UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEND N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSIT

> ISOLATION OF INDOLE ALKALOIDS FROM THE ROOTS OF Kopsia singapurensis RIDL. (APOCYNACEAE) AND ITS CYTOTOXIC ACTIVITY

HALIMATUSSAKDIAH

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE (NATURAL PRODUCTS) (MASTER BY RESEARCH)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2015

UNIVERSITI PENDIDIKAN SULTAN IDRIS

INIVERSITI PENDIDIKAN SUUTAN IDRIS

vi UNIVERSITI PENDID

N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS

UNIVERSITI PENDIDIKAN SULTAN IDRIS

ABSTRACT

The objective of this study is to extract, isolate, and elucidate the indole alkaloids from the roots of Kopsia singapurensis Ridl. collected from Kluang, Johor. The extraction process of the plant was carried out using hexane followed by dichloromethane (DCM) to yield hexane and DCM crude extracts. The isolation and purification process were performed by various chromatographic techniques namely column chromatography (CC), thin layer chromatography (TLC) and preparative thin layer chromatography (PTLC). The structures of isolated compounds were elucidated by using spectroscopic methods such as 1D-NMR (¹H, ¹³C, and DEPT 135°) and 2D-NMR (COSY, HMQC, and HMBC), ultraviolet (UV), infrared (IR) and mass spectrometry (MS), and also by comparison with previous works. This study has successfully isolated eight indole alkaloids from the roots of K. singapurensis Ridl., tetrahydroalstonine, melodinine E, kopsifine, rhazinicine, kopsamine N(4)-oxide, aspidodasycarpine, kopsamine, and akuammidine. These isolated indole alkaloids were then screened for cytotoxic activity against human cervical cancer (HeLa) cell, human promyelocytic leukemia (HL-60) cell, and the normal mouse fibroblast (NIH/3T3) cell lines by using MTT assay. The kopsifine showed very strong activity, while kopsamine exhibited a moderate cytotoxic activity against HL-60 cells with Cytotoxic Dose (CD₅₀) values of 0.9 µg/mL and 6.9 µg/mL, respectively. Akuammidine and rhazinicine exhibited significant cytotoxicity effects against HeLa cells with the CD₅₀ values 2.8 µg/mL and 2.9 µg/mL, respectively. However, aspidodasycarpine showed a moderate cytotoxicity effects against HeLa cells with the CD_{50} value of 7.5 µg/mL. Rhazinicine, aspidodasycarpine, and kopsifine showed high cytotoxic effects against all tested cancer cells and normal cell with CD₅₀ values of 20.8 µg/mL, 6.4 µg/mL, and 20.7 µg/mL, respectively. As a conclusion, these three alkaloids cannot be used as a cancer treatment drugs. The implication of the study showed that there are two indole alkaloids namely kopsamine and akuammidine which can be used as drugs to treat cancer.

UNIVERSITI PENDIDIKAN SULTAN IDRIS

Vii UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERS

N IDRIS

N IDRIS UNIVERSITI PENDIDIKAN SULTAN

Pemencilan Alkaloid Indola dari Akar *Kopsia singapurensis* Ridl. (Apocynaceae) dan Aktiviti Sitotoksik

