

SPECIES-SPECIFIC eDNA MARKERS FOR RAPID DETECTION OF INVASIVE FISHES IN TASIK RABAN, MALAYSIA

NURUL FIZATUL NABILAH BINTI OSMAN Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Pustaka TBainun ptbupsi

SULTAN IDRIS EDUCATION UNIVERSITY

2023

SPECIES-SPECIFIC eDNA MARKERS FOR RAPID DETECTION OF INVASIVE FISHES IN TASIK RABAN, MALAYSIA

NURUL FIZATUL NABILAH BINTI OSMAN

DISSERTATION PRESENTED TO QUALIFY FOR A MASTER IN **SCIENCE** (RESEARCH MODE)

FACULTY OF SCIENCE AND MATHEMATICS SULTAN IDRIS EDUCATION UNIVERSITY

2023

Please tick (√)
Project Paper
Masters by Research
Master by Mixed Mode
PhD

INSTITUTE OF GRADUATE STUDIES

DECLARATION OF ORIGINAL WORK

This declaration is made on the	day of20.23
i. Student's Declaration:	
INDICATE STUDENT'S NAME, Mentitled SPECIES-SPECIFIC SPECIES IN TASIK RABAI original work. I have not copied from	om any other students' work or from any other sources excepted edgement is made explicitly in the text, nor has any part been
Signature of the student ii. Supervisor's Declaration:	
I Dr Adibah binti Abu Ba the work entitled Species speci species in Tasik Raban, Mala	fic eDNA markers for rapid detection of invasive
submitted to the Institute of Grad of <u>Master of Science (Enviro</u>	CITLE) was prepared by the above named student, and was uate Studies as a * partial/full fulfillment for the conferment onmental Biotechnology) (PLEASE INDICATE ioned work, to the best of my knowledge, is the said student'
11/04/2023 Date	Signature of the Supervisor

UPSI/IPS-3/BO 31 Pind.: 01 m/s:1/1

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / <i>Title</i> :	SPECIES-SPECIF	IC eDNA MARKERS FOR RAPID DETECTION			
	OF INVASIVE FIS	HES IN TASIK RABAN, MALAYSIA			
No. Matrik / <i>Matric's No.</i> :	M20182002329				
Saya / I :	NURUL FIZATUL	NABILAH BINTI OSMAN			
	(Nar	ma pelajar / Student's Name)			
di Universiti Pendidikan Sulta seperti berikut:-	an Idris (Perpustak	an Kertas Projek (Kedoktoran/Sarjana)* ini disimpan aan Tuanku Bainun) dengan syarat-syarat kegunaan is (Tuanku Bainun Library) reserves the right as follows:-			
Tesis/Disertasi/Lapor The thesis is the proper					
penyelidikan.	. Perpustakaan Tuanku Bainun dibenarkan membuat salinan untuk tujuan rujukan dan penyelidikan. Tuanku Bainun Library has the right to make copies for the purpose of reference and research.				
antara Institusi Penga	ajian Tinggi.	alinan Tesis/Disertasi ini sebagai bahan pertukaran the thesis for academic exchange.			
4. Sila tandakan (√) ba	gi pilihan kategori	di bawah / Please tick ($\sqrt{\ }$) for category below:-			
SULIT/CONF	IDENTIAL	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. / Contains confidential information under the Official Secret Act 1972			
TERHAD/RES	TRICTED	Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan. / Contains restircted information as specified by the organization where research was done.			
TIDAK TERHA	AD / OPEN ACCES				
		DR. ADIBAH BINTI ABU BAKAP SENICH JEOT JEST DEPARTMENT OF ELOTOP FACULTY OF AD ONCE IN WITHOUT DE BAUTAMULTRIAN SENION NO. A SESSIEN			
(Tandatangan Pelaj	ar/ Signature)	(Tandatangan Penyalia / Signature of Supervisor) & (Nama & Cop Rasmi / Name & Official Stamp)			
Tarikh: 11/04/2023					

Catatan: Jika Tesis/Disertasi ini **SULIT** @ **TERHAD**, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai **SULIT** dan **TERHAD**.

