula (1.5a) and (1.5b) can be displayed by a partitioned tableau known as
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Butcher tableau of the form

c A

bT

,

where the vectorc is the vector of abscissae that indicates the positions within the steps of

the stage values, the matrixA are the coefficients used to find the internal stages,s using

linear combinations of the stage derivatives and the vectorb represents the quadrature of

weight indication of the approximation to get the solution that depends on the derivatives

of the internal stages.

Runge-Kutta methods can be divided into two main types according to the style

of the matrixA (Butcher, 2008). If matrixA is strictly lower triangular, it is called

explicit and else the methods is called implicit. Implicit method can be divided into

four categories. The categories are fully implicit if matrixA is not lower triangular,

semi-implicit if matrixA is lower triangular with at least one non-zero diagonal element,

diagonal implicit if matrixA is a lower triangular with all elements are equal and non-zero

and the last is singly implicit if matrixA is a non-singular matrix with single eigenvalue.

There are many types of explicit and implicit methods. Some explicit methods are

Euler method, explicit midpoint rule method, explicit trapezoidal method and higher order

explicit methods. Example of implicit methods are the implicit Euler method, implicit

midpoint rule, implicit trapezoidal rule and other higher order implicit methods. This

research is only focusing on implicit midpoint and implicit trapeziodal rules. Table 1.1

shows the family of implicit Runge-Kutta methods of order-2 (Butcher, 2008).

The defining equations for the IMR and ITR are given in equation (1.7), equation (1.8)

and equation (1.9), equation (1.10) and equation (1.11) respectively.
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Implicit Midpoint Rule Implicit Trapezoidal Rule

1
2

1
2

1

0 0 0

1 1
2

1
2

1
2

1
2

Y = yn−1+
h
2

f
(
xn−1+

h
2,Y
)

, (1.7)

yn = yn−1+h f(xn−1+
h
2,Y). (1.8)

Y1 = yn−1, (1.9)

Y2 = yn−1+
h
2

f
(
xn−1,Y1

)
+

h
2

f
(
xn−1+h,Y2

)
, (1.10)

yn =Y2. (1.11)

In the following subsections, the theory of Runge-Kutta methods such as the

elementary weights, elementary differentials and conditions for order are given for the

set of rooted trees.

Let T denote the set of rooted trees as given in Butcher (2008)

T=





. . .





.

The rooted trees defined above are given up to order-4. Based on this set of rooted trees,

the construction of the elementary weights, elementary equations and conditions for order

are defined in the next subsections.

Table 1.1

Butcher Tableau for IMR and ITR



8

Elementary Weights

A tree can be labeled using the coefficientsA, bT and c. For each treet defined an

expression in term of the coefficient for the method by associating with each edge of the

tree as the coefficient matrixA. Each vertex of the tree as the component wise product

of all upward growing vectors, with the convention that an empty product is the vectore

with each component equal to 1. Finally, the root of the tree is the operation on forming

an inner-product with the vectorbT . Corresponding to eacht is a real number called the

elementary weights.

For example, consider a tree with four vertices:

bT

c A

c

Φ(t) = bTcAc

,

wherebT is the inner product andcAcshow the component wise product.The summary

of the elementary weights for 8 trees is given below as defined by Butcher (2008).

Φ bTe bTc bTc2 bTAc bTc3 bT(cAc) bTAc2 bTA2c

Elementary Differentials

To derive the elementary differentials consider the numerical solution of an autonomous

differential equation system given by

y′ = f (y(x)).
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The higher differentiation can be calculated using repeated differentiation and chain rule.

For example up to third derivatives is given as

y′′ = f ′(y(x))y′ = f ′(y(x))( f (y(x))),

y′′′ = f ′′(y(x))( f (y(x)), f (y(x)))+ f ′(y(x))( f ′(y(x))( f (y(x)))).

For compactness of notation, it is easier to writef = f (y(x)), f′= f ′(y(x)), f′′= f ′′(y(x)),

and so on. Therefore, the elementary differentials up to the fourth derivatives is given

below:

y′ = f,

y′′ = f′f,

y′′′ = f′′(f, f)+ f′f′f,

y(4) = f′′′(f, f, f)+3f′′(f, f′f)+ f′f′′(f, f)+ f′f′f′f.