ABSTRAK

Kajian ini bertujuan mengekstrak, memencil dan mengenalpasti alkaloid indola daripada akar Kopsia singapurensis Ridl. yang diperolehi dari Kluang, Johor. Proses pengekstrakan tumbuhan telah dijalankan dengan menggunakan heksana diikuti dengan diklorometana (DCM) untuk menghasilkan ekstrak mentah heksana dan DCM. Proses pemencilan dan penulenan dijalankan dengan pelbagai teknik kromatografi, iaitu kromatografi turus (CC), kromatografi lapisan nipis (TLC) dan kromatografi lapisan nipis preparatif (PTLC). Struktur sebatian yang dipencil dikenalpasti dengan menggunakan kaedah spektroskopi, iaitu 1D-NMR (¹H, ¹³C, dan DEPT 135°) dan 2D-NMR (COSY, HMQC dan HMBC), ultralembayung (UV), inframerah (IR) dan spektrometri jisim (MS), dan juga perbandingan dengan data daripada kajian lepas. Kajian mendapati lapan alkaloid indola telah berjaya dipencilkan daripada akar K. singapurensis Ridl. iaitu tetrahidroalstonina, melodinina E, kopsifina, rhazinicina, kopsamina N(4)-oksida, aspidodasycarpina, kopsamina, dan akuammidina. Alkaloid indola ini kemudian disaring untuk aktiviti sitotoksik terhadap sel kanser pangkal rahim manusia (HeLa), sel promyelocytic leukemia (HL-60), dan sel normal fibroblast tikus (NIH/3T3) dengan menggunakan asai MTT. Kopsifina menunjukkan kesan aktiviti sangat kuat, manakala kopsamina memiliki kesan sederhana terhadap aktiviti sitotoksik sel HL-60 dengan nilai Cytotoxic Dose (CD₅₀) masing-masing adalah 0.9 µg/mL dan 6.9 µg/mL. Akuammidina dan rhazinicina menunjukkan kesan sitotoksik yang signifikan terhadap sel HeLa dengan nilai CD₅₀ masing-masing 2.8 µg/mL dan 2.9 µg/mL. Walau bagaimanapun, aspidodasycarpina menunjukkan kesan sitotoksik sederhana terhadap sel HeLa dengan nilai CD₅₀ 7.5 µg/mL. Rhazinicina, aspidodasycarpina, dan kopsifina menunjukkan kesan sitotoksik yang tinggi terhadap semua sel kanser dan sel normal yang diuji dengan nilai CD₅₀ masing-masing 20.8 µg/mL, 6.4 µg/mL, dan 20.7 µg/mL. Kesimpulannya, ketiga-tiga alkaloid tersebut tidak boleh digunakan sebagai ubatan rawatan kanser. Implikasi daripada kajian ini menunjukan bahwa terdapat 2 alkaloid indola iaitu kopsamina dan akuammidina dapat digunakan sebagai ubatan bagi merawat kanser.

CONTENTS

		Page
DECLARATION	N OF ORIGINAL WORK	iii
ACKNOWLED	GEMENTS	iv
ABSTRACT		vi
ABSTRAK		vii
CONTENTS		viii
LIST OF TABLI	ES	xii
LIST OF FIGUR	RES	xiii
LIST OF SCHE	MES	xvii
ABBREVIATIO	NS	xviii
CHAPTER 1	INTRODUCTION	1
	1.1 General	1
	1.2 Problem Statement	5
	1.3 Objectives of Study	6
	1.4 Significance of Study	7
	1.5 Apocynaceae	8
	1.5.1 General Appearance and Morphology	8
	1.5.2 Classification, Distribution, and Habitat	9
	1.6 The Genus of <i>Kopsia</i>	9

1.6.1 The Species of Kopsia 10

UNIVERSITI PENDIDIKAN SULTAN IDRIS

IVERSITI PENDIDIKAN SULTAN IDRIS

IX UNIVERSITI PENDID

N IDRIS

1.6.2 Kopsia singapurensis Ridl.

13

CHAPTER 2 LITERATURE REVIEW 15 2.1 General and Chemical Aspects 15 2.2 The Alkaloids 17 2.3 Classification of Alkaloids 20 2.4 Alkaloids of Apocynaceae 27 Indole Alkaloids of Apocynaceae 2.5 28 2.5.1 Simple Indole Alkaloids 29 2.5.2 Simple β -Carboline Alkaloids 30 2.5.3 Terpenoid Indole Alkaloids 30 Quinoline Alkaloids 2.5.4 31 2.5.5 Pyrroloindole Alkaloids 33 2.5.6 Ergot Alkaloids 34 2.6 Biosynthesis of Indole Alkaloids 35 2.7 Spectroscopic Features of Indole Alkaloids 39 2.8 Alkaloids of K. singapurensis Ridl. 40 2.9 Cytotoxicity Assay 56

CHAPTER 3	RESEARCH METHODOLOGY	59
	3.1 Plant Material	59
	3.2 Chemical Reagents	59

