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ABSTRACT 

 
 
The study aims to formulate the production of 4-cyano-4’-pentylbiphenyl (5CB) 
microdroplets within a suitable range to be optically trapped, to optically trap a single 
5CB microdroplet in water within a suitable size range, to optically micro-control the 
microdroplet using a circularly polarized laser, and to quantitatively determine factors 
affecting the optical manipulation of the microdroplet. 0.5 μL 5CB was mixed with the 
deionized water and sonicated to produce bipolar and radial 5CB microdroplet 
suspensions. The 5CB microdroplet was observed under optical microscopy and its size 
distribution was measured using ImageJ, while its stability was measured using UV-
Vis spectroscopy. A linearly polarized laser beam of 976 nm wavelength was used to 
optically trap a single 5CB microdroplet in water at a specific laser power density. A 
circularly polarized laser beam was used to optically trap a single 5CB microdroplet to 
study its orientation control, rotatability control, and simultaneous translation micro-
control. A single 5CB microdroplet was trapped and introduced to the 
cetyltrimethylammonium bromide (CTAB) solution to study its visual internal 
configuration change and optical signal. The finding shows that the size distribution of 
5CB microdroplet suspension decreased with time. However, it was stable and 
sustained in 1-hour monitoring. The 5CB microdroplet could be linearly translated and 
rotated, enabling the simultaneous translation-micro-control. The corner frequency (!!) 
and angular speed (") showed an increasing trend with optical power density (#) 
increment. Exposing CTAB solution to the trapped 5CB microdroplet changed its 
internal configuration from bipolar to radial, optical signal and displacement variance 
($"). In conclusion, the trapped 5CB microdroplet could be micro-controlled as a 
microactuator while !!, ", and $" measurements were characteristics of microdroplet-
based sensors.  This study implies that the optical trapping of a single 5CB microdroplet 
in water has potential for prospective actuating and sensing applications. 
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APLIKASI PENGGERAKAN DAN PENDERIAAN 

 

 

 

ABSTRAK 

 
 
 

Kajian ini bertujuan untuk merumuskan penghasilan mikrotitisan 4-saiano-4’-
pentilbifenil (5CB) dalam julat yang sesuai untuk diperangkap secara optik, untuk 
memerangkap secara optik satu mikrotitisan 5CB tunggal di dalam air dalam julat saiz 
yang sesuai, untuk memikrokawal mikrotitisan tersebut menggunakan alur laser 
berkutub bulat, dan untuk menentukan secara kuantitatif faktor-faktor yang 
mempengaruhi pemanipulasian optik mikrotitisan tersebut. 0.5 μL 5CB telah dicampur 
dengan air ternyahion dan disonikasi dalam tempoh masa yang khusus untuk 
menghasilkan ampaian mikrotitisan 5CB dwikutub dan jejarian di dalam air. 
Mikrotitisan 5CB telah diperhatikan melalui mikroskopi optik dan taburan saiznya 
diukur menggunakan ImageJ manakala kestabilannya diukur menggunakan 
spektroskopi UV-Vis. Satu alur laser berkutub linear yang mempunyai panjang 
gelombang 976 nm digunakan untuk merangkap secara optik satu mikrotitisan 5CB 
tunggal pada ketumpatan kuasa laser tertentu. Alur laser berkutub bulat pula telah 
digunakan untuk merangkap secara optik satu mikrotitisan 5CB tunggal bagi mengkaji 
kawalan orientasi, kawalan kebolehputaran, dan translasi mikrokawalan serentak 
mikrotitisan tersebut. Satu mikrotitisan 5CB tunggal juga diperangkap dan didedahkan 
kepada larutan setiltrimetilammonium bromida (CTAB) untuk mengkaji perubahan 
konfigurasi dalaman secara visual dan signal optik mikrotitisan tersebut. Dapatan 
menunjukkan bahawa taburan saiz ampaian mikrotitisan 5CB berkurang dengan masa. 
Akan tetapi, mikrotitisan tersebut stabil dan kekal dalam pemantauan selama 1 jam. 
Mikrotitisan 5CB tersebut juga boleh diperangkap secara linear dan diputar, 
membolehkan translasi-mikrokawalan serentak. Frekuensi penjuru (!!) dan kelajuan 
sudut (") menunjukkan trend yang meningkat dengan peningkatan ketumpatan kuasa 
laser #. Pendedahan larutan CTAB terhadap mikrotitisan 5CB yang diperangkap telah 
menukarkan konfigurasi dalaman daripada dwikutub kepada jejarian, isyarat optik dan 
sesaran varians ($") mikrotitisan tersebut. Kesimpulannya, mikrotitisan 5CB tunggal 
yang diperangkap boleh dimikrokawal sebagai mikropenggerak manakal pengukuran 
!!, ", dan $" pula merupakan ciri-ciri penderia berasaskan mikrotitisan. Kajian ini 
menunjukkan bahawa perangkap optik satu mikrotitisan 5CB tunggal dalam air 
berpotensi untuk prospektif aplikasi penggerakan dan penderiaan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

The light radiation pressure exerts a force when it comes into contacts with a particle. 

