

FORMULATION OF ANTIMICROBIAL CREAM **EXTRACTED FROM** Chromolaena odorata (POKOK KAPAL TERBANG) FOR WOUND HEALING

O 5-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun of ptbupsi

NORLIZAWATI BINTI ISHAK

SULTAN IDRIS EDUCATION UNIVERSITY

2023

FORMULATION OF ANTIMICROBIAL CREAM EXTRACTED FROM Chromolaena odorata (POKOK KAPAL TERBANG) FOR WOUND HEALING

NORLIZAWATI BINTI ISHAK

🕓 05-4506832 🔮 pustaka.upsi.edu.my 📑 Perpustakaan Tuanku Bainun 💟 PustakaTBainun 👘 ptbupsi

DISSERTATION PRESENTED TO QUALIFY FOR A MASTER IN SCIENCE (RESEARCH MODE)

FACULTY OF TECHNICAL AND VOCATIONAL SULTAN IDRIS EDUCATION UNIVERSITY

2023

D ptbupsi

11 UPSI/IPS-3/BO 32 Pind: 00 m/s: 1/1

Please Tick (√) Paper Project Masters by Research Master by Mixed Mode PhD

INSTITUTE OF GRADUATE STUDIES DECLARATION OF ORIGINAL WORK

This declaration is made on the 12 day of September 2023

i. Student's Declaration:

05-4506832 (C) pustaka.upsi.edu.my

I, <u>NORLIZAWATI BINTI ISHAK, M20201000308, FACULTY OF</u> <u>TECHNICAL AND VOCATIONAL</u> hereby declare that the work entitled <u>FORMULATION OF ANTIMICROBIAL CREAM EXTRACTED FROM</u> <u>Chromolaena odorata (POKOK KAPAL TERBANG) FOR WOUND HEALING</u> is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

Signature of the student

ii. Supervisor's Declaration:

I, <u>DR. NORHANIZAN BINTI USAIZAN</u> hereby certifies that the work entitled FORMULATION OF ANTIMICROBIAL CREAM EXTRACTED FROM Chromolaena odorata (POKOK KAPAL TERBANG) FOR WOUND HEALING was prepared by the above named student, and was submitted to the Institute of Graduate Studies as a* partial/full fulfillment for the conferment of <u>MASTER IN</u> <u>SCIENCE (AGRICULTURE SCIENCE)</u>, and the aforementioned work, to the best of my knowledge, is the said student's work.

25 September 2023

Date

Signature of the Supervisor DR. NORHANIZAN BT USAIZAN PENSYARAH JABATAN SAINS PERTANIAN FAKULTI TEKNIKAL DAN VOKASIONAL UNIVERSITI PENDIDIKAN SULTAN IDRIS

iii

UPSI/IPS-3/BO 31 Pind.: 01 m/s:1/1

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / Title:

FORMULATION OF ANTIMICROBIAL CREAM EXTRACTED FROM Chromolaena odorata (POKOK KAPAL TERBANG) FOR WOUND HEALING

No. Matrik / Matric's No.;

05-4506832 (C) pustaka.upsi.edu.my

M20201000308 NORLIZAWATI BINTI ISHAK

Saya / 1:

(Nama pelajar / Student's Name)

mengaku membenarkan Tesis/Disertasi/Laporan Kertas Projek (Doktor Falsafah/Sarjana)* ini disimpan di Universiti Pendidikan Sultan Idris (Perpustakaan Tuanku Bainun) dengan syarat-syarat kegunaan seperti berikut:-

acknowledged that Universiti Pendidikan Sultan Idris (Tuanku Bainun Library) reserves the right as follows:-

- Tesis/Disertasi/Laporan Kertas Projek ini adalah hak milik UPSI. The thesis is the property of Universiti Pendidikan Sultan Idris
- 2. Perpustakaan Tuanku Bainun dibenarkan membuat salinan untuk tujuan rujukan sahaja. Tuanku Bainun Library has the right to make copies for the purpose of research only.
- Perpustakaan dibenarkan membuat salinan Tesis/Disertasi ini sebagai bahan pertukaran antara Institusi Pengajian Tinggi. The Library has the right to make copies of the thesis for academic exchange.
- Perpustakaan tidak dibenarkan membuat penjualan salinan Tesis/Disertasi ini bagi kategori TIDAK TERHAD.

The Library are not allowed to make any profit for 'Open Access' Thesis/Dissertation.

