UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

Ionothermal Synthesis of Metal Aluminophosphates

University of St Andrews

Mazlina Musa

A thesis submitted in application for the degree of

Doctor of Philosophy

in the Faculty of Science at the University of St Andrews

November 2013

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID N IDRIS UNIVERSITI PENDIDIKAN SULTAN ID**ASB TRACT**RSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

The aim of this thesis was to synthesise CoAPO-34 and FeAPO-34 using ionothermal synthesis in the presence of organic amines. Using this method provides an alternative route to prepare such materials under low pressure instead of the higher pressure associated with hydrothermal or solvothermal synthesis. Both materials have chabazite (CHA) topology and they are known to act as catalysts.

CoAPO-34 was ionothermally prepared using 1-ethyl-3-methylimidazolium bromide (EMIMBr) in presence of 1, 6-hexadiamine (HDA). This study has found that when the synthesis was carried out without HDA, AIPO-11 was preferentially obtained instead of CoAPO-34. Broad line signals which appear between 2000 to 5000 ppm in both spin-echo ³¹P NMR spectra of as-synthesised and calcined CoAPO-34 confirm that the Co²⁺ ions have been successfully incorporated within the framework of the material.

FeAPO-34 was synthesised under ionothermal conditions using 1-ethyl-3-methylimidazolium chloride in the presence of ethylenediamine (EDA). In the absence of EDA, the synthesis has produced AIPO-34 instead of FeAPO-34. Broad line signals that appear between 1000 to 14000 ppm in spin-echo ³¹P NMR spectra of both as-synthesised and calcined FeAPO-34 are direct evidence of isomorphous substitution of framework aluminum by Fe(II) or Fe(III).

Another aim of this study was to explore the ionothermal synthesis of copper containing aluminophoshate of DNL-1 (Cu/DNL-1). This material was attractive to explore because it contains 20 ring extra-large pores and Cu(I) species in the channels of the framework, potentially giving material the ability to simultaneous store NO and to generate NO from NO₂⁻ anions.

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERS DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS U

N IDR Cu/DNL-1/ was successfully prepared under ionothermal conditions using EMIMBr and HDA, ERSITI F Without HDA in the synthesis, AIPO-11 was obtained. In this material, copper ions were not incorporated in the Cu/DNL-1 skeleton framework. This was confirmed by absence of broadline signal at >500 ppm in spin-echo ³¹P NMR spectrum of the sample. The copper ions are expected to be present as extra-framework cations. Extra-framework Cu(I) species that were formed by high temperature calcination of Cu/DNL-1 are active to produce NO from NO₂⁻. Therefore, the calcined Cu/DNL-1 can be used to simultaneously store and produce NO from nitrite. This has the potential to significantly extend the lifetime of gas delivery in the material to prevent thrombus formation.

JNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA V PRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN UNIVERSITI PENDIDIKAN SULTAN IDRIS

N IDRIS UNIVERSITI PENDIDIKAN SUTABLES OF CONTENTS UNIVERSITI F

Chapter 1:	Int	roduction	1
1.1:	Zeolite		1
1.2:	Applica	tions of Zeolites	5
	1.2.1:	Ion exchange applications	5
	1.2.2:	Adsorption and separation applications	6
	1.2.3:	Catalysis applications	7
1.3:	NO sto	rage and releasing-materials	8
	1.3.1:	NO storage and releasing – zeolites	8
	1.3.2:	NO storage and releasing – MOF	10
	1.3.3:	NO delivery using polymer	10
	1.3.4:	Simultaneous NO storage and Catalytic NO production using	
		Zeolites	11
1.4:	Zeotyp	e	11
	1.4.1:	Aluminophosphates	12
	1.4.2:	Silicoaluminophosphates (SAPOs) and Metal	
		aluminophosphates (MAPOs)	13
1.5:	Applica	ation of SAPOs and MAPOs	16
1.6:	Synthe	esis	18
1.7:	Organi	ic Guest Molecule	19
1.8:	lonic li	quids	21
	1.8.1:	Synthesis of ionic liquid	22
	1.8.2:	Miscibility with water	24
ERSITI DENIDINI	1.8.3;	Eutectic mixture TAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVE	25 Ersiti pendidika
UNIVERSITI F	PENDIDI	KAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS	Vi UNIVERSITI PEN

