

EFFECTS OF FISH AMINO ACID (FAA) AND BORON APPLICATION ON GROWTH AND YIELD OF Solanum lycopersicum (TOMATO) IN SOIL AND SOILLES MEDIA

ROSMA BINTI CHE NORDIN O 5-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun optubupsi

SULTAN IDRIS EDUCATION UNIVERSITY 2023

EFFECTS OF FISH AMINO ACID (FAA) AND BORON APPLICATION ON GROWTH AND YIELD OF Solanum lycopersicum (TOMATO) IN SOIL AND SOILLES MEDIA

ROSMA BINTI CHE NORDIN

DISSERTATION PRESENTED TO QUALIFY FOR A MASTERS IN SCIENCE (RESEARCH MODE)

FACULTY OF TECHNICAL AND VOCATIONAL EDUCATION SULTAN IDRIS EDUCATIOM UNIVERSITY

2023

UPSIAPS-3/BO 32 Pind: 00 m/s: 1/1

Sila tanda (\) Kertas Projek Sarjana Penyelidikan Sarjana Penyelidikan dan Kerja Kursus Doktor Falsafah

-		
	Ľ	
		٦
		1

INSTITUT PENGAJIAN SISWAZAH

PERAKUAN KEASLIAN PENULISAN

Perakuan ini telah dibuat pada <u>12 Disember 2023</u>

i. Perakuan pelajar :

Saya, <u>Rosma Binti Che Nordin (M20201000309) (Fakulti Teknikal dan Vokasional</u> dengan ini mengaku bahawa disertasi/tesis yang bertajuk <u>Effects of Fish Amino Acid (FAA) and Boron Application on Growth and Yield Of Solanum lycopersicum (Tomato) in Soil and Soilless Media</u> adalah hasil kerja saya sendiri. Saya tidak memplagiat dan apa-apa penggunaan mana-mana hasil kerja yang mengandungi hak cipta telah dilakukan secara urusan yang wajar dan bagi maksud yang dibenarkan dan apa-apa petikan, ekstrak, rujukan atau pengeluaran semula daripada atau kepada mana-mana hasil kerja yang mengandungi hak cipta telah dinyatakan dengan sejelasnya dan secukupnya

Tandatangan pelajar

ii. Perakuan Penyelia:

Saya, <u>Ts. Dr. Asilah Binti Abdul Mutalib</u> dengan ini mengesahkan bahawa hasil kerja pelajar yang bertajuk <u>Effects of Fish Amino Acid (FAA) and Boron Application on Growth and Yield Of Solanum</u> <u>(vcopersicum (Tomato) in Soil and Soilless Media</u> dihasilkan oleh pelajar seperti nama di atas, dan telah diserahkan kepada Institut Pengajian Siswazah bagi memenuhi sebahagian/sepenuhnya syarat untuk memperoleh Ijazah <u>Sarjana Sains (Sains Pertanian)</u>.

12 Disember 2023 Tarikh

Tandatangan Penyelia

UPSI/IPS-3/BO 31 Pind : 01 m/s:1/1

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / <i>Title</i> :	Effects of Fish Amino Acid (FAA) and Boron Application on Growth and Yield of Solanum lycopersicum (Tomato) in Soil and Soilless Media	
No. Matrik /Matric's No.:	M20201000309	
Saya / I:	Rosma Binti Che Nordin	

mengaku membenarkan Tesis/Disertasi/Laporan Kertas Projek (Kedoktoran/Sarjana)* ini disimpan di Universiti Pendidikan Sultan Idris (Perpustakaan Tuanku Bainun) dengan syarat-syarat kegunaan seperti berikut:-

acknowledged that Universiti Pendidikan Sultan Idris (Tuanku Bainun Library) reserves the right as follows:-

- 1. Tesis/Disertasi/Laporan Kertas Projek ini adalah hak milik UPSI. The thesis is the property of Universiti Pendidikan Sultan Idris
- 2. Perpustakaan Tuanku Bainun dibenarkan membuat salinan untuk tujuan rujukan dan penyelidikan.