N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

3.3	Chromatographic and Spectroscopic Techniques	61
3.4	Extraction of K. singapurensis Ridl. (Root)	64
3.5	Isolation and Purification of Indole Alkaloids	65
	Constituents	
3.6	MTT Cytotoxicity Assay	67
3.7	Physical and Spectral Data of Isolated Indole	69
	Alkaloids	

HAPIER 4	KES	OLIS	AND DISCUSSION	TT
	4.1	Gener	al	77
	4.2	Alkalo	oids from the Roots of K. singapurensis	79
		Ridl.		
		4.2.1	Tetrahydroalstonine 154	80
		4.2.2	Melodinine E 174	88
		4.2.3	Kopsifine 175	96
		4.2.4	Rhazinicine 54	103
		4.2.5	Kopsamine N(4)-Oxide 171	110
		4.2.6	Aspidodasycarpine 141	118
		4.2.7	Kopsamine 170	126
		4.2.8	Akuammidine 34	133
	4.3	Cytote	oxicity Assay of Indole Alkaloids from K.	141
		singap	ourensis Ridl.	

149

160

N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

CHAPTER 5 CONCLUSION AND RECOM

OMMENDATION	145

5 1	Conorol	1	15
5.1	Uchiciai	14	+3
5.2	Conclusion	14	45
5.3	Recommendation	14	48

REFERENCES

APPENDICES

N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

LIST OF TABLES

Table		Page
1.1	List of Kopsia Species and Their Distribution	11
2.1	Main Types of Alkaloids, Chemical Groups, and Their Examples	22
2.2	The Occurrence of Alkaloids in Kopsia singapurensis Ridl.	40
4.1	¹ H NMR [500 MHz, $\delta_{\rm H}$ (<i>J</i> Hz)] and ¹³ C NMR [125 MHz, $\delta_{\rm C}$] data of	83
	154 [*] in CDCl ₃	
4.2	¹ H NMR [500 MHz, $\delta_{\rm H}$ (<i>J</i> Hz)] and ¹³ C NMR [125 MHz, $\delta_{\rm C}$] data of	91
	174 [*] in CDCl ₃	
4.3	¹ H NMR [500 MHz, $\delta_{\rm H}$ (<i>J</i> Hz)] and ¹³ C NMR [125 MHz, $\delta_{\rm C}$] data of	98
	175 [*] in CDCl ₃	
4.4	¹ H NMR [500 MHz, $\delta_{\rm H}$ (<i>J</i> Hz)] and ¹³ C NMR [125 MHz, $\delta_{\rm C}$] data of	105
	54 [*] in CDCl ₃	
4.5	¹ H NMR [500 MHz, $\delta_{\rm H}$ (<i>J</i> Hz)] and ¹³ C NMR [125 MHz, $\delta_{\rm C}$] data of	113
	171 [*] in CDCl ₃	
4.6	¹ H NMR [500 MHz, $\delta_{\rm H}$ (<i>J</i> Hz)] and ¹³ C NMR [125 MHz, $\delta_{\rm C}$] data of	121
	141 [*] in CDCl ₃	
4.7	¹ H NMR [500 MHz, $\delta_{\rm H}$ (<i>J</i> Hz)] and ¹³ C NMR [125 MHz, $\delta_{\rm C}$] data of	128
	170 [*] in CDCl ₃	
4.8	¹ H NMR [500 MHz, $\delta_{\rm H}$ (<i>J</i> Hz)] and ¹³ C NMR [125 MHz, $\delta_{\rm C}$] data of	136
	34^* in CD ₃ OD	
4.9	Cytotoxic effects of alkaloids isolated from K. singapurensis Ridl	142