UN	IVERSITI PENC	DIKAN SULTAN IDR	IS UNIVERSITI PENDIDIKAN SU	JLTAN IDRIS UN	IVERSITI PENDID
N IDRI	S UNIGERS	Hydrothermal, Solv	othermal and lonothermal Synthes	S is an Sultan Idris	26 UNIVERSITI F
	1.10:	The role of fluoride	ions		29
	1.11:	Co-template or Stru	ucture Directing Role of Amines in	Ionothermal	
		Synthesis			30
	1.12:	Nitric Oxide (NO)			31
		1.12.1: Background			31
		1.12.2: NO properti	es		31
		1.12.3: Biosynthesi	s of NO		34
		1.12.4: Different iso	oforms of NOS		35
		1.12.5: Pathology of	of NO in the body		36
		1.12.6: The role of	NO in the cardiovascular system		37
	1.13:	References			40
	Chapter 2	Techniques	s		50
	2.1:	X-Ray Diffraction			50
		2.1.1: Introduction	n and X-ray Generation		50
		2.1.2: Crystallogr	aphy		52
		2.1.3: Powder X-	ray Diffraction		54
	2.2:	Thermogravimetric	c Analysis		60
	2.3:	Scanning Electron	Microscopy and Energy Dispersiv	e X-ray Analysis	60
	2.4:	Nuclear Magnetic	Resonance		61
		2.4.1: Chemical S	Shift		63
		2.4.2: Solution N	MR		64
		2.4.3: Solid State	NMR		64
		2.4.3.1: D	ipolar interaction		65
UNIVE	RSITI PENDIDI	AN SULTAN IDRIS	UNIVERSITI PENDIDIKAN SULT/	AN IDRIS UNIVE	RSITI PENDIDIKA vii
DRIS	UNIVERSITI	ENDIDIKAN SULTAN	I IDRIS UNIVERSITI PENDIDIKA	N SULTAN IDRIS	vii UNIVERSITI PEN

N IDRIS UNIVERSITI PEND2.4.3.2: SQuadrupolar interaction RSITI PENDIDIKAN SULTAN IDRIS 67 UNIVERSITI F 68 2.4.3.3 Chemical Shift Anisotropy

	2.4.3.3.	Chemical Shint Anisotropy	
	2.4.3.4:	Paramagnetic effect	69
	2.4.3.5:	Magic Angle Spinning	69
	2.4.3.6:	Cross Polarisation	70
	2.4.3.7:	³¹ P NMR of Spin-echo mapping technique	71
2.5:	CHN Analysis		74
2.6:	NO Analyser		74
2.7:	References		75

Chapter 3:	Ionothermal S	ynthesis and	Characterisation of	of
------------	---------------	--------------	---------------------	----

		Co	APO-34	77
	Z			77
	3.1:	Introdu	iction	
	3.2:	Aims		83
	3.3:	Materia	als and Methodology	83
		3.3.1:	Synthesis of 1-ethyl-3-methylimidazolium bromide (EMIMI	Br) 83
		3.3.2:	Ionothermal Synthesis of Cobalt Aluminophospahte-34	
			(CoAPO-34)	84
		3.3.3:	Characterization	84
	3.4:	Result	and Discussion	85
		3.4.1:	Powder X-ray Diffraction (PXRD) of as-synthesised	
			CoAPO-34	85
		3.4.2:	¹³ C CP/MAS NMR of CoAPO-34	87
		3.4.3:	Other elements included in experiment	90
		3.4.4:	AIPO-11	92
P	endidi	kan sul	TAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS	UNIVERSITI PENDI
				¥ 111

NIVERSITI PENDID

N IDRIS UNIVERSI **3.4.5**: DThermogravimetric Analysis (TGA): CoAPO-34 KAN SULTAN IDRIS **94** UNIVERSITI F 3.4.6: Calcined CoAPO-34 94

	3.4.7: Effect of HF	96
	3.4.8: Effect of amount EMIMBr in synthesis	97
	3.4.9: ²⁷ AI MAS NMR CoAPO-34	99
	3.4.10: ³¹ P MAS NMR	100
	3.4.11: Broad line ³¹ P NMR of CoAPO-34	101
	3.4.12: Morphology of CoAPO-34	104
3.5:	Conclusion	105
3.6:	References	108

Chapter 4:	Ionothermal Synthesis and Characterisation of					
	FeAPO-34	111				
4.1:	Introduction	111				
4.2:	Aims	113				
4.3:	Materials and Methodology	114				
	4.3.1: Ionothermal synthesis of FeAPO-34	114				
	4.3.2: Characterization	114				
4.4:	Result and Discussion	115				
	4.4.1: Powder X-ray Diffraction (PXRD) pattern as-synthesized	of				
	FeAPO-34	115				
	4.4.2: ¹³ C CP/MAS NMR of FeAPO-34	117				
	4.4.3: Other elements included in experiment	121				
	4.4.4: Thermogravimetric Analysis (TGA) of FeAPO-34	121				
versiti pendidik	AN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS	UNIVERSITI PENDIDI ix				
		17				