The force that arises from the light radiation pressure is called optical force. The optical 

force was applied in an instrument called optical tweezers.  Arthur Ashkin, the pioneer 

of optical trapping, was awarded the 2018 Nobel Prize in Physics for his invention of 

optical tweezers for biological applications (Goswami, 2018). Optical tweezers use a 

strong, focused laser beam to confine the particle by benefiting optical force. Optical 
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forces mainly contributed to the pulling gradient force and pushing scattering force in 

optical trapping. 

 

It is possible to manipulate small objects in the range of micrometers or smaller 

using light by optical tweezers (Malmqvist & Hertz, 1992; Pai, Zandrini, Mart, & 

Bragheri, 2018). The intense focus laser beam creates an optical trap where it provides 

non-contact micro-manipulation of a non-destructive technique of the trap particle. 

Subsequently, optical trapping provides minimization of the sample flaw, especially 

when handling soft and fragile particles like biological material. Optical trapping not 

only provides manipulation of the trap particle but also provides several applications. 

In the context of optical trapping applications, it is possible to conduct physical 

measurements such as viscosity, stiffness, and elasticity for example, DNA, with the 

help of polystyrene or silica probing (Buosciolo et al., 2004; Müllenbroich et al., 2013). 

The study of the microparticle trajectory by the optical trapping is useful for 

microrheological measurement (Aziz et al., 2015). These are the several applications 

performed by the optical trapping. 

 

  Optical trapping is also used in the chemistry field. This process is called laser 

trapping. Laser trapping application involves the system domain from quantum-scale 

atom trapping to the micro-scale system (David et al., 2013; Neves et al., 2015). Laser 

trapping shows a novel potential for light-matter interaction in molecular systems by 

triggering nucleation-induced crystallization growth and supramolecular assemblies 

(Sugiyama et al., 2012; Supian et al., 2010). Figure 1.1 (left) illustrates the laser 

trapping principle, while Figure 1.1 (right) illustrates the trapping assembly of 
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nanoparticles, polymers, and molecular clusters. The red parabolic line represents the 

optical potential energy in the sample. 

 

 

Figure 1.1. (Left) Laser trapping principle. (Right) Schematic representations 
for the trapping and assembly of nanoparticles, polymers, and molecular clusters. 
[Adapted from (Sugiyama et al., 2012). 

 
 

The application of laser trapping can be classified into Just trapping, Extended 

trapping, and Nucleation and Growth. The “Just trapping” refers to the laser trapping 

of polymers that occurs within the laser spot size in the range of ~ 1 µm. The “Extended 

trapping” of polymer chains can occur within a few to several tens microns beyond 

laser spot size due to the nature of the polymer, for example, due to intermolecular 

interactions. Lastly, in the context of nucleation and growth, nucleation is 

induced, resulting in a large crystal scale from several ten microns to a few millimeters. 

The extension of optical trapping beyond just trapping capability has opened a new 

direction in molecular control using light. 
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Recently, the optical trapping has shifted from trapping solid matter to soft 

matter, such as liquid crystals. Liquid crystal has unique properties where it co-exists 

in between solid and liquid states, anisotropic, birefringent, and sensitive to electric and 

magnetic fields (Brasselet & Juodkazis, 2009; Phanphak et al., 2014). Optical trapping 

of the liquid crystal can be performed in the form of a liquid film or a microdroplet 

(Brasselet, 2008; Brasselet et al., 2003). Interestingly, liquid crystal obtains 

multiple domain configurations, such as nematic, smectic, and cholesteric, which are 

sensitive to the light polarization state (Brasselet & Juodkazis, 2009). 4'-Pentyl-4-

cyanobiphenyl (5CB) is one of the most attractive nematic liquid crystals (NLC) as 

it exhibits liquid crystal properties of nematic phase domain at room temperature (18–

35 °C) (Hanemann et al., 1995). Therefore, 5CB is a suitable model 

compound to study the physical behavior of simple nematics. Figure 1.2 shows the 

chemical structure of 5CB. 