Elementary differentials are related to the rooted-trees. Trees can be constructed from the

derivatives. Consider the tree with 4 vertices.

f ′′′

f
f ′

f

f

The elementary differential for the tree with 4 vertices is given by

F(t)(y(x)) = f′′′(f′f, f, f).

Comparison of successive term in Taylor series expansions of computed solution

with the exact solutions is used to derived the order conditions of the Runge-Kutta methods.

The order conditions are used to investigate the error in carrying out a single step of
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a Runge-Kutta method. The exact solution atxn, y(xn) = y(x0 + h) up to orderp is

represented by Taylor series expansions.

The formal Taylor expansion of the solution atx0+h defined in Butcher (2008) is given

by

y(x0+h) = y0+ ∑
t∈T

α(t)hr(t)

r(t)!
F(t)y0, (1.12)

wheret ∈ T, r(t) is the order oft, α(t) is the number of ways of labeling the tree with an

ordered set andF(t)y0 is the elementary differential.α(t) is defined by

α(t) =
r(t)!

σ(t)γ(t)
. (1.13)

For all t ∈ T, using the known formula forα(t) given in equation (1.13), equation (1.12)

which is the Taylor series expansion of the exact solution is given by

y(x0+h) = y0+ ∑
t∈T

hr(t)

σ(t)γ(t)
F(t)y0. (1.14)

whereγ(t) is known as the density oft.

Now to derive the order condition, one need to compare the Taylor series expansion

of the exact solution with the Taylor series expansion of the numerical approximations.

As given in (Butcher, 2008), the formal Taylor expansion of the numerical approximation

to the solution atx0+h is

y1 = y0+ ∑
t∈T

β (t)hr(t)

r(t)!
Φ(t)F(t)y0, (1.15)
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whereβ (t) is the number of ways labeling the tree with an unordered set. Using the

known formula forβ (t)

β (t) =
r(t)!
σ(t)

,

equation (1.15) becomes

y1 = y0+ ∑
t∈T

hr(t)

σ(t)
γ(t)Φ(t)F(t)(y0). (1.16)

Comparing the exact and the numerical solution, equation (1.14) with equation (1.16)

gives

Φ(t) =
1

γ(t)
,

for all trees such thatr(t) ≤ p which is known as theorder conditions.

The computation of the order conditions up to order-4 is given in Table 1.2.

t

r(t) 1 2 3 3 4 4 4 4

σ (t) 1 1 2 1 6 1 2 1

γ (t) 1 2 3 6 4 8 12 24

α (t) 1 1 1 1 1 3 1 1

β (t) 1 2 3 6 4 24 12 24

F(t) f f ′ f f ′′( f , f ) f ′ f ′ f f (3)( f , f , f ) f ′′( f , f ′ f ) f ′ f ′′( f , f ) f ′ f ′ f ′ f

Table 1.2

Computation of order conditions
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where

r(t) Order oft, it is convenient with number of vertices

σ(t) Symmetry oft, it is convenient with order of automorphism group

γ(t) Density oft

α(t) Number of ways of labeling with an ordered set

β (t) Number of ways labeling with an unordered set

F(t)y0 Elementary differential

The higher the order the more number of order conditions need to be derived.

This can become unmanageable. For this reason, simplifying assumptions are introduced

to simplify the order conditions. They are due to Butcher (1963).

In matrix form, the order condition can be simplified as

B(p) : bTck−1 =
1
k

, k= 1, . . . , p,

C(q) : Ack−1 =
ck

k
, k= 1, . . . ,q, (1.17)

D(r) : bTCk−1A=
1
k
[bT −bTCk], k= 1, . . . ,r.

whereC=diag(c1, . . . ,cs). TheB(p) conditions refer to the bushy trees such asand .

The minimum ofp andq whenB(p) andC(q) hold is called the stage order.

1.1.3 Stability of Runge-Kutta Methods

Stability concerns the behavior of solutions near an equilibrium point in the long term.