UNIVERSITI PENDIDIKAN SULTAN IDRISUNIVERSITI PENDIDIKAN SULTAN IDRISUNIVERSITI PENDIDIKAN SULTAN IDRISUNIVERSITI PENDIDIKAN SULTAN IDRISI DRISUNIVERSITI.4.5:: PXRD pattern of calcined FeAPO-34 I PENDIDIKAN SULTAN IDRIS122 NIVERSITI F4.4.6:27 Al MAS NMR of FeAPO-341244.4.7:31 P MAS NMR of FeAPO-341264.4.8:Broad line ³¹ P NMR of FeAPO-341274.4.9:Morphology of FeAPO-341304.4.10: Absence of HF131

 4.4.11: ¹³C CP/MAS NMR of SIZ-6
 135

 4.4.12: Thermal Analysis of SIZ 6
 137

 4.5: Conclusion
 141

143

4.6: References

Chapter 5:	Ionothermal Synthesis of Cu/DNL-1 and Its	
	Application in Simultaneous Storage and	
	Production of NO	145
5.1:	Introduction	145
	5.1.1: Extra Large Pore Materials	145
	5.1.2: Simultaneous storage and catalytic production of NO using	
	zeolite	149
5.2:	Aims	151
5.3:	Materials and Methodology	152
	5.3.1: Ionothermal synthesis of Cu/DNL-1	152
	5.3.2: Characterization	152
	5.3.3: Pressed Disk	154
	5.3.4: Nitric Oxide Loading	154
	5.3.5: Nitric Oxide Adsorption/Desorption Isotherm	154

188

UNIVE	RSITI PEND	IDIKAN	SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UN	IVERSITI PENDIE
N IDRIS	UNIVERS	5.3.6:	Quantification of Nitric Oxide Release by Chemiluminescence RIS	155 _{UNIVERSITI}
		5.4:	Results and Discussion	156
		5.4.1:	Powder X-ray Diffraction (PXRD) pattern Cu/DNL-1	156
		5.4.2:	Elemental Analysis and ¹³ C CP/MAS NMR of Cu/DNL-1	157
		5.4.3:	Thermogravimetric Analysis (TGA) of Cu/DNL-1	162
		5.4.4:	²⁷ AI MAS NMR of Cu/DNL-1	163
		5.4.5:	³¹ P MAS NMR of Cu/DNL-1	164
		5.4.6:	Broad line ³¹ P NMR spin-echo	165
		5.4.7:	Morphology of Cu/DNL-1	168
		5.4.8:	Effect of amount EMIMBr in synthesis	169
		5.4.9:	NO Adsorption/Desorption isotherm of Cu/DNL-1	170
		5.4.10	: NO storage and release within Cu/DNL-1	171
		5.4.11	: Simultaneous NO storage and NO Production Analysis	
			using Cu/DNL-1	173
	5.5:	Conclu	usion	179
	5.6:	Refere	ences	182
Cł	napter 6	: Con	clusion and Future Work	186
				100
	6.1:	Concl	usion	186

6.3	References			1	90
0.0.	1 (01010110000				

Future work

6.2:

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA Xi DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

INTRODUCTION

1.1: Zeolites

Zeolite based molecular sieves are a vital inorganic material group in industrial application used as ion exchangers, catalysts and adsorbents.¹ These porous material have been known almost 250 years as crystalline aluminosilicates constructed from corner -sharing TO₄ tetrahedra (T = silicon or aluminium atom) T= Al/P are also common, although they are not strictly zeolites .² The general formula of aluminosilicate zeolite can be represented as follows:

M y/z[(SiO₂)x.(AlO₂)y].qH₂O

Where **x** and **y** are integer for equal or greater than 1, **M** is cation and **q** is the number of water molecules in each unit cell.³

Zeolites are important in catalysis because of the formation of BrØnsted acid sites (shown in Figure 1.1). Every time an AI replaces a Si in the structure; a negative charge is produced, which must be balanced by cation. This can be a proton (H^+) as shown in Figure 1.1, or other cations such as Na⁺, Ca²⁺ and etc.²

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

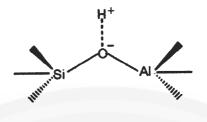


Figure 1.1 Basic chemical structure of the BrØnsted acid site zeolite aluminosilicate ⁴

The history of zeolites began in 1756 when the Swedish mineralogist Axel Fredrick Cronstedt observed the rapid heating of stilbite, which produced large amounts of steam from the mineral that absorbed water. He named the stone zeolite from the Greek words 'zeo' meaning 'boil' and 'lithos' is 'stone'.² Since then, approximately 40 natural zeolite frameworks² and 213 unique structures are identified.⁵