5. Sila tandakan (√) bagi pilihan kategori di bawah / Please tick (√) for category below:-

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. / Contains confidential information under the Official Secret Act 1972
Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan. / Contains restircted information as specified by the organization where research was done.
CESS
DR. NORHANIZAN BT USAIZAN
(Tandatangan Penyelia / Signalure of Supervisor) & (Nama & Cop Rasmi / Name & Official Stamp)
FAKULTI TEKNIKAL DAN VOKASIONAL UNIVERSITI PENDIDIKAN SULTAN IDRIS

Catatan: Jika Tesis/Disertasi ini SULIT @ TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai SULIT dan TERHAD.

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

() 05-450683

pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shał

iv

ACKNOWLEDGEMENT

Alhamdulillah, I am very grateful to Allah S.W.T for giving me the health and spirit to complete this thesis perfectly. An infinite thanks you to my supervisor, Dr. Norhanizan binti Usaizan, who provided guidance and help throughout this master's study. I really hope that this thesis meets your expectations. The same goes for my two assessors Associate Prof Dr. Azlina binti Hasbullah and Dr. Asilah binti Abdul Mutalib, who have assessed the quality of my work from the proposal to the completion of this thesis.

My gratitude and love to my husband, Mohd Khirwan bin Salidan who understands my desire for a master's degree. His patience and helps during my pregnancy, giving birth and taking care of our beloved daughter, Aisyah Nur Iman, is very much appreciated. Not forgotten also to my father, mother, brothers and sisters who always encouraged me to finish my study. To my friend Ms. Rosma binti Che Nordin, thank you for giving time, insight and guidance throughout our studies together.

Thank you to the Malaysian Ministry of Education for giving me the Federal Training Grant (HLP) to allow me to continue my Master's level studies. Thanks also to the Unit of Biotechnology, Teluk Intan Vocational College (Agriculture), for providing facilities to use the laboratory during the Movement Control Order (MCO) in the past 2020 and 2021. To those who indirectly contributed in this research, your kindness a lot to me. Big thanks to all of you.

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shal

V

ABSTRACT

Chromolaena odorata has reported to have medicinal value due to the presence of active compounds which have antimicrobial and wound healing properties. Therefore, this study was carried out to formulate the antimicrobial cream from C. odorata extract used for wound healing treatment. The study aims to screen the secondary metabolites and determine C. odorata extract concentration for antimicrobial activity to be used in cream formulation. The leaves were extracted in 95% methanol and 95% ethanol for secondary metabolite screening and Gas Chromatography-Mass Spectrometry. Chromolaena odorata extract with a concentration of 5%, 10%, 15% and 20% was performed for antimicrobial activity tested on Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. The best of C. odorata extract concentration was used in six formulations of antimicrobial cream. The stability test was performed on all cream formulations. The methanolic extract was present with tannin, terpenoid, phenolic acids, alkaloid, and saponin while ethanolic extract was present with tannin and alkaloid. Both extracts are absent with flavonoid compounds. The GC-MS chromatogram identified as many as 26 and 15 compounds for ethanolic and methanolic extract, respectively. The C. odorata ethanolic extract consists mainly of Fatty acid (39.2%), Sesquiterpenoid (20.69%) and Phenol (0.51%). Meanwhile, C. odorata methanolic extract consists of Sesquiterpenoid (62.26%) and Fatty acid (17.11%). The best concentration was 20% C. odorata methanolic extract had the highest diameter of inhibition zone against E. coli and C. albicans at 20.67 mm and 13.3 mm, respectively. Formulation of F4, F5, and F6 was stable in physicochemical and organoleptic studies. No significant difference for F1 and F3 in pH measurement; F2, F3, F5 and F6 in antibacterial activity and F1, F3, and F5 in antifungal activity. In conclusion, out of the six formulations, the F3 formulation has optimal stability and is suitable as an antimicrobial cream for wound healing treatment.

