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ABSTRACT 

 

This study investigated the optical properties of neodymium nanoparticles (NPs) doped 
tellurite glass coated with graphene oxide (GO)/ reduced graphene oxide (rGO). Two series 
of glasses were prepared and coated using melt-quenching and spray-coating methods. The 
X-ray diffractograms proved the amorphous structure of the glass series. The presence of 
non-bridging oxygens in the glass network were proven via FTIR analysis. Meanwhile, the 
existence of neodymium nanoparticles in the tellurite glass network were confirmed using 
TEM analysis. FESEM and EDX analysis showed the morphologies of GO and rGO on 
the glass surface and their chemical elements, respectively. From UV-Vis spectroscopy 
analysis, the optical band gaps of ZBTNd (NPs)-GO and ZBTNd (NPs)-rGO were found 
in the range 2.355-2.998 eV and 2.770-3.125 eV, respectively. Meanwhile, the refractive 
index of ZBTNd (NPs)-GO and ZBTNd (NPs)-rGO were 2.041-2.194 and 2.339-2.657, 
respectively. Furthermore, the oxide ion polarizability (αo2-) of ZBTNd (NPs)-GO and 
ZBTNd (NPs)-rGO were 3.453-3.854 Å and 3.360-3.664 Å, respectively. The optical 
basicity (ꓥ) values for ZBTNd (NPs)-GO and ZBTNd (NPs)-rGO were 1.220 to 1.262 and 
1.174 to 1.214, respectively. The metallization criteria (M) for both glass series 
demonstrate that the glass system has acceptable optical nonlinearity in the range of 0.3 < 
M < 0.4. The nephelauxetic ratio (𝛽) and bonding parameter (δ) indicate the covalency 
nature in both glass series. The emission cross-section spectra and gains of the neodymium 
ions (Nd3+) at the transitions of 4F3/2 → 4I15/2 and 4F3/2 → 4I13/2 were examined using the 
McCumber theory. All glass series indicate a positive increase of more than 60% in 
population inversion. In conclusion, the coating of GO and rGO on the tellurite glass 
surface gives significant effects on the overall optical properties. Implication of this study 
is it can offer new advancements in the glass coating field for laser glass.  
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SIFAT OPTIK DAN KERATAN RENTAS PELEPASAN BAGI KACA TELURIT 
DIDOP NEODIMIUM NANOZARAH DISALUT DENGAN GRAFIN 

OKSIDA/GRAFIN OKSIDA TERTURUN 
 

 

ABSTRAK 

 

Kajian ini menyiasat sifat optik kaca telurit didopkan nanozarah (NPs) neodimium bersalut 
dengan grafin oksida (GO)/ grafin oksida terturun (rGO). Dua siri kaca disediakan dan 
disalut menggunakan kaedah sepuh lindap dan semburan salutan. Difraktogram sinar-X 
membuktikan bahawa siri kaca ini mempunyai sifat amorfus. Kehadiran oksigen tidak 
bersambungan dalam rangkaian kaca telah dibuktikan melalui analisis FTIR. Manakala, 
kewujudan nanozarah neodimium dalam rangkaian kaca telurit telah disahkan 
menggunakan analisis TEM. Analisis FESEM dan EDX masing-masing menunjukkan 
morfologi GO dan rGO pada permukaan kaca dan unsur kimianya. Daripada analisis 
spectroskopi UV-Vis, jurang jalur tenaga optik ZBTNd (NPs)-GO dan ZBTNd (NPs)-rGO 
masing-masing didapati dalam julat 2.355-2.998 eV dan 2.770-3.125 eV. Sementara itu, 
indeks biasan ZBTNd (NPs)-GO dan ZBTNd (NPs)-rGO masing-masing ditentukan dalam 
julat 2.041-2.194 dan 2.339-2.657. Tambahan pula, kebolehpolaran ion oksida (αo2-) 
ZBTNd (NPs) - GO dan ZBTNd (NPs) - rGO masing-masing ialah 3.453-3.854 Å dan 
3.360-3.664 Å. Nilai kebesan optik (ꓥ) untuk ZBTNd (NPs)-GO dan ZBTNd (NPs)-rGO 
masing-masing ialah 1.220 hingga 1.262 dan 1.174 hingga 1.214. Kriteria perlogaman (M) 
untuk kedua-dua siri kaca menunjukkan bahawa sistem kaca mempunyai ketidaklinearan 
optik yang boleh diterima dalam julat 0.3 < M < 0.4. Nisbah nefelauksetik (β) dan 
parameter ikatan (δ) menunjukkan sifat kovalen dalam kedua-dua siri kaca. Spektrum 
keratan rentas pelepasan dan perolehan peralihan ion neodimium Nd3+ pada transisi 4F3/2 
→ 4I15/2 dan 4F3/2 → 4I13/2 diuji berasaskan teori McCumber. Semua siri kaca ini 
menunjukkan peningkatan positif lebih daripada 60% dalam penyongsangan populasi. 
Kesimpulannya, salutan GO dan rGO pada permukaan kaca tellurit memberikan kesan 
yang signifikan kepada sifat optik secara keseluruhan. Implikasi kajian ini adalah ia dapat 
menawarkan kemajuan yang baru dalam bidang salutan kaca dalam kaca laser.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 
 