Natural zeolites are formed when the volcanic rocks (solidified lava) and ash layers crystalized under reaction with alkaline/ saline lake or ground water.⁶ The most common natural zeolites are chabazite, offretite, faujasite and mordenite.³ Naturally occurring zeolites are contaminated by various degrees of metals, minerals, quartz and other zeolites. Owing to this natural zeolites are often excluded from many essential commercial applications where purity and uniformity are accentuated. However, natural zeolites are often preferred for use in environmental application where they can be employed in the simpler manner where the raw material just crushed into the powder. Zeolites are also used in widespread application as a filler in cement, in paper, in fertilizer and soil conditioner and as dietary supplements in animal husbandry.⁶

Synthetic zeolites were first made by Barrer in late 1940 using higher temperature and pressure to synthesis of modernite. The discovery inspired Milton (1959) and Breck (1964) to synthesis zeolite A, X and Y under milder condition using much lower temperature and pressure than UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID

N IDR earlier. N In 1954 a number of synthetic zeolites were introduced by Union Carbide as new ERSITI F industrial materials for separation and purification process.⁷ Many of new synthetic zeolites with no natural counterpart have larger pores size and higher volume capacity rather than most known natural zeolites. Zeolites with larger pore size have advantages in that larger molecules can be used as reactants.⁸

Zeolite frameworks are based on individual tetrahedral unit (TO₄) called a 'Primary building unit (PBU). The PBUs are link together to form secondary building units (SBUs) which consist of nring structure. Figure 1.2 shows 20 kinds of SBUs that have been found in tetrahedral frameworks.⁹ Each corner in SBUs represent T atoms belonging to TO₄ where oxygen (not plotted for clarity) are found near at the middle of the lines joining each pair of T.

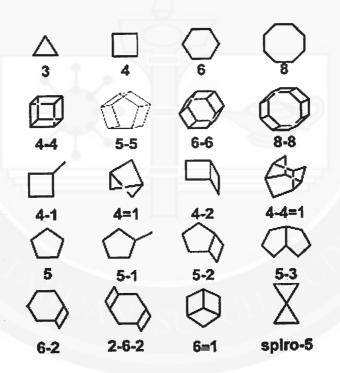


Figure 1.2: Secondary building units (SBUs) and their symbols ⁹

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS

N IDR SBUs can be linked to form 'tertiary building units' (TBUs). Further connecting TBUs generate/ERSTT F large polyhedral building block to form a characteristic pore system. Figure 1.3 shows an example, where the β-cage (sodalite cage) is built by six 4-rings and eight 6-rings. It is a common unit joined together in different arrangements to produce a variety of frameworks e.g SOD, LTA, EMT and FAU.¹⁰ The structure Commission of the International Zeolite Association (IZA-SC) has assigned the three letter codes to all unique frameworks of zeolite topologies.²

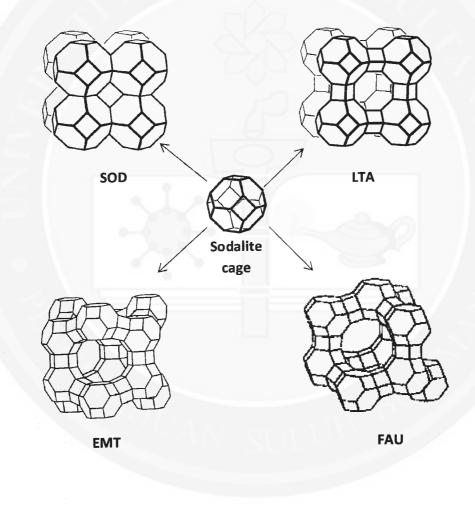


Figure 1.3: Schematic of Sodalite cage frameworks ¹¹

UNIVERSITI PENDIDIKAN SULTAN IDRIS

NIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID

1.2: Applications of zeolites

Zeolites have unique properties including good thermal stability, acidity, ion-exchange capacity, uniform molecular sized channels, adsorption for gas or vapor and catalytic properties. Owing to these properties, zeolites are used widely in many applications such as environmental treatment, laundry detergents, oil refining and petrochemical industries, adsorption, gas separation, agriculture and horticulture.¹² Generally, the main uses of zeolites can be categorized into three functional classifications: ion exchange, catalysis and adsorption-separation.