Tuanku Bainun Library has the right to make copies for the purpose of reference and research.

- 3. Perpustakaan dibenarkan membuat salinan Tesis/Disertasi ini sebagai bahan pertukaran antara Institusi Pengajian Tinggi. The Library has the right to make copies of the thesis for academic exchange.
- 4. Sila tandakan (√) bagi pilihan kategori di bawah / Please tick (√) for category below:-

SULITICONFIDENTIAL	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. / Contains confidential information under the Official Secret Act 1972
	Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan. / Contains restircted information as specified by the organization where research was done.
TIDAK TERHAD / OPEN ACC	CESS
Am	Gr.
(Tandatangan Pelajar/ Signature)	TT Tandataggan Penyelia / Signature of Supervisor) & (Nama & Com Resput Name & Official Stamp)
Tarikh:, <u>12 Disember 2023</u>	Jabatan Sains Pertanian Fakulti Teknikal Dan Vokasional Universiti Pendidikan Sultan Idris 35900 Tanjong Malim, Perak.

Catatan: Jika Tesis/Disertasi ini SULIT @ TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagal SULIT dan TERHAD.

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

ACKNOWLEDGEMENT

Bismillahirrahmanirrahim, in the name of Allah SWT the Most Beneficent, the Most Merciful, the Most Compassionate. Alhamdulillah, the praises and thanks be to Allah. Amin. First of all, I would like to thank my thesis supervisor Ts. Dr. Asilah binti Abdul Mutalib and co-supervisor Ts. Dr. Zalina binti Ismail, Agricultural Science Department, Faculty Technical and Vocational at Sultan Idris Education University for their continuous guidance, encouragement, and support throughout my study. I really appreciate their knowledgeable supervision in helping and guiding me to complete this thesis. Words alone cannot express my greatest appreciation and gratitude to them. I also would like to thank to Dean's Faculty Technical and Vocational at Sultan Idris Education University and all lecturers who directly or indirectly help throughout this study. To my helpful friends and colleagues, I want to express my heartfelt gratitude for their kind cooperation and encouragement which help me in completion of this project. Lastly, my deep appreciation goes to my precious parents, as well as my brothers and sisters, who have always encouraged and guided me to be independent, never limiting my aspirations.

🕠 05-4506832 🛛 📢 pustaka.upsi.edu.my

🕟 05-4506832 🛞 pustaka.upsi.edu.my 🚹 Perpustakaan Tuanku Bainun 💟 PustakaTBainun 🗗 ptbupsi

ABSTRACT

An application of chemical fertilizers to enhance crop yields by increasing the availability of nutrient has been raised in agriculture sector but excessive consumption of chemical fertilizers recently causing serious environmental problems. Therefore, the objectives of this study were to determine the effects of different liquid organic fertilizers and boron (B) application on growth and yield of tomato in soil and soilless media. There were 2 main experiments in this study. In Preliminary Experiment, there were 16 treatments with 5 replications, including controls, liquid organic fertilizers (fish amino acid [FAA] and shrimp extract [SE]) and B application. In Experiment 2, there were 6 treatments with 4 replications were chosen from the previous experiment. The experiment was designed in a factorial RCBD and data were analyzed by using ANOVA, SPSS software and the differences between treatments mean were compared using Tukey HSD test with significant level (P < 0.05). The parameters observed were plant height, number of leaves, shoot and root biomass, pH media, organic matter content, fresh weight and number of fruits. Results on study of effects of FAA application on growth and yield of tomato in soilless media was successfully achieved. Treatment with 30 mL/L FAA (T3) were showed the significant effect on plant number of leaves and the result were similar to the result using AB fertilizers (T4). Meanwhile, studies on effects of boron application on growth and yield of tomato in soilless media was also successful. Treatment 30 mL/L FAA + 1.87 mg/L boron (T4) gave similar result to treatment using inorganic fertilizer (T6) on plant number of leaves. This study proved that the application of FAA and B can contribute positive effects on plant growth development for certain parameters. Thus, they can also be used as an alternative fertilizer to reduce the usage of chemical fertilizer.