Stability of RK method gives

R(z) = 1−zbT(I −zA)−1e,
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where

A=




a11 a12 . . . a1s

a21 a22 . . . a2s

...
...

. ..
...

as1 as2 . . . ass




, b=




b1

b2

...

bs




,

ande is a vector of unit 1.

Definition 1 A method whose stability region contains the whole left half-plane is called

A-stable.

In another sentence, implicit methods have stability function that are rational functions

and there is a possibility that|R(z)| ≤ 1 holds forz∈ C− (Butcher, 2008).

Definition 2 A method is said to be L-stable if it is A-stable and if, in addition,

lim
z→∞

R(z) = 0.

For implicit methods to be L-stable, the degree of the numerator must be less than the

degree of the denominator (Butcher, 2008).

Although stability of Runge-Kutta methods often related to stiffness, one special

type of Runge-Kutta methods that is considered is the one that satisfies the symmetric

properties. This type of Runge-Kutta method which also known as symmetric Runge-

Kutta methods are discussed in Section 2.1. Symmetric methods plays an important role

when applying extrapolation therefore it is important to study about them.
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1.2 Problem Statement

Iterated methods or usually called numerical methods such as Runge-Kutta methods,

general linear methods and multistep methods are always applied in solving linear and

nonlinear problems. Higher order methods such as Radau IIA of order-5 or 3-stage Gauss

method of order-6 are always preferable since these methods are of higher order and

therefore will give greater accuracy than lower order methods. However, instead of using

higher order methods, another way to get greater accuracy is by applying extrapolation.

Lower order methods are always preferable since they are cheaper to implement than

higher order methods.

Lower order of Runge-Kutta methods are divided into two types, implicit and

explicit. Implicit method have higher stability than the explicit ones. It need fewer stages

for the same order when compared to the explicit method (Butcher, 2008). Implicit RK

methods also play important role in solving stiff problems (Butcher, 1975).

Implicit midpoint (IMR) and implicit trapezoidal (ITR) rules are chosen because

they are symmetric and therefore special especially when applying extrapolation. For

example, if extrapolation technique is applied with Euler method, the order of the Euler

method will give 2. When extrapolation is applied with IMR, the order of the method will

increase up to order 4 (Richardson, 1911).

Extrapolation is a process of the deferred approached to the limit (Richardson and

Gaunt, 1972). There are two ways of applying extrapolation such as active and passive

extrapolation. Active extrapolation is applied when the extrapolated values are used to

propagate the next step. Passive extrapolation can be applied when the extrapolated

values are not used in any subsequent computation. There are also two types of applying

extrapolation which are polynomial and rational extrapolation. Deuflhard (1985) investi-

gated that polynomial extrapolation gives more efficiency than the rational ones.
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In addition to these, extrapolation with smoothing had shown to improve the

behaviour of the numerical solutions (Gragg, 1964). Smoothing technique can dampen

the oscillatory behaviour of the numerical solutions. Only one effect from dampened

oscillatory, the numerical solutions by the method is improved.

1.3 Research Objectives

The objective of this research are

1. To study the efficiency of the symmetric Runge-Kutta methods especially for implicit

midpoint and implicit trapezoidal rules in solving stiff and nonstiff linear and non-

linear problems numerically.

2. To apply active and passive extrapolation with and without smoothing technique of

the implicit midpoint and implicit trapezoidal rules numerically.

3. To compare the efficiency of the extrapolated implicit midpoint and implicit trapezoidal

rules with smoothing with the 2-stage Radau IIA method.

4. To compare the efficiency of the polynomial and rational extrapolation in solving

stiff and non-stiff linear and nonlinear problems.

1.4 Significance of Research

At the end of these research, it is hoped that:

1. The readers know that the efficiency of the symmetric Runge-Kutta methods espe-

cially for the implicit midpoint and implicit trapezoidal rules in solving stiff linear

and nonlinear problems can be computed numerically and analyzed theoritically for

the Prothero-Robinson problem.

2. Active and passive modes with polynomial and rational extrapolation can be applied
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