1.2.1: Ion exchange applications

Cation exchange properties of traditional aluminosilicate zeolites arise from the isomorphous positioning of aluminium in tetrahedral coordination within their Si/AI frameworks. This imposes a net negative charge on the framework counterbalanced by cations held within the cavities and channels. This is said to create facile cation exchange "lubricated" by the water molecules also present in the voids within the framework. This certainly is the case for zeolites with open frameworks but in the more narrow-pored frameworks, such as natrolite, cation replacement is slow and difficult.¹³

Cation exchange is exploited in water softening, where alkali metals such as Na⁺ or K⁺ in zeolite framework are replaced by Ca²⁺ and Mg²⁺ ions from water. Many commercial washing powders thus contain substantial amounts of zeolites that enhance washing efficiency. LTA is the subject of the largest scale production of synthetic zeolites for use as "builders" in domestic and commercial detergents to remove the calcium and magnesium "hardness".¹⁴

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA S DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN N IDR The unique ion exchange properties of zeolites can also be used for cleaning up of commercial ERSITI F waste water containing heavy metals and nuclear effluents containing radioactive isotopes. In a similar way zeolites can absorb ions and molecules and thus act as a filter for odor control and toxin removal.¹³

1.2.2: Adsorption and separation applications

The shape-selective properties of zeolites are the basis for their use in molecular adsorption and separation. The ability preferentially to adsorb certain molecules, while excluding others, has opened up a wide range of molecular sieving applications, for example, an everyday laboratory use as drying agent for organic solvents.¹⁵ This ability to selectively adsorb molecules also allows zeolites to separate gaseous mixtures, for instance, gases containing CH₄ and CO₂ can be separated by common zeolites such as NaX and CaA.¹⁶ The removal of CO₂ from the CO₂/CH₄ gas is an important process for industries in upgrading the gas because the presence of CO₂ can reduce the heating value and leads to pipeline corrosion in the presence of water.¹⁶,

Water pollution by various organic materials has been a serious environmental problem. Adsorption is one effective technology for wastewater treatment. Zeolites with higher surface area can be used as adsorbent for the removal of organic material from water. For example, MCM-22 can be used to adsorb alcohols from water solutions; enhanced adsorption was obtained for alcohols with longer alkyl chains.¹⁸ This material is also an effective adsorbent for a basic dye, methylene blue, removed from wastewater.¹⁹ Zeolite Y is an efficient adsorbent in the removal of antibiotic contaminants; erythromycin (ERY), carbamazepine (CBZ) and levofloxacin (FLX) in wastewater remediation.²⁰

JNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA PRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN

N IDR The production of O₂ and N₂ from air using synthetic zeolites and pressure swing adsorption ERSITTER (PSA) cycles are increasingly important in industrial air separation. In air separation, CaA and NaX zeolites are mainly used as adsorbents. Since the N₂ molecule has larger quadrupole moment than O₂, it interacts more strongly with extra-framework cations in the zeolites, giving rise to localisation of N₂ molecules near accessible cations in contrast to a more diffused O₂ distribution. This indicates that cations in the zeolite play a crucial role in the N₂/O₂ selectivity.²¹ On the other hand, Li⁺ ion-exchanged X and A zeolites also have higher N₂/O₂ selectivity as well as higher N₂ capacities.²² This is because of the smaller ionic radius of Li⁺ possesses higher charge density and hence higher polarizing power. PSA using LiX zeolites is a highly efficient technology for air separation and is being used in industry.²¹

1.2.3: Catalysis applications

Zeolites are extremely useful as solid acid catalysts (e.g., ZSM-5, FER)²³ in many refinery processes including crude oil cracking, isomerisation and hydrocarbon synthesis. Cracking is responsible for the production of gasoline from low-value heavier fractions and isomerization is important for production of *iso*-alkanes or removal of undesired normal or slightly branched alkanes in fuels (e.g., diesel), increasing the octane number.^{24, 25}

On the other hand, zeolites also serve as oxidation or reduction catalysts, often after metals have been introduced into the framework, for instances, titanium ZSM-5 zeolite is used in the production of caprolactam²⁶ and copper containing zeolites are used in the removal of NO from auto-exhaust streams.²⁷⁻³³

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA 7 DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN

IDRI 1.3: NO storage and releasing-materials DIDIKAN SULTAN IDRIS UNIVERSITI

A number of materials have been proposed as delivery of exogenous nitric oxide (NO) where it may important for medical therapies. Using nitric oxide as a therapy would enable wound-healing times on chronic wounds (such as diabetic ulcers) to be reduced by several days.³⁴ It also could be used to coat medical instruments to prevent clotting after invasive surgery.³⁵ A common method of achieving such delivery method is store the gas inside the storage materials such as zeolites, Metal Organic Frameworks (MOFs), polymer etc. Nitric oxide will be discussed in much detail in section 1.12.