 

 

Figure 1.2. 5CB chemical structure. Adapted from (Yeng, Ayop, & Sasaki, 2022). 

 

 
The dispersion of liquid crystals with an immiscible solvent such as water 

creates liquid crystal droplets. For example, 5CB produces a nematic liquid crystal 

droplet in water. In droplet form, the nematic liquid crystal has a unique internal 

configuration. Internal configuration refers to the domain alignment within the nematic 

liquid crystal droplet. The internal configuration can be controlled by surface 

modification with a surfactant. Tailored polarization of light can manipulate a single 
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nematic liquid crystal microdroplet (Usman et al., 2011). Figure 1.3 shows an example 

of the internal configuration of a nematic liquid crystal microdroplet. 

 

 

Figure 1.3. Liquid crystal internal configuration in a nematic liquid crystal 
microdroplet (a) bipolar and (b) radial. Observation under cross-polarization view 
[Adapted from ((Brasselet & Juodkazis, 2009)]. 

 
 

Optical trapping of nematic liquid crystal microdroplets is possible when 

the refractive index of the droplet is larger than the surrounding refractive index. 

Instead of using solid silica and polymer particles, an optically engineered liquid crystal 

microdroplet is flexibly shaped, allowing rotational control when exposed to the light 

polarization during optical trapping (Pai et al., 2018). This proposed study will 

help to design microfluidic devices that integrate liquid crystals as optically controlled 

microactuators in water filtration devices, lab-on-chips, liquid crystal-based sensors, 

or new technologies. 

 

As sensitive sensors, liquid crystal droplets are indispensable in environmental 

and biomedical science (Niu et al., 2016). This is because liquid crystal droplets are a 

potential optical, biological sensor due to high birefringence and high sensitivity of 
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liquid alignment of liquid crystal molecules to minute variation on the surface. 

Molecular events occurring at an interface between liquid crystal and water can be 

amplified and converted into electrical signals by the change in orientation of liquid 

crystal molecules, which are visible to the naked eye under a polarizing microscope 

(Niu et al., 2016). The liquid crystal-based sensor can detect proteins, nucleic acids, 

acetylcholine, glucose, enzymes, cholic acid, antibodies, and other molecules during 

sensing application. 

 

 

1.2 Problem Statement 

 

Optical tweezers are commonly used to trap and manipulate particles in a liquid. For 

example, most microscopic biological particles must be trapped within the liquid. 

Recent studies showed that microparticles in liquids can form two-dimensional 

structures by laser guidance (Kudo et al., 2016; Shih et al., 2021; Wu et al., 2018).  

However, it was experimentally successful with gold nanoparticles and polystyrene 

beads, even if the theoretical explanation of the observed phenomena is 

not yet mature. One hypothesis states that the lattice-like arrangement is due to light 

propagation through the dielectric properties of the trapped particles. Liquid crystals 

can have both solid-like and liquid-like properties. The magnetic, electrical, and optical 

methods can control the internal configuration inside the liquid crystal droplet. The 

physical properties of liquid crystals depend highly on the alignment of liquid crystal 

molecules in a closed cell. The study of optical trapping utilizing light propagation 

catalyzes new pathways in the assembly, manipulation, and crystallization 
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of microparticles, nanoparticles, supramolecules, and soft matter, as anticipated in this 

study. 

 

The previous researcher reports that the general formulation of nematic liquid 

crystal microdroplet production thus leads to a reproducibility problem (Choi et al., 

2015; Juodkazis et al., 1999; Lee et al., 2015; Murazawa, S. Juodkazis, 2005; Suga et 

al., 2018; Z. Wang et al., 2020). There are no specific formulations, recipes, or 

technical reports to prepare nematic liquid crystal microdroplets. The reported nematic 

liquid crystal microdroplet was relatively large (>10 µm) (Duan et al., 2019; Kiang-Ia 

et al., 2021; Shechter et al., 2020). The nematic liquid crystal microdroplet must be a 

small, miniaturized version of the liquid crystal-based probe. The bigger liquid crystal 

microdroplet is inert with a small optical force in optical trapping application. The 

smaller probe can increase surface volume sensitivity for sensing applications. 