 

 

 

1.1 Introduction 
 

This chapter describes a brief introduction to the research background, research 

problems and objectives. The significance of the studies, scopes and limitations of the 

study are presented in this chapter. In addition, the explanation overview of the research 

work is presented in Figure 1.1. The last part of this chapter ended with a summary of 

the thesis outline. 

 

.
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Physical ZBTNd NPs-  
Density, molar volume, Oxygen packing density, Polaron Radius, 
Interionic atom and others 
 
Optical characteristics ZBTNd NPs-GO and ZBTNd (NPs)-rGO: 
 
Optical absorption, band gap, refractive index, Urbach energy, optical 
polarizability, oxide ion polarizability, optical basicity, Metallization 
criterion, Nephelauxetic ratio and bonding parameter, optical 
electronegativity. 
 
Absorption and emission cross-section, gain properties 
 

Title: Optical properties and emission cross-section of 
neodymium NPs doped tellurite glass system with 

GO/rGO

Keywords: Tellurite glass; Neodymium NPs 
doped  glass : Optical Properties; Emission cross-
section, Graphene Oxide ; reduced Graphene 
Oxide

Table Of Content:
Chapter 1: Introduction

Chapter 2: Literature Review
Chapter 3: Methodology

Chapter 4: Results and discussion
Chapter 5 Conclusion and recommendation

Research focus : To explore 
the optical properties of two 

series novel neodymium 
nanoparticles [Nd (NPs)] 

doped-tellurite glass coated 
with graphene oxide 

(ZBTNd (NPs)-GO) and 
reduced-graphene oxide 

(ZBTNd (NPs)-rGO)

Findings

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Overview of the research studies
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1.2 Research Background 
 

Glass is a multipurpose material that is used frequently in many applications. Glass can be 

a stiff, brittle, and transparent solid. This characteristic demonstrates that glass has 

exceptional qualities for technological and decorative applications. Furthermore, glass has 

the advantages of being recyclable, chemically resistant, and durable in a wide range of 

temperatures. These characteristics demonstrates the importance of glass in technological 

applications, including architecture, packaging, glassware, photovoltaics, and the most 

cutting-edge fields of microelectronics and photonics (Sidek, 2011).  