1.3.1: NO storage and releasing - zeolites

The negative charged framework of zeolites is compensated by cations such as Na⁺, Ca²⁺, Cu²⁺, Co²⁺ and etc. The presence of extra-framework cations in the zeolite can interact with guests and sometimes help to convert the guest into an intermediate or final product.

Interactions of NO with transition metal ion exchanged zeolites are well known in catalytic and separation studies. Most researches studies focus on the destruction of NO, particularly in relation to selective catalytic reduction (SCR) deNOx process, removal of nitrogen oxides (NOx) from exhaust gases or other lean-burn engines. This is important to control global air pollution. Within zeolite families, Cu-ZSM-5 is the most famous catalyst to catalyse NO decomposition. ^{28, 36, 37}

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA 8 DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN

N IDR Recently, zeolites have been proposed to use in NO storage and delivery which is important in ERSITI F medical therapies. NO storage and delivery using zeolites are related to the pressure swing adsorption (PSA) process. PSA have highlighted two types of adsorbed NO, reversible and Reversible adsorbed means NO weakly held which is predominantly irreversible.33, 38, 39 physisorbed species. Irreversible adsorbed NO is relatively strongly held and it is not spontaneously released from the zeolite even at very low pressure. Irreversible NO is primarily chemisorbed with NO bound with the extra-framework cation residing in the zeolite channel through the nitrogen atom to form either mononitrosyl or dinitrosyl complexes.^{40, 41} For example this can be described with Cobalt-NO complex structure in the Co-LTA zeolite⁴⁰ shown in Figure 1.4. Irreversible adsorption is a good method for storing gas in the material since it not easily released. The irreversible NO can be released when the zeolites are exposed to the moisture since zeolites have higher affinity to water; water molecules displace the NO bound with cation in the zeolite.⁴² NO stored in zeolites also can be released by heating sample to a high temperature. However, this method is biological unfriendly. Recently, Morris and co-workers began storing and releasing NO using zeolites. They found that zeolite-A displays good adsorption NO capacity depending on the extra-framework cations in the zeolites and the amount of exchanged metal present. They also demonstrated the anti-thrombus studies proving that the NO-containing zeolite prevents aggregation of platelets.41-44 A subsequent publication has shown that trials on human skin were successful and the NO-releasing zeolite causes no harm to the skin while an acidified cream (a competing NO-releasing therapy) actually causes quite severe damage to the skin.45

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA 9 DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN

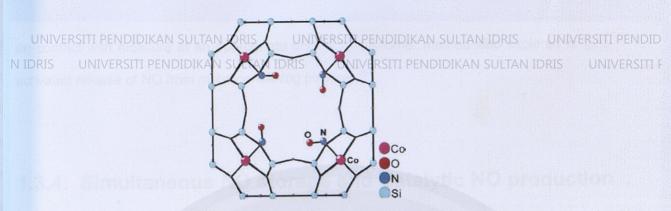


Figure 1.4: Structure of Cobalt-NO complex in Co-LTA zeolites. The cobalt is bound to three oxygen atoms of a six-ring unit in the zeolite framework and bond to the nitrogen of a bent mononitrosyl ligand.^{40, 41}

1.3.2: NO storage and releasing - MOF

Metal organic frameworks (MOFs) also have a great potential in gases storage due to their high surface area. HKUST1 shows a higher uptake of NO compared with the zeolites but the amount NO release from HKUST-1 is a smaller than the amount actually adsorbed. However, NO-loaded HKUST-1 is still completely inhibits platelet aggregation even though only a small amount of NO has been released.⁴⁶ Ni-CPO-27 and Co-CPO-27 have a greater uptake of NO at room temperature with a perfect release upon exposure to the moisture. The adsorption-storage-delivery cycle of the significant amount of NO using M-CPO-27 (M= Ni, Co) shows that it to be active in the vasodilation of porcine arteries.⁴⁷

1.3.3: NO delivery using polymer

Another method to deliver exogenous NO is based on polymer or silica functionalized with secondary amines that reacts with NO to form ionic diazeniumdiolates. Two NO molecules react with each amine (giving rise to trivial name NONOate) and are released from the particle^{DIDIKA} SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS

1.3.4: Simultaneous NO storage and Catalytic NO production

using zeolites

Zeolites and MOFs are good for NO storage and delivery agent, however one of the drawbacks of this approach is the reservoir stored NO gas in the materials is finite and cannot be replaced easily especially for longer-term implant. Therefore, an alternative way to deliver the active gas is to produce the gas chemically using catalytic method from suitable substrate. Morris *et.al* have reported that copper containing zeolites such as Cu-X , Cu-ZSM-5 ⁵⁰ and Cu-MCM-41⁵¹, are not only good for NO storage and delivery, but they also produce the gas by catalytic reaction where the active Cu(I) species in zeolites transform NO₂⁻ (substrate) to NO.^{50, 51} Thus, combining these two methods (gas storage and catalytic gas production) has potential to significantly increase the lifetime of a gas delivery material beyond what is possible with gas storage alone.