N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

LIST OF FIGURES

Figure		Page
1.1	The Flower of K. singapurensis Ridl.	14
1.2	The Leaves of K. singapurensis Ridl.	14
1.3	The Barks of K. singapurensis Ridl.	14
2.1	Stereochemistry of Quinine 15, Quinidine 56, Cinchonidine 58, and	32
	Cinchonine 57	
2.2	The normal mouse fibroblast (NIH/3T3) cell line (adherent cell)	58
2.3	The human cervical cancer (HeLa) cell line (adherent cell)	58
2.4	The human promyelocytic leukemia (HL-60) cell line (suspension	58
	cell)	
4.1	¹ H NMR Spectrum of 154	84
4.2	¹³ C NMR Spectrum of 154	84
4.3	DEPT 135° NMR Spectrum of 154	85
4.4	COSY Spectrum of 154	85
4.5	HMBC Spectrum of 154	86
4.6	HMQC Spectrum of 154	86
4.7	Selected 2D-NMR coupling correlations for 154	87
4.8	¹ H NMR Spectrum of 174	92
4.9	¹³ C NMR Spectrum of 174	92
4.10	DEPT 135° NMR Spectrum of 174	93
4.11	COSY Spectrum of 174	93
4.12	HMBC Spectrum of 174	94

ORIS	UNIVERSITI PE	NDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS	UNIVERSITI
	4.13	HMQC Spectrum of 174	94
	4.14	Selected 2D-NMR coupling correlations for 174	95
	4.15	¹ H NMR Spectrum of 175	99
	4.16	¹³ C NMR Spectrum of 175	99
	4.17	DEPT 135° NMR Spectrum of 175	100
	4.18	COSY Spectrum of 175	100
	4.19	HMBC Spectrum of 175	101
	4.20	HMQC Spectrum of 175	101
	4.21	Selected 2D-NMR coupling correlations for 175	102
	4.22	¹ H NMR Spectrum of 54	106
	4.23	¹³ C NMR Spectrum of 54	106
	4.24	DEPT 135° NMR Spectrum of 54	107
	4.25	COSY Spectrum of 54	107
	4.26	HMBC Spectrum of 54	108
	4.27	HMQC Spectrum of 54	108
	4.28	Selected 2D-NMR coupling correlations for 54	109
	4.29	¹ H NMR Spectrum of 171	114
	4.30	¹³ C NMR Spectrum of 171	114
	4.31	DEPT 135° NMR Spectrum of 171	115
	4.32	COSY Spectrum of 171	115
	4.33	HMBC Spectrum of 171	116
	4.34	HMQC Spectrum of 171	116
	4.35	Selected 2D-NMR coupling correlations for 171	117
	4.36	¹ H NMR Spectrum of 141	122

RIS	UNIVERSITI PE	NDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRI	S UNIVERSITI
	4.37	¹³ C NMR Spectrum of 141	122
	4.38	DEPT 135° NMR Spectrum of 141	123
	4.39	COSY Spectrum of 141	123
	4.40	HMBC Spectrum of 141	124
	4.41	HMQC Spectrum of 141	124
	4.42	NOESY Spectrum of 141	125
	4.43	Selected 2D-NMR coupling correlations for 141	125
	4.44	¹ H NMR Spectrum of 170	129
	4.45	¹³ C NMR Spectrum of 170	129
	4.46	DEPT 135° NMR Spectrum of 170	130
	4.47	COSY Spectrum of 170	130
	4.48	HMBC Spectrum of 170	131
	4.49	HMQC Spectrum of 170	131
	4.50	Selected 2D-NMR coupling correlations for 170	132
	4.51	¹ H NMR Spectrum of 34	137
	4.52	¹³ C NMR Spectrum of 34	137
	4.53	DEPT 135° NMR Spectrum of 34	138
	4.54	COSY Spectrum of 34	138
	4.55	HMBC Spectrum of 34	139
	4.56	HMQC Spectrum of 34	139
	4.57	Selected 2D-NMR coupling correlations for 34	140
	4.58	The cytotoxic effects of the isolated alkaloids and standard vincristine	143
		(control) from K. singapurensis Ridl. against the normal mouse	
		fibroblast (NIH/3T3) cell line	

4.59 The cytotoxic effects of the isolated alkaloids and standard vincristine (control) from *K. singapurensis* Ridl. against the human cervical cancer (HeLa) cell line

144

4.60 The cytotoxic effects of the isolated alkaloids and standard vincristine 144 (control) from *K. singapurensis* Ridl. Against the human promyelocytic leukemia (HL-60) cell line

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI FENDIDIKAN SULTAN IDRIS UNIVERSITI F