 

In the context of photonics applications, particularly telecommunications and laser 

applications, advanced glass materials are used to manufacture glass optical fibres and 

optical components (Righini, 2022). Thus, further research is required to produce optical 

fibre glass materials that can transmit more signals in telecommunications systems and 

serve as fibre and laser amplifiers (Azlan, 2016). Some researchers, for instance, have 

enhanced the performance of existing glass by incorporating rare earth elements such as 

erbium, ytterbium, neodymium, thullium, samarium, gadolinium and others (Kaewkhao et 

al., 2022; Manzani et al., 2012; Su et al., 2018; Tafida et al., 2023; Eevon et al., 2016) 

particularly those pertaining to its structure and optical quality. In order to avoid issues 

such as high production, instability in glass properties, and the tendency for glass to break, 

it is crucial to minimise defects during glass production (Azlan et al., 2019). Furthermore, 

replacing existing glass optical materials necessitates the selection of glass materials with 

superior optical quality and exceptional stability. Thus, several drawbacks must be 
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overcome to manufacture better optical materials for glass fibre optics and laser 

technology. 

 

According to El-Mallawany (2011), tellurite glasses have scientific and 

technological significance due to their physical and optical properties. Tellurite oxide is 

the most stable oxide and its properties inspired scientists to conduct research. This 

substance possesses chemical resistance, a higher normal index, thermal resistance, and 

non-hygroscopic properties (Pandarinath et al., 2016). Moreover, tellurite-based glass 

possesses a high third-order nonlinear susceptibility, making it suitable for use in optical 

amplifiers (Gayathri Pavani et al., 2011). In addition, tellurite glass has a lower phonon 

energy than host glasses containing borate, phosphate, silicate, and germanate. Table 1.1 

lists the categories of glass and their respective phonon energies. According to Tarafdeer 

et al., (2016) glass with a high phonon energy would show weak optical absorption cross 

sections, large non-radiative energy loss, and reduced upconversion luminescence 

performance. Table 1.2 compares the tellurite in chalcogenide, fluoride, and silica glasses. 

The exceptional optical and physical characteristics of tellurite-based glass make it the 

ideal substrate for photonic applications (Wang et al., 1994). 

 

Meanwhile, Stambouli et al., (2012) stated that tellurite glass is widely recognised 

to be a potential host for photonic glass owing to its exceptional stability with rare-earth 

(RE) ions, a wide-reaching radiation window, and its ability to function well as a laser host, 

among other things. This glass has a high refractive index of 2.0 and is chemically stable, 
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making it a superior choice compared to other glasses like borate, germinate, silicate, and 

phosphate glasses (Azlan et al., 2019; Sharma et al., 2022).  

 

 

Table 1.1  

Phonon energy of different glass hosts  

Glass hosts Phonon Energy (cm-1) 

Borate 1400 

Phosphate 1200 

Silica 1100 

Germanate 900 

Tellurite 700 

Adapted from Tarafder et al., 2016  
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Table 1.2  

Comparing tellurite, silica, fluoride, and chalcogenide glasses.  

 

Adapted from Wang et., al 1994  

 6 
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Ternary tellurite-based glass systems are stable due to the combination of the 

glass modifier and glass former. Due to its instability and propensity to crystallise, pure 

TeO2 cannot by itself produce glass (Azlan, 2016; Hasim, 2014). TeO2 must be 

modified with substances like alkali, alkali earth, and transition metal oxide to improve 

its capacity to form glass. In particular, the physical features, density, optical qualities, 

and mechanical durability of glass systems may change as a result of the inclusion of 

these modifiers (Effendy et al., 2021). 

 

Tellurium oxide (TeO2), borate oxide and zinc oxide are regarded as the optimal 

choices for modifying tellurite-based glass systems. According to reports, incorporating 

borate into TeO2 glass increases infrared transmission and reduces hygroscopicity. 

(Azlan et al., 2017). Some researchers believe that B2O3 is an exceptional glass-forming 

element because it can exist with three or four coordinates and produce stable glasses. 

It has tremendous potential as a novel optical device. Due to its highly 

soluble with rare-earth ions and strong B-O covalent bonds. Furthermore, incorporation 

of a small quantity of TeO2 to the borate glass matrix enhances both the transparency 

and refractive index of the glass, thereby augmenting its overall quality.(Ami Hazlin et 

al., 2017; Faznny et al., 2017; Gayathri Pavani et al., 2011; Halimah et al., 2020; 

Pandarinath et al., 2016).  