1.4: Zeotype

Zeotype molecular sieves are a family of solids displaying identical structure to zeolites but different elements composition present in them. ² For instance, aluminophosphate (AIPO₄), titanosilicate (ETS), gallium phosphate (GaPO), silicoaluminophosphate (SAPO), germanosilicate (ITQ-37), metal aluminophosphate (MAPO) and etc. Most zeotypes are found

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA 11 DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN **JNIVERSITI PENDIDIKAN SULTAN**

UNIVERSITI PENDID

^{IDR}as synthetic zeotype and they are extensively used in catalysis and absorbent for the molecular/ERSITI F separation.⁵²

1.4.1: Aluminophosphates

In early 1980, Wilson and co-workers reported that aluminophosphate (AIPO₄- n) where n refer to discrete structure type;⁵³ represent the first family of zeotype framework oxide synthesized in the absence of silicon.⁵⁴ There are three examples of AIPO₄-n analogous to natural zeolite topologies; AIPO-24 (analcime type), AIPO-20 (sodalite type) and AIPO-17 (enrionite/offretite type).⁵⁴ The main dissimilarity between AIPO-n and zeolites are fully tetrahedral AIPO-n always have neutral frameworks in contrast to negatively charge of zeolite. Secondly, aluminium atom in AIPO-n can exist in four, five or six coordinated in framework instead of zeolite where the aluminium is always in tetrahedral coordination.⁵⁵

The open frameworks AIPO-n can be categorized into two classes, they are neutral frameworks AIPO-n with AI/P=1 and anionic frameworks AIPO-n with AI/P \leq 1. Neutral frameworks AIPO₄-n are strictly generated by alternating AIO₄ and PO₄⁺ tetrahedra.⁵³ As in aluminosilicate zeolites, AIPO-n frameworks are built up from AI-O-P bonds following Löwenstein's rule where AI–O–AI bonds are avoided.^{53, 56} The P–O–P bonds are not to be stable in these structures. Thus by avoiding of AI–O–AI and P–O–P bonds, open-frameworks of AIPO-n with even-numbered rings can be formed.⁵³ The general molecular formula of these materials can be written as **[(AIO₂)_x(PO₂)_x].YH₂O.⁵⁵** Anionic frameworks AIPO-n molecular sieves are made up from combination of AI-centered polyhedra (AIO₄, AIO₅, AIO₆) and P-centered tetrahedral [**P(O_b)**_n(**O**₁)₄. n] where **b** denoted a bridging **O**, **t** is a terminal **O** and **n** is an integer. The presence of terminal P-OH and/or P=O groups or AI(PO)_n (n=5,6) in the anionic frameworks AIPO-n has changed the

Al/P ratio from the unity of AlPO-n frameworks. The negative charges of anionic framework UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS 12 DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN

N IDRAIPOs are normally compensated by protonated organic templates to stabilise the framework. In/ERSITT F addition the protonated templates also interact with P-OH and/or P=O groups through Hbonding to stabilise the framework. A notable example of this kind material is JDF-20 with AI/P = 5/6.⁵³ The anionic frameworks AIPO-n also have various low-dimensional framework structures such as 2D layers with various porous sheets and sheet stacking sequences and 1D chains which might act as fundamental building blocks for complex structures. Generally, the anionic AIPOs are unstable upon removal of the occluded protonated templates by calcination.

1.4.2: Silicoaluminophosphates (SAPOs) and Metal aluminophosphates (MAPOs)

Although the three dimensional (3D) AlPO-n materials possess excellent stability at 400 to 600 ^oC,⁵⁴ these kind of molecular sieves cannot be used in catalysis directly. This is because they are lacking acid sites due to the neutral framework. Nevertheless, this deficiency can be improved by isomorphous substitution of Al and P atoms in AlPO-n frameworks with other heteroatoms such as Si⁴⁺, Mg²⁺, Co²⁺, Mn²⁺, Zn²⁺, Fe²⁺and etc. to produce **silicoaluminophosphates (SAPOs)** or **metal aluminophosphates (MAPOs)**. For examples SAPO-34⁵⁷, SAPO-5⁵⁸, MgAPO-20⁵⁹, MnAPO-11⁶⁰, FAPO-5⁶¹, ZnAPO-LAU⁶² and so on. To date about 24 unique pure MAPO zeotype structures belong to AlPO-n analogous have been reported as shown in Table 1.1.⁶³