LIST OF SCHEMES

Scheme		Page
2.1	Forming of Pyrroloindole Alkaloid (Eserine 60) from Tryptamine 19	33
2.2	Major Skeletal Classes from Mevalonic Acid 62	36
2.3	Biosynthesis of Nine Main Skeletals of Indole Alkaloids	38
3.1	Extraction of K. singapurensis Ridl. Roots	65
3.2	Isolation and Purification of Indole Alkaloids from CH ₂ Cl ₂ Crude	66
	Extract from K. singapurensis Ridl. Roots	

UNIVERSITI PENDIDIKAN SULTAN IDRIS DI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SU

N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

ABBREVIATIONS

%	Percent
μg	Microgram
μL	Microlitre
μΜ	Micromolar
μm	Micrometer
¹³ C	Carbon NMR
1D-NMR	One Dimension Nuclear Magnetic Resonance
¹ H	Proton NMR
2D-NMR	Two Dimension Nuclear Magnetic Resonance
ATCC	American Type Cell Collection
brd	Broad
C=O	Ketone functional group
СС	Column Chromatography
CD ₃ OD	Tetradeuteromethanol
CD ₅₀	Cytotoxicity Dose of causing 50% cell death
CDCl ₃	Deuterochloroform
CH_2Cl_2	Dichloromethane
CH ₃	Methyl group
CHCl ₃	Chloroform
cm s ⁻¹	Centimeter per Second
cm ⁻¹	Per Centimeter
CO_2	Carbon dioxide

Hz

IR

 IC_{50}

xix UNIVER

 ${}^{1}H - {}^{1}H$ Correlation Spectroscopy COSY d

0001	II II conclution specifoscopy
d	Doublet
dd	Doublet of doublets
ddd	Doublet of doublets
dddd	Doublet of doublet of doublets
DCM	Dichloromethane
DEPT 135°	Distortioness Enhancement by Polarization Transfer at 135°
DMSO	Dimethylsulphoxide
EC ₅₀	Effective Concentration of causing 50% cell death
EtOAc	Ethyl acetate
g	Gram
GC-MS	Gas Chromatography-Mass Spectroscopy
H ₂ O	Water
HC1	Hydrochloric Acid
HeLa	Human cervical cancer cell
HL-60	Human promyelocytic leukemia cell
HMBC	Heteronuclear Multiple Bond Correlation
HMQC	Heteronuclear Multiple Quantum Correlation
HPLC	High Performance Liquid Chromatography

HRESIMS High Resolution Electrospray Ionisation Mass Spectrometry

Inhibitory Concentration of of causing 50% cell inhibited

Coupling Constant J

Hertz

Infra Red

N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

VD/V1200	Vincristine-resistant of human oral epidermoid carcinoma
KB/ V J 300	cell lines
Kg	Kilogram
М	Molar
m	Meter
m	Multiplet
m/z.	Mass per Charge
МеОН	Methanol
MHz	Mega Hertz
min	Minute
mL	Mililitre
mM	Milimolar
mm	Milimeter
m. p.	Melting Point
Na ₂ CO ₃	Sodium carbonate
NC=O	Amide functional group
NH ₃	Ammonia
NIH/3T3	Normal mouse fibroblast cell
nm	Nanometer
NMR	Nuclear Magnetic Resonance
NOESY	Nuclear Overhauser Effect Spectroscopy
°C	Degree Celcius
OCH ₂ O	Methylenedioxy
OCH ₃	Methoxyl functional group

- IN		12		11	<u> </u>
	4	L	D	ίĿ.	5
		_			-

UNI\	/ERSITI	PENDIDIKAI	n sultan i	DRIS

ODS	Octa Decyl Silane
ОН	Hydroxyl functional group
OR	Optical Rotation ($[\alpha]_D^{25}$, with tungsten lamp at 25°C and
	wavelength 589 nm (sodium light, D)
PBS	Phosphate buffered saline
рН	Power of Hydrogen
ppm	Part per Million
PTLC	Preprative Thin Layer Chromatography
rf	Radio frequency
R_f	Retention factor
S	Singlet
t	Triplet
td	Triplet of doublets
TLC	Thin Layer Chromatography
UV	Ultra Violet
α	Alpha
β	Beta
δ	Chemical Shift
λ	Maximum Wave Length