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

iv

ACKNOWLEDGEMENT

To begin, I want to express my gratitude to Dr. Adibah Binti Abu Bakar, my research supervisor. Without her aid and unwavering commitment to each step of the way, this project would never have been completed. I want to express my heartfelt gratitude for her encouragement, patience, drive, passion, understanding, and vast knowledge throughout the research and writing of this thesis. Additionally, I would like to express my gratitude to my husband Mohammad Shuhaizat Bin Shuhaimi for his constant support and advice during this research development process. Lastly, none of this would have been possible without the support of my family. I would want to express my special gratitude to my father Osman Bin Mat Zahari and my mother Zalihah Binti Adrus for their unwavering support and encouragement throughout this endeavor.

v

ABSTRACT

The objective of this study is to develop species-specific environmental DNA (eDNA) markers for Cichla spp. based on mitochondrial cytochrome oxidase I (COI) gene sequences. Validation of the developed species-specific eDNA markers were done exsitu for environmental sample from Tasik Raban. New digital PCR (dPCR) method was also employed to detect the presence of Cichla ocellaris, and Cichla kelberi in environmental water samples. Result from this study showed that COI gene can be used to develop species-specific markers for species Cichla. Ex-situ validation results also showed that the developed markers CO1 amplified specifically to specimen C. ocellaris while CK1 amplified directly to specimen of C. kelberi. In addition, dPCR supported the specificity analysis as absolute fluorescent quantification detected the presence of C. ocellaris and C. kelberi eDNA in water sample at 90% detection confidence. In conclusion, CO1 and CK1 markers were successfully developed and specific to be used as eDNA markers for C. ocellaris and C. kelberi respectively. As an implication, eDNA analysis with species-specific markers suitable to be used as new rapid monitoring tool in detection of invasive species for biodiversity management and conservation purposes.

PENANDA eDNA SPESIFIK UNTUK PENGESANAN PANTAS IKAN SPESIS INVASIF DI TASIK RABAN, MALAYSIA

ABSTRAK

Objektif kajian ini adalah untuk membangunkan penanda DNA persekitaran (eDNA) yang spesies-spesifik bagi Cichla spp. berdasarkan jujukan gen cytochrome oxidase I (COI) mitokondria. Pengesahan penanda eDNA spesies-spesifik ini dijalankan secara ex-situ terhadap sampel persekitaran daripada Tasik Raban. Kaedah baharu PCR digital (dPCR) digunakan untuk mengesan kehadiran Cichla ocellaris dan Cichla kelberi di dalam sampel air persekitaran. Dapatan kajian ini menunjukkan gen COI boleh digunakan untuk membangunkan penanda spesies-spesifik untuk spesies Cichla. Dapatan pengesahan secara ex-situ juga menunjukkan penanda CO1 yang dibina boleh mengamplifikasi terus kepada spesimen C. ocellaris manakala CK1 mengamplifikasi spesifik kepada C. kelberi. Sebagai tambahan, dPCR menyokong analisis spesifisiti apabila penilaian fluorescen sebenar mengesan kehadiran eDNA C. ocellaris dan C. kelberi dalam sampel air pada 90% keyakinan pengesanan. Kesimpulannya, penanda CO1 dan CK1 telah berjaya dibangunkan dan spesifik untuk digunakan sebagai penanda eDNA bagi masing-masing C. ocellaris dan C. kelberi. Implikasinya, analisis eDNA dengan penanda spesies-spesifik sesuai digunakan sebagai alat pemantauan pantas baharu untuk pengesanan spesies invasif bagi tujuan pengurusan dan konservasi biodiversiti.

vii

CONTENTS

		Page
DECLAR	ATION OF OROGINAL WORK	ii
DECLAR	ATION OF DISSERTATION	iii
ACKNOV	VLEDGEMENT	iv
ABSTRA	CT	v
ABSTRA	K	vi
05-450683 CONTEN	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	PustakaTBainun VII ptbup
LIST OF	TABLES	xiii
LIST OF	FIGURES	xv
LIST OF	ABBREVIATIONS	xviii
LIST OF	APPENDICES	xxi
CHAPTE	R 1 INTRODUCTION	1
1.1.	Introduction	1
1.2.	Research Background	2
1.3.	Problem Statement	2
1.4.	Objective of Study	3
1.5.	Study Limitation	3

	٠	
T 71	1	1

	1.6. I	mportance of Research	4
	1.7.	Conclusion	5
СН	HAPTER 2 LITERATURE REVIEW		
	2.1.Intro	duction of invasive species	6
	2.2.Intro	duction of invasive fish species	7
	2.3.Thre	at of invasive fish species	16
	2.3	.1 Hybridization and introgression	17
	2.3	.2 Pathogenic transmissions	20
	2.3	.3 Predation and competition	22
05-4506832		.4 Environmental changes ka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun	24 ptbups
03-4300032		ead and establishment of invasive fish species	25
	2.4	.1 Global scenario	26
	2.4	.2 Malaysia scenario: Peacock Bass as an IAS	27
	2.4	.3 Aquarium Fish Industries	30
	2.5. Det	tection of AIS	31
	2.5	.1 Traditional method	31
	2.5	.2 Environmental DNA (eDNA) method	33
		2.5.2.1 Environmental DNA (eDNA) application	34
		2.5.2.2 Species specific marker	35

2.5.2.3 Limitations of eDNA methods	36
2.5.3 Hybrid methods (Traditional and eDNA method combo)	37
2.6. Digital Polymerase Chain Reaction (dPCR)	38
APTER 3 METHODOLOGY	42
3.1. Introduction	42
3.2. Experimental Design	43
3.3. Study area	44
3.4. Methodology for objective 1: To design species-specific markers	48
3.4.1 Introduction	48
3.4.2 Species-specific primer development pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun	48 ptbupsi
3.4.3 Species-specific dPCR probes design	49
3.5. Methodology for objective 2: To validate the designated species-specific markers	50
3.5.1 Introduction	50
3.5.2 Fish sampling	50
3.5.3 Verification morphological Species	53
3.5.4 Obtaining DNA samples	55
3.5.5 Agarose Gel Electrophoresis (AGE)	56
3.5.6 The use of PCR for fish identification	57
3.5.7 Identification of fishes through DNA sequencing	57
	2.5.3 Hybrid methods (Traditional and eDNA method combo) 2.6. Digital Polymerase Chain Reaction (dPCR) APTER 3 METHODOLOGY 3.1. Introduction 3.2. Experimental Design 3.3. Study area 3.4. Methodology for objective 1: To design species-specific markers 3.4.1 Introduction 3.4.2 Species-specific primer development pustaka upst educmy

X

3.5	5.8 Primer validation using polymerase chain reaction (PCR)	59
3.5	5.9 The use of digital PCR to validate primers	59
3.6. M	ethodology for objective 3: To identify and validate eDNA	60
3.6	6.1 Introduction	60
3.6	6.2 eDNA sample collection	61
3.6	6.3 eDNA filtration	63
3.6	6.4 eDNA isolation	65
3.6	6.5 eDNA amplification by conventional PCR	66
3.6	6.6 dPCR analysis for eDNA detection	66
Λ A A	R 4 RESULT staka.upsi.edu.my Perpustakaan Tuanku Bainun PustakaTBainun	68 ptbups
	evelopment of species-specific primer	68
4.2. Sa	ample collection	73
4.3. Mo	orphology Identification	86
4.4. Dì	NA extraction	86
4.5. Ar	mplification of COI gene with conventional PCR	88
4.6. Mo	olecular identification of Cichla spp.	88
4.7. Pri	imer validation through PCR	91
4.8. Pri	imer validation through digital PCR (dPCR)	104
4.9. 1	Map location of water samples	108

хi

	4.10. eDNA extraction	112
	4.11. Multiplex PCR for eDNA	115
	4.12. dPCR for eDNA identification	127
СН	APTER 5 DISCUSSION	137
	5.1. Development of species-specific primers	137
	5.2. Fish sampling	139
	5.3. Integrity of the isolated fish DNA	141
	5.4. PCR for designated primer confirmation	143
	5.5. Factors tha influence quantity and quality of eDNA	144
		147
		148
	5.8. Advancement in digital quantification for rapid detection	150
СН	APTER 6 CONCLUSION	152
	6.1. Introduction	152
	6.2. Designated species-specific markers for <i>C. ocellaris</i> and <i>C. kelberi</i>	153
	6.3. Validated species-specific primers and probes	153
	6.4. eDNA captured by species-specific CO1 and CK1 markers	154
	6.5. Future recommendation and precautions	154
	6.6. Conclusion	155