 

In order to enhance the rigidity, chemical resistance, and thermodynamic 

properties development of glass systems, zinc oxide has been used as glass modifier. 

The inclusion of zinc oxide within the glass matrix reduces the crystallization rate. Zinc 

oxide may act as a network former or network modifier that may infiltrate the glass 
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structure. As a network modifier, ZnO causes the formation of non-bonding oxygens 

(NBOs) by breaking the Te-O-Te bond (Effendy et al., 2021). 

 

Incorporating rare earth elements into different glass oxides plays a pivotal role 

in advancing of optical devices, including infrared lasers, visible conversion devices, 

and fibre and waveguide boosters, which are essential for applications in 

telecommunications networks. In addition, there is considerable interest in employing 

trivalent rare earth ions as functional components in glass host substances due to the 

presence of numerous fluorescent states with the 4f electron configuration, the majority 

of which are visible. These ions play a crucial role in facilitating rapid pumping 

applications and allowing dye lasers to be tuned (Hasim, 2014).  

 

According to (Jha et al., 2012), the use of rare-earth doped tellurium oxide 

(TeO2) in glass lasers provides for more wavelength flexibility as well as superior Q-

switching and mode-locking for power density at fewer pump energies as compared to 

crystal-based products. Neodymium oxide is among the superior rare-earth oxides 

utilised variety of devices that deal with optics including lasing materials, broadband 

amplifiers, and laser glass (Azlina et al., 2020). Because of the unique optical properties 

of the 4f shell, neodymium nanoparticles embedded in tellurite glass may offer a 

potential laser material to replace the present neodymium-doped phosphate laser glass 

(Halimah et al., 2020; Shaari et al., 2021). 

 

Moreover, neodymium oxide in tellurite glass provides a minimal laser level of 

8 mW and lowers losses within during the development of laser glass, (Azlan et al., 

2019; Bell et al., 2014). Also, neodymium-doped tellurite is appropriate for optical 
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amplification or solid-state lasers, and it emits NIR light efficiently at 1062 nm 

(Venkateswarlu et al., 2015). Therefore, we will be doing this research using rare-earth 

neodymium nanoparticles as our active element material choice for the tellurite glass 

systems. 

 

The use of graphene based materials has attracted the interest of researchers, 

notably in laser applications (Kant et al., 2022; Tseng et al., 2021; Wang et al., 2023) . 

Novoselov et al. stated in 2004 that graphene has several excellent properties, such as 

strong electrical conductivity, flexibility, and toughness (Novoselov et al., 2004). 

Moreover, graphene materials possess exceptional optical properties. However, 

graphene embedding into long stretches of fibre has limitations because of the difficulty 

of controlling graphene in particle form, which leads to transmission interruptions 

(Ruan et al., 2016; Shaari et al., 2022).  

 

So, another graphene-based material derivative known as graphene oxide (GO) 

and reduced graphene oxide (rGO) has been used as a replacement of graphene flakes 

in the production of fibres for use in ultrafast laser and sensor applications, among other 

things. The remarkable characteristics of GO and derivatives have attracted the interest 

of many uses (Gerosa et al., 2020; Kavitha & Jaiswal, 2016), as shown in Figure 1.2, 

including optoelectronics, supercapacitors, or an energy storage device like lithium-ion 

rechargeable batteries based on graphene oxide, sensor (biosensor) solar cells, catalysts, 

photocatalysts, and more applications. (Azlina et al., 2021; Dideikin &Vul’, 2019). 
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Figure 1.2. Application of GO and derivatives. Adapted from Dideikin & Vul’, 2019  
 
 

Graphene oxide comprises stacked layers with numerous oxygen functional 

groups, including epoxy, hydroxyl, carboxyl, and carbonyl groups. Azlina et al.,(2020) 

observed that oxygen-containing functional groups in GO layers improved optical 

characteristics, indicating that GO significantly impacted tellurite glass for optical fibre 

(Azlina et al., 2020). Combining this graphene-based material with tellurite glass is yet 

another technique for increasing the optical properties of the glass network system. 