05-4506832

KESAN PENGGUNAAN ASID AMINO IKAN DAN BORON TERHADAP PERTUMBUHAN DANHASIL TERHADAP *SOLANUM LYCOPERSICUM* (TOMATO) MENGGUNAKAN MEDIA TANAH DAN TANPA TANAH

ABSTRAK

Penggunaan baja kimia untuk meningkatkan hasil tanaman bagi menambahkan ketersediaan nutrient telah dibangkitkan dalam sektor pertanian namun penggunaan baja kimia yang berlebihan ini menyebabkan masalah alam sekitar yang serius. Maka, objektif kajian ini dilakukan untuk menentukan kesan penggunaan baja organic cecair dan boron terhadap pertumbuhan dan hasil Solanum lycopersicum (tomato) menggunakan media tanah dan media tanpa tanah. Terdapat 2 eksperimen yang dijalankan. Dalam Eksperimen Saringan, eksperimen ini melibatkan 16 rawatan dengan 5 replikasi termasuk kawalan, baja organik cecair (asid amino ikan [FAA] dan ekstrak udang [SE]) dan penggunaan Boron. Untuk eksperimen kedua, terdapat 6 rawatan dengan 4 replikasi dijalankan menggunakan data yang diperolehi dari eksperimen saringan. Rekabentuk kajian yang digunakan adalah randomized complete block design (RCBD) dan dianalisis menggunaakan ANOVA, perisian SPSS dan perbezaan min antara rawatan analisis menggunakan Tukey HSD dengan tahap signifikan (P<0.05). Parameter yang diukur dalam kajian ini ialah tinggi pokok, bilangan daun, berat kering pucuk dan akar, pH media, kandungan bahan organik, berat dan bilangan buah. Keputusan kajian terhadap kesan penggunaan FAA terhadap pertumbuhan dan hasil tomato dalam media tanpa tanah telah berjaya dicapai. Rawatan dengan 30 mL/L FAA (T3) telah menunjukkan kesan signifikan dalam bilangan daun dan memyamai keputusan menggunakan baja AB. Sementara itu, kajian tentang kesan penggunaan boron terhadap pertumbuhan dan hasil tomato dalam media tanpa tanah juga berjaya. Rawatan 30 mL/L FAA + 1.87 mg/L boron (T4) memberikan hasil yang sama dengan rawatan menggunakan baja (T6) untuk bilangan daun. Kajian ini membuktikan penggunan baja FAA dan boron mampu memberi kesan positif terhadap pertumbuhan pokok bagi parameter tertentu dan boleh digunakan sebagai baja alternatif kepada baja kimia.

CONTENTS

DECLARATION OF ORIGINAL WORK	11
DECLARATION OF DISSERTATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
CONTENTS	vii
LIST OF TABLES	xiii
LIST OF FIGURES 05-4506832 pustaka.upsi.edu.my LIST ABBREVIATION	PustakaTBainun Xiv XV ptbupsi
CHAPTER 1 INTRODUCTION	
1.1 Background of Study	1
1.2 Statement of Problem	4
1.3 Objectives	6
1.4 Research Questions	6
1.5 Hypothesis	7
1.6 Significance of Study	7
1.7 Scope and limitation of study	8
CHAPTER 2 LITERATURE REVIEW	
2.1 Solanum lycopersicum (Tomato)	
2.1.1 Taxonomy	10