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA 13 DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN N IDRITable 111 ElStructure and composition features of MARO molecular sieves (D=dimension and/ERSITI F R= ring)⁶³

> AIPO 4-n analogue Channel system Metal heteroatom Framework type Type Material 3D, 8R Co, Fe -ACP-1 ACO Co, Min, Zn, Fe, V, Mg, 3D. 8R + AIPO-18 AEI As, Ga, Ge, Ti, Ni Co. Mn, Ge, Mg, Nb, 1D, 10R + Ti, V, Fe, Cu, Ni,Zn, AEL AIPO-11 As, Be, Cr, Cd 2D, 8R ÷ AEN Co, Mn, Cu AIPO-EN3 Co, Zn, Mn, Fe, Mg, Cr, Ni, V, Cu, Mo. Sn, 1D. 12R + AFI APO-5 Ti, Zr, Ca, Sr, Ba, Be, Ge, Li, Ce, Cd 3D, 8R AFN Mn, Mg, Zn, Cr, Co + AIPO-14 1D, 10R + AFO Co, Mn, V, Zr, Ti APO-41 2D, 12R x 8R + AFR Co, Zn APO-40 Co, Mg, Mn, Ni, Zn 3D, 12R x 8R x 8R -AFS MAPO-46 3D, 8R _ Mg AFX SAPO-56 3D, 12R x 8R x 8R Co, Zn, Mg, Mn -AFY CoAPO-50 + 3D, 8R Co ANA Analcime 2D, 8R + APC Co AIPO-C 0D. 6R + Co, Mn, V, Cr **APO-16** AST + Zn, Mg, Co 1D, 8R **MAPO-39** ATN Co, Mn, Zn, Mg, Cr, + 1D, 12R ATO **AIPO-31** Cu, Cd, Ti, V Co, Zn, Mg, Fe, Ti, V, + 1D, 12R MAPO-36 ATS Mn, Be, Ga 1D, 8R + ATV Co AIPO-25 1D. 8R + Co, Ni, Fe, Cr APO-21 AWO 3D, 12R x 8R x 8R _ BPH Mg Beryllophosphate-H Co, Zn, Mn, Mg, Fe, Ni, + 3D, 8R CHA Chabazite Cu, Cr, Be, Li 3D, 12R x 10R x 8R -Co, Mg, Ni DAF-1 DFO 3D, 8R _ DFT Co DAF-2 3D. 8R _ Co, Cu EDI Edingtonite 3D, 8R + Co, Fe, Mg, V ERI Eironite 3D, 12R _ Co, Cu, Zn FAU Faujasite 3D, 8R + Co, Mg, Zn, Mn GIS Gismondine 1D, 10R CoAPO-CJ40 JRY Co, Zn, Mn, Fe -1D, 10R -LAU Co, Zn, Mn, Fe Laumontite 2D, 8R + LEV Co, Zn, Mg Levyne + Co, Zn, Mg, Mn, Fe 3D, 8R LTA Linde type A 3D, 8R MER Co Merlinoite 2D, 8R Co, Mg -OWE UiO-28 3D, 8R -PHI Co, Zn Phillipsite

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA 14 DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN

N IDR Incorporation of divalent or tetravalent heteroatoms with AIPO-n frameworks would generate/ERSITI F negative charge thereby creating a potential solid acid catalyst. Normally the negative charged is balanced by H⁺ ion to form strong Bronsted acid site groups.^{64, 65} The metal ion could act as Lewis acid sites when interacting with Bronsted entities as shown in Figure 1.5.⁶⁵

Figure 1.5: Model explaining the way isomorphous substitution of divalent metal generates surface acidity. A surface Bronsted-Lewis interaction is apparent.⁶⁶

There are three types of isomorphous substitution mechanism (SM) of AI and P occurring in AIPO-n which are illustrated in Figure 1.6. First the substitution mechanism 1 (SM I) involves the aluminium substituted with valence atoms +1, +2 and +3 resulting the M-O-P bond. The second substitution mechanism 2 (SM II) is for phosphorus replaced by valence elements +4 or +5 to form M-O-AI bond. The third substitution mechanism 3 (SM III) is substitution of pairs of adjacent AI and P atoms. Only Si exhibitsSM III.⁶⁷ Other kinds of the substitutions are not mentioned in Figure 1.6, as they are very unlikely because they would generate either too negative a charge density or high positive charge. Figure 1.6 shows that the negatively charged frameworks generated from the isomorphous substitution also can be balanced by positively extraframework species such as quaternary ammonium cation, protonated amines, hydroxonium ion or transition metal ions.⁶⁶ In addition incorporation of transition metal into AIPO₄-n framework would produce the isolated redox centre to the material.⁶⁹

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA 15 DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN