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ABSTRACT 

 

This research endeavours to employ optical trapping technique for manipulating a single 
microcrystalline cellulose microcluster (MCCM) in solution. The viscosity of low 
concentration microcrystalline cellulose (MCCM) solutions was assessed to identify optimal 
concentrations for optical tweezer applications. These solutions were prepared via the 
sonication method, and their viscosity was measured using a rheometer. Utilizing optical 
microscopy, MCCM formation was observed to determine suitable size ranges for optical 
trapping. A single MCCM was successfully trapped using a 976nm linearly polarized laser with 
a numerical aperture of 1.4, whist manipulation was achieved employing a circularly polarized 
laser. The translation motion of the MCCM was facilitated by a piezostage system. Trajectories 
of the MCCM were analyzed through visual observation via a CCD camera and scattering light 
detection with a quadrant photodiode (QPD). The findings indicated that solutions with 
concentrations below 1% w/w were optimal for optical trapping. MCCM ranging from 0.5 μm 
to 4.0 μm were effectively trapped within a laser power density range of 0.6 MW/cm² to             
2.2 MW/cm², with the additional capability of rotation using the circularly polarized laser.          
In conclusion, this research demonstrates the feasibility of employing optical techniques, in 
conjunction with a piezostage, to achieve simultaneous linear translation and rotational motion 
of a single microcrystalline cellulose microcluster. This research implies that a single cellulose 
microcluster and fibrous microparticle, such as MCCM, can be optically micro-controlled for 
microtool applications. 
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PEMERANGKAPAN DAN MANIPULASI OPTIK MIKROGUGUSAN SELULOSA 
MIKROHABLUR UNTUK APLIKASI MIKROALAT 

 

ABSTRAK 

 

Kajian ini bertujuan untuk menggunakan teknik pemerangkapan optik bagi memanipulasikan 
kluster mikroselulosa mikrohablur (MCCM) tunggal dalam larutan. Kelikatan larutan selulosa 
mikrohablur (MCCM) pada kepekatan rendah diukur untuk mengenal pasti kepekatan optimum 
bagi kegunaan penyepit optik. Larutan-larutan ini disediakan melalui kaedah sonikasi dan 
kelikatannya diukur menggunakan reometer. Dengan menggunakan mikroskopi optik, 
pembentukan MCCM diperhatikan untuk menentukan julat saiz yang sesuai bagi 
pemerangkapan optik. MCCM tunggal diperangkap menggunakan laser terkutub linear 976nm 
pada bukaan berangka 1.4, manakala manipulasi dicapai dengan menggunakan laser terkutub 
bulatan. Pergerakan MCCM secara translasi dilakukan menggunakan sistem pentas piezo. 
Trajektori MCCM dianalisis melalui pemerhatian visual melalui kamera CCD dan pengesanan 
cahaya serakan dengan fodiod kuadran (QPD). Penemuan menunjukkan bahawa larutan dengan 
kepekatan di bawah 1% w/w adalah optimal bagi pemerangkapan optik. MCCM dalam julat   
0.5 μm hingga 4.0 μm berjaya diperangkap dengan berkesan dalam julat ketumpatan kuasa laser 
0.6 MW/cm² hingga 2.2 MW/cm², dengan kebolehan tambahan putaran menggunakan laser 
terkutub bulatan. Kesimpulannya, kajian ini menunjukkan kebolehan menggunakan teknik 
optik, bersama-sama dengan piezopentas, untuk mencapai pergerakan translasi dan putaran 
secara serentak bagi kluster mikroselulosa mikrohablur tunggal. Kajian ini mencadangkan 
bahawa kluster mikroselulosa tunggal dan mikrozarah fibrosa, seperti MCCM, boleh 
dimikrokawal secara optik bagi aplikasi mikroalat. 
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INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

This chapter gives a brief introduction to the research. The chapter begins with the 

research background, followed by the problem statement's presentation. Several 

objectives were identified to guide this research in order to address the challenge 

highlighted in the problem statement. In this chapter, the brief description of the optical 

trapping and microcrystalline cellulose are explained. Consequently, the significant of 

the research and scope will also be described in this chapter. Finally, this chapter is 

concluded with the summary of the thesis. 
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1.2 Background of the Research 

 

1.2.1 Microcrystalline Cellulose 

 

Microcrystalline cellulose (MCC) is widely used in various industrial fields such as 

medicine, cosmetics, pharmaceuticals, and polymer composite. Due to its novelty, non-

toxicity properties, economic value, biodegradation, mechanical properties, surface 

area, and biocompatibility, the interest in microcrystalline cellulose has increased (Bai 

& Li, 2009; Cataldi et al., 2014; Gómez Hoyos et al., 2013; J.-K. Kim, 1993; Rafiee & 

Keshavarz, 2015; Trache et al., 2016). For example, the properties of hydrogels 

facilitate their usage in bio-related applications, including drug delivery systems, tissue-

engineering scaffolds, wound dressing, and biomedical devices (Choe et al., 2018; 

Peppas et al., 2006; Seliktar, 2012; Sun et al., 2012; Zhao, 2014). The Hydrogels' 

imperfect mechanical properties would have limitations that require high-strength 

properties (Kamata et al., 2014). Therefore, cellulose can be a suitable biopolymer for 

synthesising with outstanding mechanical properties (Choe et al., 2018).  

 

Due to the inherent crystalline structure, cellulose exhibits high strength, high 

stiffness, and low density (H. Zhang & Liu, 2008). It is possible to synthesise 

microcrystalline cellulose hydrogel by controlling the viscosity of cellulose solutions. 