	2.1.2 Characteristic of Tomato (Solanum	12
	2.1.3 Distribution and Climate Properties of Tomato (Solanum lycopersicum)	15
	2.1.4 Tomato Variety in Malaysia	16
	2.1.5 Tomato Nutrients	17
	2.1.6 Tomato Processing	18
	2.1.7 Tomato Production in Asia and World	20
	2.1.8 Tomato Production in Malaysia	21
	2.2 Agronomy Practices of Tomato	
	2.2.1 Tomato Cultivation	22
	2.2.2 Transplanting tomato	23
	2.2.3 Water Management	24
05-4506832	2.2.4 Trellising and Staking Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalii Shah 2.2.5 Pruning	25 25 ptbupsi
	2.2.6 Weed Control	26
	2.2.7 Harvesting	27
	2.2.8 Major Pest and Disease	28
	2.2.9 Tomato Fertilization	32
	2.2.9.1 Inorganic Fertilizer	34
	2.2.9.2 Organic Fertilizer	37
	2.2.9.2.1 Liquid Organic Fertilizer	41
	2.2.9.2.2 Fish Amino Acid (FAA)	43
	2.2.9.2.3 Shrimp Extract (SE)	45
	2.3 Macro and Micronutrient as Plant Nutrient	48
	2.3.1 Boron Application for Plant Growth	49

	2	2.3.2 Boron Application for Tomato Production	51
	2.4 Soi	l and Soilless Media	54
	2	2.4.1 Plant Growth in Soil- Based Media	56
	2	2.4.2 Plant Growth in Soilless Media	57
	2.5 Org	ganic Farming	59
	2	2.5.1 Advantages of Organic Farming	60
	2	2.5.2 Disadvantages of Organic Farming	61
CHAPTER	3 MET	THODOLOGY	
3.0	Introdu	action	63
3.1	Prelim Fertiliz Tomate	inary Experiment: Effect of Liquid Organic zers and Boron Application on Plant Growth of o (Solanum lycopersicum) in Soil and Soilless Media.	64
	3.1.1	Study Location	64
🕓 05-4506832 🔮 pu	staka.ups 3.1.2	i.edu.my Perpustakaan Tuanku Bainun Seed Germination Pustaka Bainun	65 ptbupsi
	3.1.3	Preparation Fish Amino Acid (FAA)	65
	3.1.4	Preparation of Shrimp Extract	66
	3.1.5	Preparation Inorganic Fertilizer (AB Fertilizer)	67
	3.1.6	Pot Preparation	68
	3.1.7	Boron Treatment	69
	3.1.8	Pruning of Tomato Plant	69
	3.1.9	Staking/ Trellising	70

O 5-4506832 Spustaka.upsi.edu.my

	3.1.10) Total Number of Leaves	71
	3.1.1	Plant Height Determination	72
	3.1.12	2 Media pH Determination	72
	3.1.13	3 Shoot and Root Biomass Determination	73
	3.1.1	4 Treatments and Statistical Analysis	74
3.2	Experin Applic lycoper	nent Two: Effect of FAA Fertilizer and Boron ation on Plant Growth and Yield of Tomato (<i>Solanum</i> <i>rsicum</i>) in Soil and Soilless Media.	76
	3.2.1	Study Location	76
	3.2.2	Seed Germination	76
9 05-4506832	3.2.3	Preparation Fish Amino Acid (FAA)	77 ptbupsi
	3.2.4	Preparation Inorganic Fertilizer (AB Fertilizer)	77
	3.2.5	Pot Preparation	77
	3.2.6	Boron Treatment	77
	3.2.7	Pruning of Tomato Plant	78
	3.2.8	Staking/ Trellising of Tomato	78
	3.2.9	Total Number of Leaves	78
	3.2.10	Plant Height Determination	78

X1

3.2.11 Harvesting Process	79
3.2.12 Fresh weight and Total Number of Tomato Determination	79
3.2.13 Shoot and Root Biomass Determination	80
3.2.14 Media pH determination	80
3.2.15 Soil Organic Matter Determination	81
3.2.16 Treatments and Statistical Analysis	81
CHAPTER 4 RESULTS AND DISCUSSIONS	
4.0 Preliminary Experiment: Effect of Liquid Organic Fertilizer and Boron Application on Plant Growth of Tomato (Solanum lycopersicum) in Soil and Soilless Media.	83
4.1 Effects of Liquid Organic Fertilizers on Growth of Tomato in Soil and Soilless Media	
4.1.1 Effects of Liquid Organic Fertilizer on Mean Tomato Plant Height and Mean Number of Leaves in Soil and Soilless Media.	84
4.1.2 Effects of Liquid Organic Fertilizer on Mean Tomato Shoot Biomass, Mean Root Biomass and Mean pH of Media in Soil and Soilless Media.	90
4.2. Effects of Boron Application on Growth of Tomato in Soil and Soilless Media	
4.2.1 Effects of Boron Application on Mean Tomato Plant Height and Mean Number of Leaves in Soil and Soilless Media.	95
4.2.2 Effects of Boron Application on Mean Shoot Biomass, Mean Root Biomass and Mean pH Media in Soil and Soilless Media.	97
4.2.3 Conclusion for Preliminary Experiment	98

4.3	Experiment Two: Effect of FAA Fertilizer on Plant Growth and Yield of Tomato in Soil and Soilless Media.	99
	4.3.1 Effects of FAA Fertilizer and Inorganic Fertilizer on Mean Tomato Plant Height and Mean Number of Leaves in Soil and Soilless Media.	100
	4.3.2 Effects of FAA Fertilizer and Inorganic Fertilizer on Mean Tomato Root Biomass and Shoot Biomass in Soil and Soilless Media.	103
	4.3.3 Effects of FAA Fertilizer and Inorganic Fertilizer on Mean pH Media and Mean Organic Matter Content (OM) in Soil and Soilless Media.	106
	4.3.4 Effects of FAA Fertilizer and Inorganic Fertilizer on Mean Number of Fruit and Mean Fresh Weight in Soil and Soilless Media.	109
4.4	Experiment Two: Effect of Boron Application on Plant Growth and Yield of Tomato in Soil and Soilless Media.	
05_4504832	4.4.1 Effects of Boron Application on Mean Tomato Plant Height and Mean Number of Leaves in Soil and Soilless Media.	112
	4.4.2 Effects of Boron Application on Mean Tomato Root Biomass and Mean Shoot Biomass in Soil and Soilless Media.	113
	4.4.3 Effects of Boron Application on Mean pH Media and Mean Organic Matter Content (OM) in Soil and Soilless Media.	115
	4.4.4 Effects of Boron Application on mean Number of Fruit and Mean Fresh Weight in Soil and Soilless Media.	117
CHAPTER :	5 CONCLUSION AND RECOMMADATION	
5	.1 Conclusion	119
5	.2 Recommendation	120
REFERENC	CES	124

REFERENCES

LIST OF TABLES

No. of Tab	le	Page
2.1	Taxonomic classification of Solanum lycopersicum (Tomato)	11
2.2	The pests and diseases caused by bacteria, viruses and fungus	29
2.3	AB fertilizers for tomato formulated by MARDI (10,000 liter of water)	36
3.1	List of treatments used in Preliminary Experiment	74
3.2	List of treatments used in Experiment 2	82
4.1	The list of treatments used	84
05-4506832	Effects of liquid organic fertilizers and boron on mean plant height and mean number of leaves in soil and soilless media	88 ptbups
4.3	Effects of liquid organic fertilizers and boron on mean shoot biomass, mean root biomass and mean media pH in soil and soilless media	93
4.4	The list of treatments used	99
4.5	Effects of FAA on mean plant height and mean number of leaves in soil and soilless media	102
4.6	Effects of organic fertilizer (FAA) and inorganic fertilizer on mean root and mean shoot biomass in soil and soilless media	105
4.7	Effects of organic fertilizer (FAA) and inorganic fertilizer on mean media pH and mean organic matter in soil and soilless media	108
4.8	Effects of organic fertilizer (FAA) and inorganic fertilizer on mean number of fruit and mean fresh weight in soil and soilless media	111

•

LIST OF FIGURES

No. of Figure]	Page
2.1	Anatomy of a tomato	13
2.2	Tomato plant with supported shoot	25
2.3	Nipping	26
3.1	Layout of study	64
3.2	Tomato seedling after 14 days	65
3.3	Waste product of long- jawed mackerel were	66
3.4	Chopped shrimp waste	67
3.5 taka.ups	Inorganic fertilizer sultan Abdul Jali Shah	68 ptbups
3.6	Polybag with cocopeat were weighed	68
3.7	Sodium borate fertilizer	69
3.8	The plant after pruning activity	70
3.9	Trellising of tomato	71
3.10	Tomato plant leaves	71
3.11	Plant height measurement using tape measure	72
3.12	Soil pH determination using pH meter	73
3.13	Plant root were washed to remove soil	73
3.14	Layout of study	76
3.15	Tomato harvesting using secateur	79
3.16	Tomatoes were weighed using weighing scale	80

05-4506832

LIST OF ABBREVIATIONS

	В	Boron
	Ca	Calcium
	cm	Centimeter
	DOA	Department of Agriculture
	FAA	Fish amino acid
	FAO	Food and Agriculture Organisation
	g	Gram
05-4506832	g/ha pustaka.	Gram per hectare erpustakaan Tuanku Bainun upsi edu ny Kampus Sultan Abdul Jalil Shah
	ha	Hectare
	k	Potassium
	kg/ha	Kilogram per hectare
	MARDI	Malaysian Agriculture Research and Development Institute
	mg	Miligram
	Mg	Magnesium
	mL/L	Mililiter per liter
	mg/L	Miligram per liter
	mm	Milimeter
	μs	Micro simen
	Ν	Nitrogen
	Na	Natrium

NH4	Ammonium
Р	Phosphorus
RNA	Ribonucleic acid
SE	Shrimp extract
t/ha	Ton per hectare
USDA	United States Department of Agriculture

O 05-4506832 o pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun Dtbupsi

CHAPTER 1

INTRODUCTION

🕓 05-4506832 🔇 pustaka.upsi.edu.my 🚹 Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 💟 PustakaTBainun 👘 ptbupsi

1.1 **Background of Study**

Tomato (Solanum lycopersicum) belong to family Solanaceae and the most common fruiting vegetable among home gardeners, which is significant to being a crop that is very important in both science and the economy (Heuvelinm, 2018). Tomato considered one of the ten most significant fruits and vegetables of all time which produced about 124.5 million tons every year throughout the world. Currently, 159 nations

commercially farm tomatoes. In 2009, the top tomato-producing countries were Italy, China, Egypt, the United States, Turkey, India and Iran (Ibrahim et al., 2015).

In Malaysia, Cameron Highland become the successful location for large scale of tomato cultivation and it mainly due to the milder temperature (Wang et al., 2009). According to the Malaysia Trade Statistical Volume 1/2020 report, Malaysia's Import Dependency Rate (IDR) for tomato crops is 2.9%, seventh rank after chilli (73.1%), round cabbage (62.2%), lettuce (23.4%), cucumber (19.9%), eggplant (12.4%), and mustard (7.8%). This showed that Malaysia's tomato production is still inadequate (Jabatan Perangkaan Malaysia, 2020).

Tomato cultivation can be done by soilless and soil media. Soilless method 05-4506832 suitable for fruiting crops such as tomato, chilies and rock melon where the plant medium either consists of cocopeat, cocopeat mixed sand with roasted rice husk, perlite, peatmoss or vermiculite. While for conventional cultivation this method is suitable for all types of crops using only soil planting medium (Shahid et al., 2019).

> Additionally, it has been shown that organic additions in soil have a positive impact on a variety of soil properties and functions when compared to chemical inputs. In comparison to chemical fertilizers, organic fertilizers add more organic carbon and nitrogen to the soil, increasing microbial populations. Based on population level physiological profiles, it was discovered that manure-treated soil had greater functional diversity of soil microbes than mineral-fertilized soil (Pratibha and Shachi, 2016).

The majority of the issues that farmers were facing in order to boost the output of their plantations were resolved when chemical fertilizers were first introduced into the agricultural area. But with time, it became clearer the harmness due to chemical fertilizers caused to both humans and the environment. The best substitute for chemical fertilizers will be organic fertilizers (Kochakinezhad et al., 2012). The consumers believe organic products are healthier than conventional ones and because they are concerned about the environment, there is a growing demand for goods that have been farmed organically.

In order to determine the different concentration of liquid organic fertilizers (fish amino acid and shrimp extract) and boron on plant growth and yield of tomato a research were run to determine the effects of different liquid organic fertilizers application on growth and production of tomato in soil and soilless media and to determine the effects of boron application on growth and production of tomato in soil and soilless media. The researcher will be able to suggest liquid organic fertilizer as an alternative to chemical fertilizers, if at all practicable.

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shał

1.2 Statement of Problems

For society, farming is an important and necessary phase in the production of food. By the year 2050, there will be 9.1 billion people on the planet (United Nations (UN), 2015). To feed the global population, agriculture should boost food production by 70%. The United Nations' Food and Agriculture Organization (FAO) estimates that this increase should consist of 3 billion tonnes of grain and 0.47 billion tonnes of beef in 2015. Chemical fertilizers should be used in farming in order to speed up growth (Chakrabarty *et al.*, 2014). As a result, by the year 2000, agricultural chemicals will be used on an annual basis in excess of 5 million tonnes Due to the widespread annual use of pesticides, the ecology will become contaminated (Fernando, 2017).

Both large and small farm systems typically use chemical fertilizers, insecticides, and herbicides, which have been used in agricultural production for a long time (Savci, 2012), where the health of both customers and farmers who use pesticides for agricultural purposes is impacted (Da Costa *et al.*, 2014). Massive usage of synthetic fertilizers to increase crop production has had a negative impact on the water, land, and air. People are now increasingly skeptical of the standard of an (Vassilev *et al.*, 2015). In order to ensure global food security, inorganic fertilizer was heavily used in agriculture worldwide, which resulted in numerous, irreversible health issues.

Utilizing chemical fertilizer constantly for a long time has caused a variety of unanticipated consequences. For addition, the relationship between production and cost is not linear and leads to enormous mineral resource waste. In addition, plants do not

utilize the millions of tonnes of synthetic fertilizers applied to soil each year. The creation of greenhouse gases, eutrophication in aquatic systems, and salinization of soil are all caused by up to 50% of N and 90% of P escaping from crop fields and ending up in the air or water, according to reports (Simpson *et al.*, 2011).

Furthermore, improper use of chemical fertilizers leads to issues with food security and quality decline, such as nitrate build up in vegetable goods. Numerous studies have shown that organic farming, which strictly forbids the use of synthetic fertilizers, offers a solution that might be able to lessen the negative effects of using chemical fertilization, and the products from the organic farming systems are usually endowed with improved nutritional properties (Luthria et al., 2020). Chemical and organic fertilizers were utilized in tomato farming to boost crop yield. Overuse of chemical fertilizers results in higher operating costs for soilless media and conventional cultivation and problems to the environment (Shahid et al., 2019).

Massive amounts of solid waste after processing of shrimp and fish is a major source of animal protein, chitin, carotenoids, acid amino and other bioactive substances that are not properly exploited (Priyanka et al., 2009; Jeyasanta et al., 2013). This waste can be converted into a liquid eco-enzyme that serves a variety of functions on a local or large scale (home or industrial). Eco-enzyme is an organic molecule that forms a complex solution when kitchen trash is fermented to produce liquid organic fertilizer (Muliarta & Darmawan, 2021). It's crucial to recycle household waste into organic fertilizer to lessen the impact of garbage-related pollution. The effects of waste pollution include air pollution from odorous air, water pollution from waste water (leachate), and ground pollution from the presence of

PustakaTBainun O ptbupsi

garbage, which may spread disease outbreaks (Sudradjat, 2006).

1.3 **Objectives**

The purpose of this study is to determine the effects of boron application and liquid organic fertilizer application on tomato plant growth and yield in soil and soilless media. Therefore, the objectives of this study are:

1. To determine the effects of different liquid organic fertilizers application on growth and yield of tomato in soil and soilless media.