UNIVERSITI PENDIDIKAN SULTAN IDRIS N IDRIS UNIVERSITI PENDIDIKAN SULTAN I

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDI

CHAPTER I

INTRODUCTION

1.1 General

Plant is one of the living organisms that are in the universe. Plants have a long history of providing an innumerable number of molecules with potential for the treatment of many serious diseases, known as medicinal plants which grow naturally around us (Schmidt et al., 2012). The term of medicinal plants include various types of plants used in herbalism and some of these plants have medicinal activities which commonly used as raw materials for extraction of active substances for synthesis of drugs (Rasool Hassan, 2012). For thousands of years natural products have played a very important role in health care and prevention of diseases. Over centuries, cultures around the world have learned how to use plants to fight illness and maintain health (Roberson, 2004). The ancient civilizations of the Chinese, Indians and North

Africans provide written evidence for the use of natural sources for curing various UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN DI PENDI UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID 2 N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

diseases (Phillipson, 2001). The current review attempts to give an overview on the potential of such plant-derived natural products as antiprotozoal leads and/or drugs in the fight against neglected tropical diseases (Schmidt et al., 2012). Plants contain primary metabolites for growth and thrive, and secondary metabolites for survival and self-protection from environment disturbance. Secondary metabolites are also known as natural products (Dias, Urban, & Roessner, 2012), they are not only found in plants, but also found in animals and microorganisms. The isolation process of them yielded pure compounds such as terpenoids, alkaloids, steroids, etc. (Sarker, Latif, & Gray, 2006), those pure compounds have active chemical structures (Harvey, 2008).

Plants produce many different secondary metabolites which have biological activity on other organisms (Bandi & Lee, 2012; Hussain et al., 2012; Phillipson, 2001). The dominant roles of them are as anticancer (60%) and drugs for infectious diseases (75%) (McChesney, Venkataraman, & Henri, 2007) such as *Catharanthus roseus* G. Don. (Apocynaceae), which contain antihypertensive alkaloid ajmalicine **1** which was also found in *Peganum harmala* L. (Laine, Lood, & Koskinen, 2014) and anticancer alkaloids vincristine **2** and vinblastine **3** (Cragg & Newman, 2005; Cragg, Kingston, & Newman, 2012; Noble, 1990; Rai, Tandon, & Khatoon, 2014). Other anticancer alkaloids are elliptinium **4** (Apocynaceae), camptothecin **5** (Nyssaceae), and paclitaxel (taxol[®]) **6** (Taxaceae) (Bhanot, Sharma, & Noolvi, 2011; Cragg & Newman, 2005; Malik et al., 2011).

H

OH

CO₂CH₃

Η

H₃CO₂C

OHC

N H

111

H₃CO₂C H₃CO

3UNIVERSITI PENDIDIKAN SULTAN IDRISUNIVERSITI PENDIDIKAN SULTAN IDRISUNIVERSITI PENDIDIKAN SULTAN IDRIS

UNIVERSITI PENDIDIKAN SULTAN IDRIS

NIVERSITI PENDIDIKAN SULTAN IDRI

UNIVERSITI PENDID

4

Secondary metabolites are seen as a potential sources of new natural drugs, insecticides, antibiotics, and herbicides. Besides, they also can use as fibres, glues, waxes, perfumes, etc. (Crozier, Clifford, & Ashihara, 2006). Commonly, the plants which contain the bioactive compounds traditionally used for medicinal plants (Porto, Henriques, & Fett-Neto, 2009) such as the root of some plants of the genus *Kopsia* have the medicinal uses to treat poulticing ulcerated noses in tertiary syphlis, they are *K. fructicosa* (Reanmongkol et al., 2005), *K. Singapurensis* Ridl., *K. Pauciflora* Hook f., *K. Macrophylla* Hook f., and *K. Larutensis* King & Gamble, (Awang et al., 2008; Kam, Tan, & Chuah, 1992). Besides, the stem of *K. Macrophylla* Hook f. also used

or treat fever and toxicemia (Reanmongkol et al., 2005). In China, K. Officinalis UNIVERSITI PENDIDIKAN SULTAN IDRIS ORIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN Tsiang and Li used to treat dropsy, rheumatoid, tonsillitis, and arthritis (Awang et al., 2008; Kam, Yoganathan, & Wei, 1996; Wu, Kitajima, Kogure, Zhang, & Takayama, 2008), and *K. hainanensis* used as a treatment of rheumatoid arthritis, tonsilitis, dropsy, pharingytis, and tonsillitis (Chen, Chen, Yao, & Gao, 2011), cytotoxic and anti-multidrug resistant (Tan et al., 2011).