xii

REFERENCE 157

APPENDIX 183

Table

xiii

Page

LIST OF TABLES

	Tubic		1 ugc
	2.1	List of invasive alien fish species present in Malaysia listed by Department of Fisheries, Malaysia (2007)	9
	4.1	Table of variance analysis show the alignment of the mitochondrial DNA sequences.	70
05-4506832	4.2 pust	List of Mitochondria COI sequence retrieved from Genbank for three Cichla sp. These sequences were used as reference to design species-specific primer sets in this research Kampus Sultan Abdul Jalil Shah	71 ptbupsi
	4.3	List of designated species-specific COI sequence for <i>Cichla kelberi</i> labelled as CK where (F) is a forward sequences and (R) is reverse sequence with detail of melting temperature (Tm), GC content and the product size	71
	4.4	List of designated species-specific COI sequence for <i>Cichla ocellaris</i> labelled as CO where (F) is a forward sequence and (R) is reverse sequence with detail of melting temperature (Tm), GC content and the product size	72
	4.5	List of designated species-specific COI sequence for <i>Cichla monoculus</i> labelled as CM where (F) is a forward sequence and (R) is reverse sequence with detail of melting temperature (Tm), GC content and the product size	72
	4. 6	List of designated species- specific COI probes sequence for <i>Cichla kelberi</i> and <i>Cichla ocellaris</i> with detail of fluorescent label and channel	73
	4.7	List and detail of the Cichla spp. collected from Tasik UniSEL, Kampung Kelawar, and Tasik Raban as identification reference	74
	4. 8	List and detail of the native fish samples that have been collected from Tasik Raban	81

92

- 4. 9 Summary of the amplification 18 designated primers with DNA of twelve PB samples for different Cichla spp. AGE picture shows that the presence of band which indicate the presence of amplified DNA at 300~ bp in size
- 4. 10 Digital PCR (dPCR) table shows the result of individual well have different reaction testing singleplex or multiplex amplification between PB12 and PB14 with primer-probe CK1 and CO1. NTC or non-template-control used as negative control in this reaction. The results were presented by the concentration of the copies/amplified produc, valid partition and positive partition detected, percent of positive partition over the total valid partition and the CI value with confidence of 95%
- 4.11 List of water samples collected and replicated for each site.

 Depth of water for each collection together with water pH value and coordinate of the location were recorded as listed.

 The water samples were filtered for the range of 21 days
- Table of the summary of the amplification of multiplex reaction. Eight reactions (A, B, C, D, E, F, G, H) assemble three primer pairs from CK, CO, and CM of the designated primer pairs amplify nine selected eDNA samples, TR1A, TR2A, TR3A, TR4A, TR5A, M1A, M2A, M3A, and M4A where in the column is the size of the amplified product (bp)
- ptbupsi

116

4.13 Digital PCR (dPCR) table shows the result of individual well have different reaction testing singleplex or multiplex amplification of 27 eDNA samples with primer-probe CK1 and CO1. Well labeled H2 uses PB4 and PB12 samples as positive control and H3 well is non-template control reaction. The results were presented by the concentration of the copies/amplified product, valid partition and positive partition detected, and the CI value with confidence of 95%.

LIST OF FIGURES

	Figures		Page
	2.1	(A) Figure 2.1 (A) Arapaima gigas, source by Stephen Alvarez, 2020 (B) Oreochromis mossambicus, source by Khalaf, 2019 (C) Pygocentrus nattereri, source by Zell, H. 2019 (D) Claria gariepinus, source by Schafer, F., 2018 (E) Belone belone. source by Roberto, 2018 (F) Cichla sp. source by Karelj, 2010 (G) Hypostomus plecostomus source by Covain, R., 2016 (H) Hemibagrus wyckioides source by Fabian, 2020 (I) Geophagus surinamensis.	16
05-4506832	pustak	source by Verkennis, 2020 (J) Cichlasoma hybrid. source by Aquadiction, 2021 (K) Potamotrygon motoro, source by Page, A., 2019 (L) Polyodon spathula. source by Dana, C. L., 2019	
	2.2	White Spot Syndrome Virus (WSSV) caused by <i>Ichtyophthirius multifiliis</i> , parasite. Photograph by Heiko, B., 2016	17
	2.3	Collection of Cichla species. Photograph by Khaleel et al., 2021	29
	2.4	QIAcuity Nanoplates for Digital PCR (dPCR). Photograph by QIAGEN	41
	3.1	Illustration of experimental design for this research.	43
	3.2	Maps of sampling location (1) Kampung Kelawar, Tanjung Malim (2) Tasik Universiti Selangor (3) Tasik Raban, Lenggong	46
	3.3	Photograph of Tasik Raban	47
	3.4	Photograph of Mini Amazon lake.	47