vi

FORMULASI KRIM ANTIMIKROB DARIPADA EKSTRAK Chromolaena odorata (POKOK KAPAL TERBANG) UNTUK PENYEMBUHAN LUKA

ABSTRAK

Chromolaena odorata telah dilaporkan mempunyai nilai perubatan disebabkan kehadiran bahan aktif yang mempunyai sifat antimikrob dan penyembuhan luka. Oleh itu, kajian ini bertujuan untuk menghasilkan formulasi krim antimikrob daripada ekstrak C. odorata bagi penyembuhan luka. Objektif kajian adalah untuk menyaring metabolit sekunder dan menentukan kepekatan C. odorata terbaik untuk aktiviti antimikrob yang akan digunakan dalam formulasi krim antimikrob. Daun C. odorata dikumpul, disediakan dan diekstrak dengan 95% metanol dan 95% etanol menggunakan prosedur standard. Kedua-dua ekstrak dijalankan penyaringan metabolit sekunder dan Kromatografi Gas-Spektrometri Jisim. Ekstrak C. odorata berkepekatan 5%, 10%, 15% dan 20% dilakukan ujian aktiviti antimikrob dengan menggunakan kaedah resapan telaga agar pada mikroorganisma Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa dan Candida albicans. Kepekatan ekstrak C. odorata terbaik digunakan dalam enam formulasi krim antimikrob. Ujian kestabilan dilakukan ke atas semua formulasi krim. Ekstrak metanol mengandungi tanin, terpenoid, fenol, alkaloid, dan saponin manakala ekstrak etanol mengandungi tanin dan alkaloid. Kedua-dua ekstrak tidak mempunyai sebatian flavonoid. Kromatogram GC-MS mengenal pasti masing-masing sebanyak 26 dan 15 bahan aktif pada ekstrak etanol dan ekstrak metanol. Sebatian utama dalam ekstrak etanol C. odorata ialah Asid Lemak (39.2%), Sesquiterpenoid (20.69%) and Phenol (0.51%). Manakala ekstrak metanol C. odorata pula terdiri daripada Sesquiterpenoid (62.26%) dan asid lemak (17.11%). Kepekatan 20% ekstrak methanol C. odorata mempunyai zon perencatan tertinggi terhadap E. coli dan C. albicans masing-masing 20.67 mm dan 13.3 mm. Formulasi F4, F5 dan F6 adalah stabil dalam kajian fizikokimia dan organoleptik. Tiada perbezaan yang signifikan untuk F1 dan F3 dalam pengukuran pH; F2, F3, F5 dan F6 dalam aktiviti antibakteria dan F1, F3, dan F5 dalam aktiviti antikulat. Kesimpulannya, daripada enam formulasi, formulasi F3 mempunyai kestabilan yang optimum dan sesuai sebagai krim antimikrob untuk rawatan penyembuhan luka.

TABLE OF CONTENT

	Page
DECLARATION OF ORIGINAL WORK	ii
DECLARATION OF THESIS FORM	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENT	vii
LIST OF TABLES	xii
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS 16832 pustaka.upsi.edu.my CHAPTER 1 INTRODUCTION Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	xvi Ptbupsi
1.1 Background of the study	1
1.2 Problem Statement of the study	5
1.3 Significant of the study	8
1.4 Objective of the study	9
1.5 Scope and Limitation of the study	10
CHAPTER 2 LITERATURE REVIEW	
2.1 Introduction of Chromolaena odorata	11
2.1.1 Botanical description	13
2.1.2 Usage of Chromolaena odorata	17
2.1.3 Chemical properties	20
	DECLARATION OF THESIS FORM ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENT LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS CHAPTER 1 INTRODUCTION 1.1 Background of the study 1.2 Problem Statement of the study 1.3 Significant of the study 1.4 Objective of the study 1.5 Scope and Limitation of the study 1.5 Scope and Limitation of the study 2.1.1 Botanical description 2.1.2 Usage of Chromolaena odorata

	٠	•	٠
V	1	1	1

	2.1.3.1 Phenolic acid	21
	2.1.3.2 Flavanoid	22
	2.1.3.3 Tannin	25
	2.1.3.4 Alkaloid	25
	2.1.3.5 Saponin	27
	2.1.3.6 Terpenoid	28
	2.1.3.7 Fatty Acid	29
	2.2 Wound Healing	30
	2.2.1 Infection cause delayed wound healing	36
	2.2.2 Medicinal plant commonly used in traditional wound healing	40
	2.2.3 Chromolaena odorata as wound healer	43
05-4506832	2.2.3.1 <i>Chromolaena odorata</i> as antimicrobial agent	45 ptbups
	2.3 Cream	49
	2.3.1 Base Ingredient	49
	2.3.2 Active ingredients	51
	2.3.3 Humectant	52
	2.3.4 Surfactant	53
	2.4 Herbal cream	53
	2.4.1 Cream stability	55
	2.5 Alternative wound creams	56