1.2 Problem Statement

Malaysia is one of the diversity flora countries of the world. There are 2,000 species from almost 15,000 flowering plants have been reported to contain medicinal efficacy and many have been scientifically proven (Rizwana et al., 2010). Cancer is a major public health burden in both developed and developing countries (Shoeb, 2006). The treatment of cancer includes surgery, radiation therapy and chemotherapy. Most of the available anticancer drugs are expensive, do not cure cancer and have serious adverse effects. Therefore, majority of cancer patients (up to 80%) look towards alternate and complementary medicine as a primary or adjuvant therapy. Phytotherapy is an alternate modality in the treatment of cancer. Since, in most cases plant-derived products are readily available, are relatively less expensive, less likely to cause dependency, and have low potential for serious side effects (Lamchouri et al., 2013).

The richness of Malaysian flora provides opportunities for the discovery of many novel compounds. Many reviews reported that plants are containing secondary metabolites which have biologically active compounds (Awang et al., 2008;

major source of alkaloids is in the flowering plants such as Apocynaceae (Fattorusso et al., 2008). One of plants of family Apocynaceae is *Kopsia singapurensis* Ridl. Ahmad et al. (2013) have reported the isolated alkaloids from the roots of *K*. *singapurensis* Ridl., but less reports about their biological activities. Based on those informations, the investigation of isolated compounds from the roots of *K*. *singapurensis* Ridl. was carried out and performed the cytotoxic activity against the human cervical cancer (HeLa), the human promyelocytic leukemia (HL-60) and the normal mouse fibroblast (NIH/3T3) cell lines.

1.3 Objectives of Study

Based on the above literatures, the author was interested to start the study of indole alkaloids of the roots of *K. singapurensis* Ridl. (Apocynaceae). The objectives of the study are as follows:

- 1. Phytochemical analysis on chemical constituents of K. singapurensis Ridl.
 - To extract, isolate, and purify indole alkaloids by using various chromatography methodology, such as CC, TLC and preparative TLC.
 - To elucidate and identify the structure of the isolated compounds using various spectroscopic methods such as NMR, UV, IR, MS, and OR.
- To evaluate in vitro cytotoxic activity on all isolated compounds against HeLa, HL-60, and NIH/3T3 cell lines via MTT assay.

NIVERSITI PENDIDIKAN SULTAN IDRIS

IVERSITI PENDIDIKAN SULTAN IDRI

N IDRI

1.4 Significance of Study

ıdy

7 UNIVERSITI PENDID

This study is significance to the research development that expands information and knowledge bases about the benefits of chemical compounds in the plants, especially in the roots of Kopsia singapurensis Ridl. Based on previous work reports, a large number of biologically active compounds in this plant have been reported (Subramaniam et al., 2007; Subramaniam et al., 2008, Awang et al., 2008; Lee et al., 2014), but the chemical compounds in its roots have not been widely reported. Ahmad et al. (2013) have reported the isolated indole alkaloids from the roots of K. singapurensis using Sephadex LH-20 column and ODS HPLC, a reverse phase method (the extracting and isolation from polar to non polar). While, this study was carried out on the roots of K. singapurensis Ridl. using normal phase method (the extraction and isolation from non polar to polar) to compared the content of indole alkaloids from the root part of this plant by the different methods. The results showed that difference of amount and kind of isolated compounds have yielded. Therefore, this work was performed to develop the research in this area and may lead to serve as part of the chemical characterization for future reference. In addition, in view of the growing need for effective bioactive agents, the study to discover natural products from plant source to serve as safe and effective bioactive agents has become significantly important.