Graphene based materials is the most outstanding choice for making superb glass 

coatings and is highly advantageous to fibre optic applications. According to reports, 

the graphene-based material coating on the tellurite surface leads to the glass having a 

high refractive index of more than 2.000, ranging from 2.301 to 2.332 (GO) (Azlina et 

al., 2021) and 2.402 to 2.775 (rGO) (Azlina et al., 2023). Therefore, this technique can 
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improve superior fibre core materials, especially optical fibre, and will enhance optical 

fibre laser technology. 

 

As an outcome result, a more comprehensive study into the utilization of 

graphene-based materials and optical glass materials is essential in order to enhance the 

optical properties of glass systems. Additionally, this innovative research can yield 

extremely intriguing outcomes, particularly for the fibre optic and fibre laser 

technology industries.  

 

 

1.3 Research Problems 
 

Neodymium-doped phosphate oxide glasses are commonly use as the host material for 

laser gain media in the fibre laser and laser glass industry due to their high solubility, 

large emission cross-section, and long lifetimes (He et al., 2017; MetaLaser, 2022a). 

However, phosphate oxide glass is limited in manufacturing the highest laser power at 

ambient conditions due to poor optical sensitivity (Deepa et al., 2019), low chemical 

stability (Elbakey et al., 2020), and high hygroscopic properties (Jan et al., 2019; Zaid 

et al., 2012). As a result, it has low strength, high fragility, and is prone to fracture 

(Hamzah et al., 2017), which can increase production costs and sensitivity to back-

reflected light, leading to laser glass failure. Furthermore, it has been observed that 

phosphate glass exhibits a diminished stark splitting effect, leading to certain thermal 

drawbacks (Azlan et al., 2018). Zhang et al. reported that unsatisfactory lasing 

performance of Yb3+ phosphate glass resulting in narrow stark splitting where effect 

thermal block during laser operation (Zhang et al., 2015). To overcome this issue, new 
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glass materials with improved optical qualities must be invented to replace the current 

laser gain media materials. Therefore, tellurite glass is selected to replace the current 

host material due to of the low hygroscopic, high solubility of rare earth ions and the 

ease of drawing fibres at low temperatures compared with phosphate glass. 

 

Tellurite glass is a very promising host glass for optical glass in these studies. 

Due to its exceptional qualities, including its excellent match with rare-earth (RE) ions. 

It has been chosen over other glass oxides due to its broad transmittance window, 

outstanding laser medium (Barbosa et al., 2017; Syam Prasad & Venkateswara Rao 

2018), excellent laser host (Jha et al., 2012; Oermann, 2011), and good chemical 

resistance (Elkhoshkhany et al., 2021; Halimah et al., 2021). 

 

Recently, most researchers have been focusing their attention on a few 

techniques, such as co-doping the host glass with two different REIs and embedding 

optically effective NP-metallic (Au/Ag) or transition oxide. This approach is an 

improvement technique that can boost the optical performance of glass systems 

(Abdullahi et al., 2020; Halimah et al., 2021; Manzani et al., 2017; Peng et al., 2015; 

Saad, 2019; Yu et al., 2018; Dechun Zhou et al., 2017).  

 

A carbon-based material coating is an additional method. Several studies 

suggested that deposition of GO, rGO and CNT films onto the surface of tellurite glass 

could improve the optical characteristics of laser glass (Azlina, 2023; Azlina et al., 

2021; Azlina et al., 2020; Shaari et al., 2021). However, the application of carbon-based 

materials to optical fibre glass remains unestablished, lack of data in publication and 

requires additional research. Therefore, additional research must be conducted to 
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contribute new information to optical fibre and laser applications. Futhermore, the 

research on glass coating can be more extented to overcome these limitations.The 

deposition of carbon-based materials especially graphene oxide (GO) and reduced 

graphene oxide (rGO) coated on glass surface via a simple spray coating technique can 

be step to achieve high functionality of optical fibre especially in the application of 

fiber optics technology. In summary, the research proposed in the present study are 

summerized in Table 1.3. 