CHAPTER 3 METHODOLOGY

	3.1 Collection and preparation of plant material	59
	3.2 Extraction	60
	3.3 Secondary metabolites screening	61
	3.2.1 Screening of terpenoid	61
	3.2.2 Screening of flavonoid	61
	3.2.3 Screening of alkaloid	62
	3.2.4 Screening of saponin	62
	3.3.5 Screening of tannin	62
	3.3.6 Screening of phenolic acids	63
	3.3.7 Data collection	63
05-4506832	3.4 Gas Chromatography -Mass Spectrometry (GC-MS) analysis pustaka.upsi.edu.my	63
05-45066652	3.4.1 Data analysis	64
	3.5 Antimicrobial screening	64
	3.5.1 Microbial cultures and maintenance	64
	3.5.2 Antimicrobial activity by agar well diffusion method	65
	3.5.3 Data analysis	65
	3.6 Cream formulation	66
	3.6.1 Vegetable cream base	66
	3.6.2 Emulsify ointment cream base	67
	3.7 Physiochemical properties of cream	68
	3.7.1 Homogeneity test	68
	3.7.2 Creaming properties	68

\mathbf{v}
Δ

3.7.3 Centrifugation	69
3.7.4 Thermal cycle test	69
3.7.5 Determination of pH	69
3.7.6 Data analysis	70
3.8 Organoleptic observation	70
3.8.1 Data analysis	70
3.9 Antimicrobial activity assessment of cream formulation	71
3.9.1 Data analysis	71

CHAPTER 4 RESULT

	4.1 Secondary metabolites screening	72
05-4506832	4.2 Gas Chromatograpy-Mass Spectrometry (GC-MS) analysis	76 ptbups
	4.3 Selection of <i>Chromolaena odorata</i> extract for antimicrobial activity	85
	4.3.1 Antibacterial activity	85
	4.3.2 Antifungal activity	90
	4.3.3 Confirmation of <i>Chromolaena odorata</i> extract concentration used for antimicrobial cream formulation	91
	4.4 Physicochemical properties of antimicrobial cream	92
	4.4.1 Organoleptic observation of cream formulation	95
	4.4.2 pH measurement of cream formulation	97
	4.5 Assessment of antimicrobial cream formulation	98
	4.6 Confirmation of the best antimicrobial cream formulation	107

xi

CHAPTER 5 DISCUSSION, CONCLUSION AND RECOMMENDATIONS

5.1 Discussion	109
5.2 Conclusion	122
5.3 Recommendations	125

REFERENCES

O 5-4506832 Spustaka.upsi.edu.my Perpustakaan Tuanku Bainun Perpustakaan Tuanku Bainun PustakaTBainun orbupsi

130

LIST OF TABLES

No. Table		Page
2.1	Biological activities of C. odorata	17
2.2	Wound pathogens on skin area	37
3.1	Formulation of antimicrobial C. odorata cream	67
4.1	Secondary metabolites screening of methanol and <i>ethanol C. odorata</i> extract	76
4.2	List of identified GCMS analysis of the 95% ethanol extract of <i>C. odorata</i> leaves	81
4.3	List of identified GCMS analysis of the 95% methanol extract of <i>C. odorata</i> leaves	83
4.4	Antibacterial activity (zone of inhibition, mm) of <i>C. odorata</i> extract	87
(C) 05-4506832 4.5	Antifungal activity (zone of inhibition, mm) of <i>C. odorata</i> extract	90 ptbupsi
4.6	Physicochemical and stability of cream formulation	93
4.7	Organoleptic observation of formulated cream	96
4.8	Three-month pH test results for the formulation of <i>Chromolaena odorata</i> cream	98
4.9	Antibacterial activity of the cream formulation against <i>E. coli</i> for three- month storage.	100
4.10	Antifungal activity of the cream formulation against <i>C. albicans</i> for three- month storage	104

LIST OF FIGURES

O 05-4506832 O pustaka.upsi.edu.my

No. Figure		Page
2.1	Chromolaena odorata	15
2.2	(a) Habit and morphology of (b) flowers (c) roots land (d) leaf of <i>Chromolaena odorata</i>	16
2.3	Chemical structure of (a) p-coumaric and (b) p- hydroxybenzoic, phenolic acid from <i>Chromolaena odorata</i>	22
2.4	Chemical structure of (a) pectolinaringenin and (b) 4',5,7- trimethoxy flavanone (c) 3,7,4'- tri-O-methylkaempferol (d) 4'-methoxykaemferol(3,5,7-trihydroxy-4'-methoxyflavanone) from <i>Chromolaena odorata</i>	24
2.5	Chemical structure of (a) hydolytic and (b) non-hydrolyzed tannin	25
2.6 05-4506832 Pust	Chemical structure of (a) rinderine n-oxide and (b) intermedine n-oxide alkaloid from <i>Chromolaena odorata</i>	27 ptbup
2.7	Chemical structure of saponin	28
2.8	Chemical structure of (a) β -caryophyllene and (b) α -pinene from <i>Chromolaena odorata</i>	29
2.9	Chemical structure of (a) linolenic acid and (b) hexanedionic acid	30
2.10	Process of skin wound healing	35
2.11	Schematic diagrams of wound healing phase	35
2.12	Schematic diagram showing the cellular and bio-physiological events associated with the wound healing action mechanism of <i>C. odorata</i>	48
3.1	Drying of C. odorata leaves under sunlight	60
4.1	Secondary metabolites screening of saponin from (a) ethanolic (b) methanolic <i>C. odorata</i> extract	73
4.2	Secondary metabolites screening of tannin from (a) ethanolic (b) methanolic <i>C. odorata</i> extract	73