2. To determine the effects of boron application on growth and yield of tomato in

1.4 **Research Questions**

05.45060 soil and soilless media.

Based on the research objectives, the research questions of the study are:

1. What are the effects of different liquid organic fertilizers application on growth and yield of tomato in soil and soilless media?

2. What are the effects of boron application on growth and yield of tomato in soil and soilless media?

1.5 **Hypothesis**

Ho1: There are no significant effects of different liquid organic fertilizers application on growth and yield of tomato in soil and soilless media.

Ha1: There are significant effects of different liquid organic fertilizers application on growth and yield of tomato in soil and soilless media.

Ho2: There are no significant effects of boron application on growth and yield of tomato in soil and soilless media.

Ha2: There are significant effects of boron application on growth and yield of tomato in soil and soilless media.

🛇 05-4506832 🜍 pustaka.upsi.edu.my 🖪 Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 💟 PustakaTBainun 👘 ptbupsi

1.6 Significance of Study

It is hoped that this study will provide guidance to farmers to be more creative in diversifying the agricultural methods carried out. This method is also able to provide early surgery to households to recycle agricultural waste, kitchen waste such as fish waste and crop waste as organic fertilizer while reducing dependence on chemical fertilizers alone and can reduce production costs. This study can illustrate the effectiveness of use liquid organic fertilize on soil fertility and tomato production compared to the use of chemical fertilizers.

The findings of this study are also expected to give information to farmers on the benefit of organic fertilizers and boron compared to use inorganic fertilizers. Continued use of chemical fertilizers will cause various health and environmental problems. It because the good agricultural practices will avoid negative implications on the environment and human health such ad utilization of biosolids and animal manures, use of agricultural chemicals, management of post-harvest residue on the right amount to the crops.

It is hoped that the results of this study will be able to help the authorities to provide exposure and guidance to all farmers on the advantages of organic farming compared to the use of chemical fertilizers. This is in line with the current situation where the level of pollution is increasingly alarming. Therefore, the authorities can 05-45068 campaign on a large scale to encourage the industry to venture into the field of organic thupsi agriculture to increase organic farming products in the market. this is because the lack of organic products causes the price of such products to soar in the market compared to agricultural products using chemicals fertilizers.

1.7 Scope and Limitations of study

This study aims to determine the impact of boron treatment and other liquid organic fertilizers on tomato growth and production in soil and soilless media. In addition, this study examined the effects of boron treatment and liquid organic fertilizer on tomato growth and production in soil and soilless media. Previous publications and studies

were consulted to assess the effects of boron and liquid organic fertilisers on tomatoes. The study's main research topics were tomato plant growth and yield.

This research was conducted in two phases. For preliminary test, 16 treatments were involved and were run for 8 weeks in soil and soilless media. The treatment 10mL/L, 20mL/L and 30mL/L concentration of each fish amino acid (FAA) and shrimp extract (SE) were used in the experiments. These liquid fertilizers were dilute in the water and then were watered to the plant directly to the media. Meanwhile, for boron treatment, 1.87mg/L Hibor fertilizer (sodium borate) were diluted in the water before used as foliar spray treatment to the plant. This test was run to determine the best treatments before proceed to the second experiment. The best treatment of liquid organic fertilizer and boron treatment in preliminary test were selected to the second experiment. In the second experiment, which lasted 12 weeks and included six treatments, the optimal treatment for tomato plant growth and yield was determined.

The primary problem with the study is the increasing randomness of the weather during the research time, which will result in damage from extremely hot temperatures and heavy rain. The usefulness of the advice given here is meant notwithstanding the fact that there is some uncertainty related to climate change. Although the variables are described in an ad hoc way, history demonstrates that social and economic factors, political difficulties, and legal restrictions frequently have an impact on agricultural practises in vineyards and other agricultural sectors. As a result, a strategic long-term perspective should be anticipated, and the constraints mentioned below should be taken into account.