 

 

Table 1.3 

Summary of the research problems and research solutions that relate to the study 

Research Problem Research Solution 

Poor optical sensitivity, low 

chemical instability, and high 

hygroscopic properties (Hamzah et 

al., 2017), contribute to the high 

production cost of phosphate oxide 

glass. 

Replace the new glass host 

materials, which are tellurite glass, 

with exceptional characteristics, 

particularly to improve the optical 

attributes of the existing glass host. 

Enhancement of the properties of 

optical glass by using co-doping 

with two different REIs and 

embedding optically effective NP-

metallic (Au/Ag) or transition oxide, 

which can lead to expensive 

Utilising a glass coating approach 

with graphene-based materials on 

the glass improved the optical 

properties of the low-priced glass 

system. 

(continue) 
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Research Problem Research Solution 

production costs in glass fabrication 

(Abdullahi et al., 2020; Halimah et 

al., 2021; Manzani et al., 2017; Peng 

et al., 2015; Saad, 2019; Yu et al., 

2018; Dechun Zhou et al., 2017). 

The previous researcher reported the 

lack of data on publications 

regarding the usage of carbon-based 

materials as coating materials for 

optical glass (Shaari et al., 2021). 

Expansion research on carbon-based 

material coating such as GO and 

rGO in optical glass may provide 

novel knowledge for fibre optics 

technology. 

 

 

1.4 Research Objectives 
 

The purpose of this study is to examine the impact of deposited carbon-based materials, 

such as graphene oxide (GO) or reduced graphene oxide (rGO), on tellurite glass 

systems, with a particular focus on structural and optical property enhancements. Based 

on the purpose, the following are the objectives of this study are: 

 

1. To study the surface morphology,particle size, and bonding parameter of 

ZBTNd (NPs) glasses, GO and rGO solution by using FESEM, FTIR, TEM, 

XRD and Raman Spectroscopy. 

Table 1.3 (Continued) 

 

Table 1.3 (continued) 
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2. To analyze the absorption spectra, refractive index, optical band gap energy, 

Urbach energy, Fermi energy and the nephelauxetic ratio of ZBTNd (NPs)-GO 

and ZBTNd (NPS)-rGO glasses by using UV-Vis spectroscopy 

3. To determine the electronic polarizability, oxide ion polarizability, optical 

basicity, and metallization criterion of ZBTNd (NPs)-GO and ZBTNd (NPs)-

rGO the glasses via the Lorentz-Lorentz equation. 

4. To investigate the stimulated emission cross-section and gain efficiency of 

ZBTNd (NPs)-GO and ZBTNd (NPs)-rGO glasses  

 

 

1.5 Significance of the Study 
 

The nanomaterial coating technique, which is also very important in nano-intermediate 

science, will result in significant scientific and technical advances (Cao et al., 2013). 

Graphene oxide (GO) and reduced graphene oxide (rGO) have been used on glass fibre 

to enhance their mechanical and electronic properties. According to Ruan et al., (2016) 

graphene oxide can be combined with glass fibre, which can excite light and capture 

signals from a distance, making it a perfect medium for a range of practical applications 

to utilise applications of its unique optical and electronic properties. It could also be 

used in many fields, especially as flexible conducting wires, multifunctional fibres, and 

sensitive sensors (Fang et al., 2019). Besides, the ability of GO and rGO also has been 

explored in past several years to improve the enhanced mechanical and electrical 

properties, especially on composites reinforced by short fibres (Bhanuprakash, 

Parasuram, & Varghese, 2019). 
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Moreover, the graphene oxide can improve the optical properties of tellurite 

glass samples, making them acceptable for use in applications involving fibre optics. 

Azlina et al., (2020) found that the graphene-based effect increased the values of optical 

band gap energy, refractive index, and electronic polarizability after deposit compared 

to uncoated glass. Thus, it is advantageous to reduce photon energy losses during the 

transmission process in fibre optics applications. 

 

Thus, the purpose of this study is to investigate the structural and optical 

properties of carbon-based coated neodymium nanoparticle-doped tellurite glass, which 

has the potential to contribute to technological advancements in optical applications. In 

addition, the obtained data may be used to improve the capabilities of glass and raise 

its laser emission potential. In addition, theoretical and experimental findings may be 

investigated in these glass materials as potential near-infrared laser active media, as 

well as the effect of GO/rGO as a glass coating on the optical parameter of tellurite 

glass systems. 

 

 

1.6 Scope and Limitation of the Study 
 

Firstly, neodymium-doped zinc borotellurite glass system of {(0.47(1- y)) TeO2 + 

(0.2(1-y)) B2O3 + (0.29(1- y)) ZnO + (y) Nd2O3 (nanoparticles)} GO/rGO (coated), 

(y=0.01, 0.02, 0.03, 0.04 and 0.05) molar fraction denoted as ZBTNd (NPs)-GO and 

ZBTNd (NPs)-rGO were fabricated by using conventional melt quenching method. 
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After the sample preparation, graphene oxide (GO) and reduced graphene oxide 

(rGO) will be synthesised using electrochemical exfoliation from the graphite electrode 

and the reduction process of GO. All the glass samples will be coated with GO/ rGO 

using the spraying method. Several analysis techniques were utilised for 

characterisation, such as UV-Visible spectroscopy, X-ray Diffraction (XRD), Field 

emission scanning electron microscopy (FESEM), Fourier Transform Infrared (FTIR) 

spectroscopy, Transmission Electron Microscopy (TEM), Energy Dispersive X-ray 

(EDX) and Raman spectroscopy. For optical characteristics, optical absorption, band 

gap, refractive index, Urbach energy, optical polarizability, oxide ion polarizability, 

optical basicity, and emission cross-section will be obtained according to the equations. 

 

 

1.7 Thesis Outline 
 

The present thesis is structured into five distinct chapters. The initial chapter serves as 

an introductory section covering various components such as the study's background, a 

comprehensive overview of glass, the research's motivating factors, a problem 

description, the objectives, the scope, and the limitations. The second chapter provides 

a literature review that provides a critical analysis of the research, providing an 

overview of the glass and previous studies regarding the structure and optical properties 

of rare-earth-doped tellurite glass systems. 

 

The third chapter focuses on the melt-quenched method of fabricating 

neodymium NPs-doped tellurite glass. In the meanwhile, graphene oxide was 

synthesised via electrochemical exfoliation. Graphene oxide was then reduced using 



18 

 

 

the reduction technique to produce reduced graphene oxide. In this section, the spray-

coating technique is discussed. These materials were examined in order to determine 

their structural and phase compositions. After glass formation, X-ray diffraction (XRD) 

analysis and Fourier transform infrared spectroscopy (FTIR) were conducted to verify 

the amorphous character of the glass and the bonding of the glass structure. Using 

FESEM and micro-Raman spectroscopy, the morphology and microstructural 

properties of graphene oxide and reduced graphene oxide on the glass surface were 

determined. TEM analysis confirmed that the glass samples contained neodymium 

NPS. Using EDX testing, the atomic composition of GO and RGO was determined. 

Utilising UV–visible–NIR spectroscopy, the optical properties were determined.  

 

The results and discussion of the structural characterization and optical 

characteristics of the two glass series are presented in Chapter Four. These glass series 

are graphene oxide-coated neodymium nanoparticle-doped tellurite glass and reduced 

graphene oxide-coated neodymium nanoparticle-doped tellurite glass. The fifth chapter 

concludes this study and makes suggestions for future research. 
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