 

Furthermore, although previous researchers reported optical trapping of a single 

nematic liquid crystal microdroplet, they only reported qualitative observation 

of nematic liquid crystal microdroplet trapping by studying the behavior of the trapped 

liquid crystal microdroplet under light polarization (Phanphak et al., 2014; Shechter et 

al., 2020; Usman et al., 2013). No study quantifies the change in the internal 

configuration of the nematic liquid crystal microdroplets in terms of optical signal but 

instead just observing the changes visually (Murazawa, Juodkazis, Matsuo, et al., 2005; 

Shechter et al., 2020). The study of the optical stiffness of nematic liquid crystal 

microdroplets based on the optical which is relevant for evaluating the strength of the 

optical trap, is also not reported. Hence, there is a lack of information on the trend of 
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optical stiffness with exposure to different optical power densities and microdroplet 

sizes for soft matter optical trapping. 

 

In addition, the optical manipulation of the liquid crystal microdroplet has been 

reported on the dynamic behavior when the laser polarization state used is varied (Saito 

& Kimura, 2022). However, there is no combination of simultaneous translational and 

polarization control of liquid crystal microdroplet has been reported. This combination 

is expected to enrich liquid crystal microdroplets for actuating application. In the 

context of rotational study, the laser power used is larger, and the size of the 

microdroplet is bigger, as reported by previous researchers. This becomes an issue 

when the use of strong laser power tends to destroy the liquid crystal nematic phase, 

and bigger microdroplets are challenging to actuate in tiny areas of actuation. Hence, 

there is a requirement to reduce laser power and microdroplet size for actuating 

application using liquid crystal microdroplet trapping. 

 

The conventional liquid crystal-based sensor observes the transition liquid 

crystal configuration without converting the changes into a quantitative signal, possibly 

causing the false judgment when the liquid crystal microdroplet is smaller (Lee et al., 

2015; Niu et al., 2016). The existing liquid crystal-based sensor requires many large 

liquid crystal droplet sizes for detection because the detection is based on the internal 

configurational change of bigger microdroplets (Lee et al., 2015; Niu et al., 2016). The 

current liquid crystal-based sensor applied a lasing technique to increase the detection 

sensitivity by using only a single microdroplet. However, the microdroplet used for 

detection is stuck on the glass slide or hung at the end of the micro syringe which causes 

deformation in shape because of poor control, immobilize and bigger droplet size, 
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leading to a reduction in sensitivity (Duan et al., 2019; Duan, Hao, et al., 2020; Duan, 

Li, et al., 2020). Determining the properties of liquid crystal-based probes is essential 

for future use in microactuators and microsensors in liquids. 

 

This study uses a nematic liquid crystal microdroplet solution. The challenge of 

this study is to produce a nematic solution with a homogeneous size with a 

specific internal configuration in the 5CB microdroplet and quantifying the optical 

manipulation of 5CB microdroplet due to the nature of soft matter. The molecular 

alignment that determines the internal configuration is possible by inducing surface 

modification of the microdroplets. Furthermore, this study develops the optical 

manipulation of a single microdroplet for a liquid-crystal-based actuator and a liquid-

crystal-based sensor involving optical signal transition in a liquid-crystal configuration 

with a quadrant photodiode (QPD). 

 

 

1.3 Research Objective 

 
 
This study aims to optically trap and manipulate 4-Cyano-4’-pentylbiphenyl (5CB) 

microdroplets in water. The objectives of the study are: 

1. To formulate the production of 5CB microdroplets within a suitable range to be 

optically trapped. 

2. To optically trap a single 5CB microdroplet in water within a suitable size range 

using 976 nm laser. 

3. To optically micro-control a single 5CB microdroplet in water using a circularly 

polarized laser. 
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4. To quantitatively determine factors that affect the optical manipulation of the 5CB 

microdroplet for actuating and sensing applications. 

 

1.4 Significance of Research 

 
 
This research examines the optical trapping array of nematic liquid crystal 

microdroplets. This research studies and observes the interaction of light with 5CB 

microdroplets. It explains the physical interaction between 5CB micro-droplets for non-

contact micro-actuators in liquid crystal-based sensor applications. 

 

In addition, the importance of this research lies in the polarization control of 

light using 5CB microdroplets. This study hypothesizes that light 

polarization affects the capture of 5CB microdroplets as they are prone to a light 

polarization state. Varying the laser polarization state used leads directly to a change in 

the intrinsic configuration of the 5CB microdroplet. The cross-polarization view and 

electrical signal from QPD observe and detect intrinsic configurational 

changes within the 5CB microdroplet. 

 

Because liquid crystal is inherently birefringent, this study assumes that the 

optical strength of 5CB microdroplet capture varies with the polarization state of the 

capture laser at the same optical density. In addition, due to internal light loss and light 

loss at the interface, it is expected that the optical strength is not constant for all 5CB 

microdroplet sizes in the tuned range. 
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The optical signal change of the internal configuration of the 5CB 

microdroplet is characterized in the context of corner frequency and optical stiffness 

measurements. This finding is crucial for application in microactuators and sensor 

applications. Determining optical stiffness is useful for precisely controlling liquid 

crystal-based probe applications because optical stiffness shows the trend of the optical 

trapping with respect to varied parameters such as laser power and microdroplet size. 

Hence, the researcher can predict the suitable laser power and probe size for prospective 

application. In addition, optical stiffness measurement results are expected to vary 

for the internal configuration of bipolar and radial 5CB microdroplets. This finding 

helps to precisely characterize the transient change of liquid crystal-based sensors 

especially during the transitional change from bipolar to the radial internal 

configuration of liquid crystal microdroplets, to determine the significant difference to 

be applied for quantitative sensing mechanism, instead of observing them visually, in 

the microsensor application. 

 

 

1.5 Limitation of Research 

 
 
This study focuses on 5CB microdroplet trapping. The phase selected for trapping is 

nematic. The single droplet in the nematic phase is optically captured. 5CB is used as 

the primary liquid crystal to produce a 5CB microdroplet. As already mentioned, 5CB 

exists as a liquid crystal at room temperature; Thus, it instantly creates 5CB micro-

droplets in the water. Deionized water is chosen as the primary liquid for 

optical capture. Other liquid crystals could exist as a pure solids or liquids at room 
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temperature, which is unsuitable for producing microdroplets. Therefore, the 

5CB is dispersed and homogenized in deionized water at room temperature. 

 

The laser tweezers optically trap a single 5CB microdroplet in water with a 

radius of 0.6 µm to 3.7 µm. The 5CB micro-droplet radius of less than 0.5 µm 

is challenging to see clearly under the CCD camera due to the resolution limitation of 

the optical tweezers. In addition, capturing more than one droplet at a time can be 

problematic as it disrupts the 5CB optical signal. Subsequently, the internal 

configuration of the 5CB microdroplets is focused on the bipolar and radial 

configurations. 

 

The optical trapping process of this experiment depends on the optical tweezers 

OTKB(/M). Furthermore, the setup of the optical trap of this experiment depends on 

the oil immersion objective lens (NA 1.25, 100×) and the optical resolution ≈ of 500 

nm. Optical resolution is the limitation of the instrument used to perform 

optical capture. The laser power ranges from 0.2 MW/cm2 to 7.3 MW/cm2. The lower 

laser power is essential for capturing 5CB microdroplets sensitive to temperature 

changes. Too much laser power severely destroys the nematic phase of the 5CB 

microdroplet. 
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1.6 Thesis Outline 

 

This thesis essentially consists of 5 chapters. Chapter 1 provides 

the background to the study and the direction and goal of the research. The central part 

of this chapter is the problem and the research goal. 

 

Chapter 2 deals with the principle of optical trapping. The 

theory for calibrating the optical stiffness of the optical tweezers is presented. The 

previous reports on the optical trapping of solid particles and liquid microdroplets are 

presented. The introduction of liquid crystals, and the optical capture of liquid crystals 

are also discussed. In addition, the use of liquid crystal microdroplets in actuator and 

sensor applications is also described. 

 

Chapter 3 describes the methodology of the research. The first part of the 

methodology is the setup and alignment of optical tweezers. The second part involves 

the preparation of the 5CB microdroplet suspensions in water. The fourth part is the 

optical trapping of the 5CB microdroplet in water using a linearly and circularly 

polarized laser beam. The methodology's last part analyzes the distribution size and 

stability of the 5CB microdroplet suspension, the simultaneous translation and micro 

control, the corner frequency, the angular velocity, and the displacement variance of 

the captured single 5CB microdroplet. 

 

In Chapter 4, the results of the conducted experiment are discussed. The 5CB 

treatment generates the ultrasonic microdroplet and is observed under the optical 

microscope. The distribution size and the stability of the 5CB microdroplet are 
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presented. In addition, the effect of the linearly and circularly polarized laser beam on 

the trapped 5CB microdroplet is observed. The corner frequency 

and angular velocity of the trapped 5CB microdroplet are discussed. In addition, the 

transitional change in the internal configuration of 5CB is quantitatively calculated and 

presented. 

 

Chapter 5 discusses the conclusion of the research findings on the 

research findings. Finally, recommendations are given to improve and expand the 

research for further studies. 

 

 

1.7 Summary 

 

This chapter presents the background of the study, the problem, the research goals, the 

importance of the research, and its limitations. 

 

 

 

 

 

 

 

 




