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ABSTRACT  

 

This study aimed to synthesise carbon nanotubes (CNTs) from waste chicken fat as a 
carbon precursor and ferrocene as a catalyst. The method used in this study was 
thermal chemical vapour deposition. Several parametric studies were conducted to 
optimise the growth of CNTs from waste chicken fat. A new carbon precursor from 
gutter oil was also explored. The samples were characterised using electron 
microscopy, energy dispersive X-ray, X-ray diffraction, micro-Raman spectroscopy 
and thermogravimetric analysis. Field emission properties of the selected samples 
were analysed using field electron emission (FEE) measurements. The findings 
showed that the oil extracted from the mixture of fat-skin that were chopped into 
pieces and heated using oven was able to produce a dense vertically aligned CNTs 
(VACNTs) with small diameter (18.1-31.2 nm) and high crystallinity. Meanwhile, 
heating rate of 70 °C min-1, synthesis and vaporisation temperature of 800 and 570 
°C, respectively, catalyst concentration of 5.33 wt%, synthesis time of 60 minutes and 
precursor volume of 6 ml were considered as optimum parameters for the production 
of VACNTs from waste chicken fat, with carbon conversion of 51.94%. The 
composite of VACNTs with zinc oxide (ZnO) nanostructures were also fabricated 
using sol-gel immersion method in order to enhance their FEE performances. The 
growth of ZnO nanostructures on VACNTs improved FEE performances significantly 
as compared to other structures. In conclusion, VACNTs synthesised from waste 
chicken fat as well as their composite materials with ZnO nanostructures were good 
candidates to be used in field emission devices such as flat panel display. Implication 
of the study is that it offers a new innovation in green technology through the 
production of cheap and high quality VACNTs using the waste chicken fat.  
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SINTESIS NANOTIUB KARBON SEJAJAR DARIPADA SISA LEMAK 
AYAM MENGGUNAKAN KAEDAH PEMENDAPAN WAP KIMIA     

TERMA UNTUK PERANTI PEMANCARAN MEDAN 

 

ABSTRAK 

 

Kajian ini bertujuan mensintesis nanotiub karbon (NTK) daripada sisa lemak ayam 
sebagai karbon prekursor dan ferosena sebagai pemangkin. Kaedah yang digunakan 
dalam kajian ini adalah pemendapan wap kimia terma. Beberapa kajian parametrik 
dijalankan untuk mengoptimumkan penghasilan NTK daripada sisa lemak ayam. 
Karbon prekursor baharu daripada minyak longkang juga dikaji. Sampel dianalisis 
menggunakan mikroskop elektron, analisis tenaga sinar-X, pembelauan sinar-X, 
spektroskopi mikro-Raman, dan analisis termogravimetri. Pemancaran medan bagi 
sampel tertentu dianalisis menggunakan peralatan pemancaran elektron medan 
(PEM). Dapatan kajian menunjukkan bahawa minyak yang diekstrak daripada 
campuran lemak-kulit yang dipotong menjadi bahagian kecil dan dipanaskan 
menggunakan ketuhar telah berjaya menghasilkan NTK sejajar yang tumpat dengan 
diameter yang kecil (18.1-31.2 nm) dan kristaliniti yang tinggi. Sementara itu kadar 
pemanasan sebanyak 70 °C min-1, suhu sintesis dan pengewapan, masing-masing 
pada 800 dan 570 °C, 5.33 peratus berat pemangkin, 60 minit masa sintesis, dan 6 ml 
isipadu prekursor telah dipertimbangkan sebagai parameter-parameter optimum bagi 
penghasilan NTK sejajar daripada sisa lemak ayam, dengan penukaran karbon 
sebanyak 51.94%. Komposit bahan karbon dengan struktur nano zink oksida (ZnO) 
juga difabrikasi menggunakan kaedah rendaman sol-gel untuk meningkatkan 
kemampuan PEM bahan. Pertumbuhan nanoZnO di atas struktur NTK meningkatkan 
kemampuan PEM secara signifikan berbanding struktur yang lain. Kesimpulannya, 
NTK sejajar yang disintesis daripada sisa lemak ayam serta bahan kompositnya 
dengan struktur nanoZnO adalah sesuai digunakan dalam peranti pemancaran medan 
seperti paparan panel rata. Implikasi kajian adalah ia menawarkan satu inovasi baru 
dalam teknologi hijau melalui penghasilan NTK sejajar yang berkualiti tinggi dan 
murah menggunakan sisa lemak ayam. 
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INTRODUCTION 

 

 

 

 

1.1! Introduction 

 

This chapter discussed about research background, problems, objectives, as well as the 

scope and limitation of the studies. The research problems that encourage this study 

were discussed extensively. At the end of this chapter, the thesis organisation was 

presented. 

 

 

1.2! Research Background 

 

Nanotechnology is an emerging and exciting area of scientific development. As one of 

the most active research fields in modern materials science, it offers ways to create 

smaller, lighter and faster devices using fewer raw materials and less energy 
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consumption. The term nanotechnology was first suggested by Norio Taniguchi in 1974 

(Taniguchi, 1974 as cited in Drummen, 2010) to describe the technology that strives 

for precision at the level of about one nanometer (10-9 m). One of the fundamental 

component and keystone to nanotechnology is nanomaterials that referred to materials 

with the grain size of less than 100 nm. The properties of nanomaterials are significantly 

different from those of atoms and bulk materials. This is mainly due to the surface 

effects and the quantum size effects (Roduner, 2006). These effects not only modify 

the materials properties, but also enhance the properties resulting in superb and versatile 

materials (Volokitin et al., 1996)  

 

The first creation breakthrough of the new nanomaterials was reported in 1985 

by Kroto et al. with the discovery of the new carbon type in nature – the fullerenes 

(C60) (Kroto, Heath, O'Brien, Curl, & Smalley, 1985). This led to the discovery of 

carbon nanotubes (CNTs) in 1991 by Iijima (Iijima, 1991).  CNTs are ideal nanoscale 

material that viewed as cylindrical structure formed from graphene sheet which is rolled 

up into seamless hollow tube and closed by fullerenoid end-caps. In general, CNTs can 

be classified as either single-walled CNTs (SWCNTs), double-walled CNTs or multi-

walled CNTs (MWCNTs) depending on the number of rolled graphene shells. Figure 

1.1 shows carbon structures of C60, SWCNT, and MWCNT. 

 

 