xvi

	3.5	Photograph of fish samples (Cichla spp.) collected from Kg. Kelawar, Tanjung Malim	52
	3.6	Photograph of characteristics of reference cichla spp. from the Sastraprawira et al., (2020) study	54
	3.7	Van Dorn water sampler equipment, Photograph by Sciencefirst	62
	3.8	pH meter used to take pH reading of water while water sampling	63
	3.9	Filtration vacuum machine attached to the filter glass apparatus	64
	3.10	QIAGEN's Qiacuity Instruments for digital PCR. Photograph by QIAGEN	67
	4.1	Quality of DNA extraction in gel electrophoresis for (a) all 13 Cichla spp. and (b) for native fish samples	87
	4.2	AGE results show band formation for all fish Cichla spp. samples labelled as PB and native sample labelled N, with estimated size 600 bp	89
05-4506832	24.3 pustak	The Neighbor-joining tree shows the clustering of PB samples together with reference sequence and five native species sequence	90 ptbups
	4.4	Photograph of fluorescence imaging for digital PCR reaction detects the fluorescence signal where partition of positive and negative partition was counted and separated with red line threshold (a) CO1 reaction with yellow channel (b) CK1 reaction with green channel	107
	4.5	Maps that locate the sites of water and fish sampling area labelled as TR (Tasik Raban) and M (Mini Amazon). PB indicates the site where the fish samples were collected (PB 10 collected at M1 site while PB 11 was collected at TR 2 site and PB12 was collected at M4 site)	109
	4.6	A photograph of water samples that have been filtered and incubated with a lysis buffer	112
	4.7	AGE for 15 eDNA samples collected from Tasik Raban labelled as TR1A, TR1B, TR1C, TR2A, TR2B, TR2C, TR3A, TR3B, TR3C TR4A, TR4B, TR4C, TR5A, TR5B, and TR5C.	113

xvii

114

- 4.8 AGE for 12 eDNA samples collected from Mini Amazon labelled as M1A, M1B, M1C, M2A, M2B, M2C, M3A, M3B, M3C, M4A, M4B, and M4C.
- 4.9 Photograph of fluorescence imaging for digital PCR 136 reaction detects the fluorescence signal where partition of positive and negative partition was counted and separated with red line threshold (a) CK1 reaction with green channel and (b) CO1 reaction with yellow channel, for TR1A, TR2A, TR2B, TR2C, TR2D, TR3A, TR3B while (C) CK1 (green) and (d) CO1 (yellow), for TR3C, TR4A, TR4B, TR4C, TR5A, TR5B, TR5C sample, (e) CK1 (green) and (f) CO1(yellow) channel for sample M1A, M1B, M1C, M2A, M2B, M3A, M3B, (g) CK1 (green) and (h) CO1(yellow) for M4A, PB4 & PB12, NTC (non-template control) reaction.

xviii

LIST OF ABBREVIATIONS

AGE Agarose Gel Electrophoresis

AIS **Aquatic Invasive Species**

BOLD Barcode of Life Data system

bp Base pair

CDS Coding sequence

°C Degree celcius

05-4506832 CBD Convention of Biological Diversity

CIConfidence Interval

CKCichla kelberi

CM Cichla monoculus

CO Cichla ocellaris

COICytochrome oxidase subunit 1

Cytochrome b cytB

 ddH_2O Double distilled water

DNA Deoxyribonucleic acid

DoF Department of Fisheries

dNTPs Deoxynucleotide

Digital Polymerase Chain Reaction dPCR

eDNA Environmental DNA

xix

EUS Epizootic Ulcerative Syndrome

GenBANK Genetic sequence database

g Gram

IAS Invasive Alien Species

L Liter

Mini Amazon M

M Molar

Milliampere mA

mg Milligram

mLMilliliter

Microgram μg

Microliter μL

05-4506832 μM

pustaka.upMicromolar

Mitochondria gene mt

Sodium chloride NaC1

Nanogram ng

Neighbour-Joining NJ

Nanometer nm

NWF National Wildlife Federation

PB Peacock Bass

PCR Polymerase Chain Reaction

рН Potential of hydrogen

RE Restriction enzyme

Ribonucleic acid **RNA**

XX

rpm Revolutions per minute

Ribosomal RNA rRNA

 sdH_20 Sterile distilled water

SMS Sequence Manipulation Suite software

Species sp.