PustakaTBainun Deptbupsi

xiv

4.3	Secondary metabolites screening of terpenoid from (a) ethanolic (b) methanolic <i>C. odorata</i> extract	74
4.4	Secondary metabolites screening of alkaloid from (a) ethanolic (b) methanolic <i>C. odorata</i> extract	74
4.5	Secondary metabolites screening of flavanoid from (a) ethanolic (b) methanolic <i>C. odorata</i> extract	75
4.6	Secondary metabolites screening of phenolic from (a) ethanolic (b) methanolic <i>C. odorata</i> extract	75
4.7	GCMS analysis of the ethanol extract of <i>C. odorata</i> that start at time: 10 minutes and end time: 70 minutes	79
4.8	GCMS analysis of the methanol extract of <i>C. odorata</i> that start at time: 10 minutes and end time: 70 minutes	80
4.9	Antibacterial activity (zone of inhibition, mm) of <i>Staphylococcus aureus</i> against 5%, 10%, 15% and 20% <i>C. odorata</i> extract.	88
4.10	Antibacterial activity (zone of inhibition, mm) of <i>Pseudomonas aeruginosa</i> against 5%, 10%, 15% and 20% <i>C. odorata</i> extract	88
4.11	Antibacterial activity (zone of inhibition, mm) of <i>Bacillus subtilis</i> against 5%, 10%, 15% and 20% <i>C. odorata</i> extract	89
4.12	Antibacterial activity (zone of inhibition, mm) of <i>E. coli</i> against 5%, 10%, 15% and 20% <i>C. odorata</i> extract	89
4.13	Antifungal activity (zone of inhibition, mm) of <i>C. albicans</i> against 5%, 10%, 15% and 20% <i>C. odorata</i> extract	91
4.14	Antimicrobial activity of C. odorata methanol extract	92
4.15	Formulated antimicrobial cream, F1 to F6	94
4.16	Observation for centrifugation test of formulated antimicrobial cream	94
4.17	Observation of formulated antimicrobial cream under light microscope (40x)	95
4.18	Antibacterial activity of the cream formulation against <i>E. coli</i> for three- month storage.	101

XV

4.19	Zone of inhibition of cream formulation (a) F1- F3 (b) F4-F6 against <i>E. coli</i> after twenty-four hours storage	101
4.20	Zone of inhibition of cream formulation (a) F1- F3 (b) F4-F6 against <i>E. coli</i> after one-week storage	102
4.21	Zone of inhibition of cream formulation (a) F1- F3 (b) F4-F6 against <i>E. coli</i> after one-month storage	102
4.22	Zone of inhibition of cream formulation (a) F1- F3 (b) F4-F6 against <i>E. coli</i> after two-month storage	103
4.23	Zone of inhibition of cream formulation (a) F1- F3 (b) F4-F6 against <i>E. coli</i> after three-month storage	103
4.24	Antifungal activity of the cream formulation against <i>E. coli</i> for three- month storage	104
4.25	Zone of inhibition of cream formulation (a) F1- F3 (b) F4-F6 against <i>C. albicans</i> after twenty-four hours storage	105
4.26	Zone of inhibition of cream formulation (a) F1- F3 (b) F4-F6 against <i>C. albicans</i> after one-week storage	105
O5-45068 4.2 7 🔮 pust	Zone of inhibition of cream formulation (a) F1- F3 (b) F4-F6 against <i>C. albicans</i> after one-month storage	106
4.28	Zone of inhibition of cream formulation (a) F1- F3 (b) F4-F6 against <i>C. albicans</i> after two-month storage	106
4.29	Zone of inhibition of cream formulation (a) F1- F3 (b) F4-F6 against <i>C. albicans</i> after three-month storage	107

xvi

LIST OF ABBREVIATION

		AKT	Protein kinase
		Ang Tie	Angiopoietin
		С	Celcius
		COX-2	Cyclooxygenase-2
		cm	centimeter
		ECM	Extracellular matrix
		g	Gram
		GC-MS	Gas Chromatography Mass Spectrometry
		GLC	Gas Liquid Chromatography
05-4506832	pus	HO taka.upsi.edu.m IL	Heme oxygenase Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalii Shah Interleukin
		iNOS	Inducible nitric oxide synthase
		JNK	c-Jun N-terminal kinase
		kg	Kilogram
		МАРК	Mitogen-activated protein kinase
		MHA	Muller Hilton Agar
		MMP	Matrix Metalloproteinase
		mL	mililiter
		NIST	National Institute of Standard and Technology
		PBMCs	Peripheral Blood Mononuclear cells
		рН	potential Hydrogen

ROS Reactive Oxygen Species

SD	Standard Deviation
SPSS	Statistical Package for the Social Science
TGF	Transforming Growth Factor
TIMP	Tissue Inhibitor of Metalloproteinases
TLC	Thin Layer Chromatography
TNF	Tumor Necrosis Factor
TXS	Thromboxane synthase
VEGF	Vascular Endothelial Growth Factor

O 05-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun Dtbupsi

PustakaTBainun Dubupsi

CHAPTER 1

INTRODUCTION

05-450681.1 Background of the study Kampus Sultan Abdul Jalil Shah

Plants material have been the source of many pharmaceuticals on the market for development into drug formulations. It is well known that plants have played a significant role in human history due to their fascinating phytocompound and pharmacological capabilities. Plants produce these molecules as a defence, but new

studies show that many phytocompounds can offer health benefits to humans (Kanase & Shaikh, 2018). In addition, most of the drugs we use today come from herbal plant sources.

Recently, traditional medicine has become increasingly popular with various products that use herbs. Herbal products have provided several important life-saving drugs used in modern medicine. Herbal medicine is gaining prominence as a

treatment for various ailments. In traditional medicine, the extraction of different medicinal plants' leaves, stems, and roots has been used to cure various diseases (Pizzi, 2021; Ruckmani et al., 2015). One of the studies that had been done on herbal medicine focuses on the ability of herbs to be used is wound healing.

Wounds are disruptions to the continuity of cells due to a physical, chemical, thermal, infectious or immunological injury to the skin (Vadivel & Balasubramaniam, 2022b). According to Shah and Amini-nik (2017), effective wound healing is defined by the restoration of functional tissue integrity. Wound healing after tissue damage is a complex process. The protection, repair and recovery processes may affect many cells, cytokines and growth factors (Tottoli et al., 2020). Generally, three stages can be identified throughout the wound healing process (Srirod & Tewtrakul, 2019). When tissue is damaged, the first step of the process, known as the inflammatory phase. It includes both the process of homeostasis and inflammation. The proliferative phase, which consists of granulation, contraction, and epithelialization, is the second step of the process. The final phase of the healing process is called maturation, or known as wound remodelling (Srirod & Tewtrakul, 2019).

Accidents, surgeries, and burns are the three most common causes of damage to the skin (Ibrahim et al., 2018). In addition, the skin has the potential to get infected throughout the healing process, when microorganisms might enter the body and proliferate. Various agents, such as bacteria, viruses, fungi, or parasites, may bring on the infection. A bacterial infection of an open wound will remain until the wound is properly healed. The wound healing process can be influenced by medications used to speed up the healing process. There are plenty of herbs that reported to be potential to

3

be used to heal wound. *Chromolaena odorata* is one of herbs that been traditionally used as wound healing in Malaysia (Nur Zafirah Sabri & Hartini Yusof, 2021).

Chromolaena odorata is a perennial weed of Asteraceae (Compositae) family. This invasive alien plant species is formerly known as Eupatorium odoratum or locally known as pokok kapal terbang (Matawali et al., 2019). Chromolaena odorata grows in pastures, marginal lands, open areas, dry deciduous forests, and interior shrub jungle and can threaten other plants because of its ability to inhibit other plant growth (Zahara, 2019). Chromolaena odorata is being used as medicinal properties, especially for external uses as in wound skin, skin infections, inflammation, a therapeutic agent for a variety of diseases such as wound healing, anti-inflammatory, analgesic, antipyretic, diuretic, and antimicrobial, antimycobacterial and many more (Omokhua et al., 2017). Chromolaena odorata has been traditionally used as wound healer in local community. The fresh leaves have been used for many years for the treatment of leech bite, soft tissue wounds, burn wounds and skin infection (Sirinthipaporn & Jiraungkoorskul, 2017). The squeezed water from its leaf used to stop bleeding on the wound. The pharmaceutical potential of this plant is possibly due the presence of various compound such as phenolics, flavonoids, tannins and saponins (Akinmoladun & Ibukun, 2007). A number of studies also demonstrated that the extract of the leaves of C. odorata inhibited the growth of bacteria such as Pseudomonas aeroginosa, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumonia, Shigella sonnei and Psedomonas aeruginosa (Bamigboye et al., 2020; Odutayo et al., 2017; Vijayaraghavan et al., 2018). A study of antimicrobial effects of C. odorata on

4

pathogenic bacteria have been carried out and the result showed positive outcome in inhibition of bacterial growth (Yutika et al., 2015).

According to the published research, several different plants have been identified, and their medicinal compounds have been formulated into topical treatments for wounds. According to Gwarzo et al. (2022), herbal oils, creams, and ointments have been used in wound healing with medicinal herbs. Therefore, the *C. odorata* extract that has antibacterial properties can be increased by formulating the extraction into a cream. Creams and ointments can remain on the wound surface longer than liquid formulations (Dandasi Jayachandra et al., 2020). Creams prepared with therapeutic components can replace wound dressings to speed up recovery, reduce inflammatory reactions, and prevent bacterial infections (Sarabahi, 2012). This is because the cream formulation has the ability to transmit therapeutic components to the top layer of the skin, where they can treat wounds. However, to formulate the cream, a number of factors need to be considered. Most importantly, the cream's stability and qualities need to be considered so that its efficacy can be ensured. In addition, it is essential that the cream's safety be highlighted to guarantee the users' safety.

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shał

5

1.2 Problem Statement of the study

Wound healing in the skin is essential for repairing and recovering tissue function after injury (Minutti et al., 2017). On the skin, both the epidermis and dermis typically protect or shield from any external physical and chemical environment. However, injuries such as burns, microbial infections, skin diseases, accidents or metabolic dysfunction can cause skin lesion (Rezaie et al., 2019). The failure of healing mechanism can lead to chronic wounds. The situation will worsen when there are diseases such as diabetes, venous or arterial disease and microbial infection on the wound (Maheswary et al., 2021). The inability of antibiotics or host clearance systems like antibodies and phagocytes to properly penetrate pathogenic biofilms makes eradicating the bacteria challenging (Mangoni et al., 2016). Furthermore, the toxins released from the bacteria will produce an excessive and damaging inflammatory response to the skin (Dorantes & Ayala, 2019). Apart from that, antibiotic resistance can also arise in circumstances where the bacteria in interest are not affected by the antibiotics being given (Dadgostar, 2019). As a result, some individuals have developed resistance to the currently available treatments for their skin infections. Nowadays, wound infections have become an increasing cause and can cause death if the infection worsens and is not treated appropriately. Expensive treatment and care systems have also placed a tremendous burden on patients (Kayir et al., 2018).

Medicinal plants have a significant role in the treatment of a wide variety of infections and are also the basis for the production of natural medications. In modern science, herbal plants traditionally used to cure diseases have been extensively studied

to identify their bioactive compound in developing new drugs. Studies on plant compounds' mechanism of action and efficacy have shown that many are pharmacologically safe but still require further testing in preclinical studies and clinical trials (Bhusnure et al., 2019). Many developing countries still rely on medicinal plants as effective, safe and inexpensive alternative wound healing agents (Vadivel & Balasubramaniam, 2022). Wounds caused by infection can be mild when treated with natural remedies. In addition, using plants with antimicrobial agents is an excellent option to avoid antibiotic resistance. Therefore, medicinal plants that naturally have antibacterial properties can serve as drugs to replace antibiotics in treating infectious diseases (Okwu et al., 2019). Considering how important the effects of plants and their parts are on skin tissue, Chromolaenana odorata that has

many active compounds is a good choice for a wound healing medicine because it has

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Chromolaena odorata is one of underutilized plant that been categorized as weeds. The plant is abundantly found at distributed area, farm, near paddy field and small shrub (Olawale et al., 2022). Traditionally in Malay culture, this plant being used to treat small wound, where it believes to has ability to stop the bleeding. The leaves were crushed and applied on the wound and the healing process monitored by assessing the rate of contraction or closure of the wound (Aziz et al., 2020). Previous results in the literature have shown that secondary metabolites from C. odorata facilitate wound healing and have been tested in various animal models. Chromolaena odorata leaf extract has been shown to have a hemostatic effect by reducing bleeding and clotting times in a dose-dependent way in experimental Winstar rats, as reported

05-4506 a therapeutic effect.

by Okoroiwu et al. (2016). Review by Vijayaraghavan et al. (2017a), strongly suggested that the bioactive compounds found in the leaf extract play a significant role in treating various ailments in veterinary medicine and alternative medicine in humans in the future. In addition, a supporting study from Budi et al. (2021) showed that a concentration of 20% *C. odorata* extract increases the healing value of incision wounds in mice infected with *Staphylococcus aureus*. Therefore, I hypothesized that the numerous secondary metabolites found in *C. odorata* leaf extract would have potentially beneficial synergistic effects on the healing of wounds.

Chromolaena odorata, widely available in Malaysia, is the best source for developing wound healing medicine. Although there is a lot of evidence on the effectiveness of *C. odorata* in wound healing, more research on formulation into conventional dosage forms for therapeutic considerations is needed. The efficiency of *C. odorata* extract as an antimicrobial agent can be improved by turning the extract into a cream. A deeper study studies should be conducted to suggest *C. odorata* cream as one of the alternative medicines that can heal wounds. Therefore, this study was designed to evaluate the antimicrobial activity and wound healing potential of *C. odorata* cream formulation from methanol leaf extract. Phytocompounds that responsible for wound healing will be identified to evaluate the characteristics and properties of these compounds. Furthermore, the cream containing *C. odorata* extract needs to be analyzed with wound microorganisms. Then, the stability of the cream should be determined to ensure the safety of consumer use.

8

1.3 Significant of the studies

05-4506 resistant organisms.

Pharmaceutical drugs based on herbal plants can be potential agents, especially in wound healing. Secondary metabolites from the herbal plant can be one of the natural sources for replacing antibiotics that play an important role in human health. Chromolaena odora is an easy-to-find herb, including in Malaysia, where it is also traditionally used in wound healing. Chromolaena odorata is known for various secondary metabolites such as flavonoids, terpenoids, tannins, saponins, and alkaloids that have various properties such as antimicrobial, anti-inflammatory and antioxidant properties. Therefore, the characteristics of these secondary metabolites can be used as a source for wound healing drugs. Thus, developing these natural products is a source of new drug development that provide better effectiveness against drug-

Formulating the extract of C. odorata in the form of cream will bring the active ingredients of the extract to the wound area on the skin for healing purposes. The cream will also prevent infections that may occur if using the extract plant directly. The crude extract can act as a potential source for the growth of microorganisms that will cause the wound to worsen and interfere wound healing process. Therefore, the antimicrobial formulation of C. odorata is one of the alternative methods other than commercial medicine in wound healing. In addition, the antimicrobial cream produced is easily in high demand due to their wide availability, easy production and cost-effectiveness.

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

9

This study is essential for developing research by expanding the information and knowledge about C. odorata, especially regarding its chemical properties, bioactivity and antimicrobial properties. In addition, developing antimicrobial creams and investigating their stability can guarantee safety for users. The results of this study will be a future reference and a source of knowledge about therapeutic discoveries from C. odorata that can lead to the development of potential and safe medicines in the medical field. The results also can contribute to the availability of natural bioactive cream formulations in the market for wound healing for treating microorganism infections. From traditional use, products based on C. odorata can be produced for medicinal purposes and can then be commercialized for patient use.

This study generally aimed at formulating the antimicrobial cream from C. odorata extract used for wound healing treatment. The specific objectives of this studies are:

- To screen secondary metabolites responsible for wound healing properties 1) of C. odorata extract.
- To identify the best crude percentage of C. odorata extract on 2) antimicrobial activity using agar well diffusion method.
- To select the best antimicrobial cream based on different types of cream 3) base.

1.5 **Scope and Limitation of The Study**

In this study, an antimicrobial cream was developed with the leaves of C. odorata, serving as the primary source of raw material. The area near Teluk Intan, Perak, served as the sampling location for C. odorata. The only solvents used for the extraction process were ethanol or methanol at a concentration of 95%. Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and *Candida albicans* were used in this study to test the antimicrobial activity of the C. odorata extract. All the microorganisms were tested directly on 5%, 10%, 15%, and 20% concentrations of C. odorata extract. Following the completion of the formulation of the cream, an organoleptic evaluation was carried out to evaluate the product's homogeneity, creaming qualities, centrifugation, and thermal change. In the meantime, the cream's appearance, color, odor, pH, and antimicrobial activity were assessed at twenty-four hours, one week, one month, two months, and three months after production of the cream.