Tris base/ Boric acid/ EDTA **TBE**

Tm Melting temperature

TR Tasik Raban

UV Ultraviolet

V Voltage

W Watt

WSSV White Spot Syndrome Virus

xxi

LIST OF APPENDICES

Appendix 1 List of Materials

Appendix 2 List of Cichla species reference sequences

CHAPTER 1

INTRODUCTION

Aquatic invasive species (AIS) spread around the globe being the second biggest threat to diversity in our planet's ecosystems, particularly pervasive by causing food web disruption, biodiversity loss, and economic harm (Thomaz et al., 2014). Non-native or alien species is globally defined as an organism that is translocated from its natural or historical habitat, either accidentally or on purpose, and subsequently successful in residing in its new environment (Rahim et al., 2013). Most of the species introduced in Malaysia have been brought in from the Amazon River (South America) and introduced as popular game fishes usually in lakes (DoF, 2007). The commonly known invasive alien fish species in our local water system are Arapaima gigas, Oreochromis mossambicus, Pygocentrus nattereri, Claria gariepinus, Belone belone and Cichla ocellaris (Zakaria, 2017).

1.2 Research Background

Major reason for the introduction and establishment of alien fish species in Malaysia is due to recreational fishing. The most prominent example is the peacock bass (Cichla spp.) which was intentionally released into rivers or lakes made from former mining areas by irresponsible anglers for sport fisheries (Rahim et al., 2012). The peacock bass is known as a good sport fish (Neal et al., 2017) but the uncontrolled spread and unintentional release of this species had caused negative impact globally towards the declining of native fish species (Rahim et al., 2013). Thus, the peacock bass was also labelled as alien invasive species (AIS) due to the threat it caused to local freshwater biodiversity.

1.3 **Problem Statement**

It is an urgent need to monitor AIS in order to preserve native fish species but local authorities still depend on a common method of long-term surveys and large fish catchment. This so-called traditional field capture technique is often considered to be costly and labor intensive (Farley et al., 2018). Moreover, detection probabilities typically are low due to the AIS behavior that prefers to be hidden beneath the water's surface. Such fish surveillance programs also employ nets or electrofishing gear but these tools often lead to major false sightings as the target AIS species is unable to be predicted underwater (Gu & Swihart, 2004).

1.4 **Objective of the Study**

This thesis covers three areas of investigation in which each is focused on resolving specific issues. The objectives of current study are as follows:

- 1. To design novel species-specific environmental DNA markers for Cichla sp based on mitochondrial DNA (mtDNA) COI gene.
- 2. To validate designated species-specific eDNA markers in ex-situ from Tasik Raban using eDNA approach.
- 3. To apply and test a new digital PCR (dPCR) assay to detect the presence of environmental DNA (eDNA) for C. kelberi, and C. ocellaris in water samples.

1.5 **Study Limitation**

However, the extended invasion status of alien species in Malaysia is still not known. Since eDNA is still new and has not been implemented frequently in tropical environments especially in Malaysia, it is a challenging effort to identify as correct as possible unknown specimen firstly by morphology. Development strategy to produce species-specific primers can be utilized to detect the peacock bass fishes by eDNA-PCR method.

1.6 Importance of Research

Currently, an alternative and rapid new technique known as environmental DNA (eDNA) has gained much attention by AIS researchers as it enables detection of organisms in the environment using the analysis from water samples (Bohmann et al., 2014). Environmental DNA (eDNA) is defined as DNA that has been released by an organism into the environment, via feces, hair, urine, skin or gametes (Valentini et al., 2016). This DNA can be extracted from environmental samples such as soil, water or feces without having to isolate the target organism (Dejean et al., 2011). This DNA can be amplified by polymerase chain reaction (PCR) technology and delimit organisms which were present in a given water sample. eDNA also permits early detection of AIS even at very low densities, and at any life stage (Ficetola et al., 2008; Jerde et al., 2011;

OS 4506 Dejean et al., 2011). This has been proven in several studies, of which the best-known examples are on invading Asian carp in Europe water systems (Jerde et al., 2011;

Mahon et al., 2013). Positive feedback has been vastly reported upon application of this method as it strongly aids in AIS monitoring and management effort (Valentini et al., 2016).

1.7 Conclusion

Overall, the information on the strategy for developing species-specific eDNA primers for invasive Cichla species in current research will benefit researchers and AIS (alien invasive species) monitoring authorities as it permits early detection of COI-eDNA with an absolute quantitative Digital Polymerase Chain Reaction (dPCR) molecular method is a highly successful technique to identify species that are expanding rapidly. dPCR manages to provide data on species abundance and organism presence of ecologically invasive and rare species.