The information on the viscosity of microcrystalline cellulose is essential for a small-

scale to industrial scale in a diverse field to optimize quality. It can directly affect the 

final product (J.-K. Kim, 1993).  
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Figure 1.1.  Molecular structure of microcrystalline cellulose. 

 

MCC with the molecular formula (C12H20O10)n, as shown in Figure 1.1, is 

commercially available in a free-flowing powder form of white appearance. MCC poses 

limitations needed for some applications compared to other natural polysaccharide 

polymers, such as low wettability, moisture absorption, and limitation in processing 

temperature (Trache et al., 2016). In the previous research on cellulose-filled 

engineering thermoplastics, scientists believed cellulose as a reinforcement or additive 

did not give encouraging results. The materials exhibited severe discolouration and 

cellulose thermal degradation at temperatures needed to process these engineering 

thermoplastics. However, recently researchers have looked again at cellulose-filled 

engineering thermoplastic and suggested that microcrystalline cellulose-filled nylon 

composites are relevant in thermally challenging areas due to the higher mechanical 

properties and lower density, such as engine covers, intake manifolds and radiator end 

tanks (Kiziltas et al., 2014). It is also essential to know and observe the temperature 

dependence due to the limitation of microcrystalline cellulose in processing 

temperature to optimize the product's quality and cost-effectiveness in various 

industrial processes (Trache et al., 2016). The viscosity value expects to decrease due 

to the increasing temperature for all liquids. However, modifications of viscosity value 
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are essential as they could influence the operational cost of several stages in the 

industrial process, such as mixing and fluid transport (Riyanto et al., 2015).  

 

This research further explores the potential of microcrystalline cellulose with 

the combination of optical tweezers technology. At low concentrations of 

microcrystalline cellulose in water, a single microcluster of microcrystalline cellulose 

can be used as a microtool. The microtool can be designed as a microvalve or 

microcarrier in microfluidic channels. 

 

 

1.2.2 Viscosity Measurement of Microcrystalline Cellulose 

 

Microcrystalline cellulose (MCC) is composed of small crystalline particles and 

possesses unique rheological properties that influence its behavior in solution. 

Understanding the viscosity of MCC solutions is crucial for optimizing processes such 

as manufacturing, formulation, and processing of MCC-based products. 

 

Viscosity measurement is a fundamental rheological characterization technique 

used to assess the flow behavior of fluids or suspensions. In the case of MCC solutions, 

viscosity plays a significant role in determining their flow properties, stability, and 

performance in various applications. Rheometers are commonly employed instruments 

for measuring viscosity, offering precise control over experimental conditions and 

providing valuable insights into the rheological behavior of complex fluids like MCC 

solutions. Rajeev et al. (2018) investigated the viscosity behavior of MCC solutions at 

different water concentration range. Their research revealed the concentration-
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dependent viscosity profile of MCC solutions, highlighting the importance of viscosity 

measurements for optimizing processing parameters in MCC-based formulations. 

 

The recent research, G. H. Zhao et al. (2011) explored the rheological properties 

of microcrystalline cellulose (MCC) and sodium carboxymethyl cellulose (Na-CMC) 

and their impact as stabilising and suspending agents in pharmaceutical formulations. 

Their research emphasized the need for accurate viscosity measurements to ensure 

product quality and performance. As example the requirement of the spraying action 

for applications in intranasal spray delivery, the viscosity required to be low at high 

shear rates. A comprehensive research have been conducted on the rheological 

characteristics of MCC dispersions in different solvent systems. It provided insights 

into the effect of solvent composition on the viscosity of MCC solutions, aiding in the 

formulation design for various applications (Yohana Chaerunisaa et al., 2020). 

 

The importance of rheological analysis in optimizing manufacturing processes 

for MCC-derived products have been demonstrated by investigate the influence of 

processing parameters on the viscosity of MCC suspensions during the fabrication of 

microcrystalline cellulose-based materials envolving field of 3D printing of hydrogels 

and aerogels (Barrulas & Corvo, 2023). Boran et al. (2016) evaluated the viscosity 

behavior of MCC solutions under shear and extensional flow conditions using advanced 

rheological techniques. Their research contributed to a better understanding of the 

rheological properties of MCC and its applications in industries such as food, 

pharmaceuticals, and biotechnology. 
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These studies collectively underscore the significance of viscosity measurement 

using rheometers in characterizing MCC solutions and optimizing their performance in 

various industrial applications. By building upon these insights, the present research 

aims to further elucidate the viscosity behavior of MCC solutions and its implications 

for microtool applications in conjunction with optical tweezers. 

 

 

1.2.3 Optical Tweezers 

 

Optical tweezers are applied to facilitate the micromanipulation of a particle using light. 

It required laser light with high-intensity values, which is focused through a high 

numerical aperture objective lens. Light momentum changes when it is absorbed, 

reflected, and refracted by a transparent object. The momentum changes are conserved 

with the reaction force on the object. Optical tweezers can be established just by using 

a single laser source. Two main forces dominate in optical tweezers: the gradient force 

and the scattering force. The scattering force always pushes particles away from the 

source. 

 

Meanwhile, the gradient force is caused by the variation of light intensity in 

space. The more step the intensity change, the stronger the force will be occurred. The 

balance between these two forces establishes a stable optical trap which can be used for 

various applications. 
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Figure 1.2. Rays pathway of the laser beam (a) when the bead is off-axis in parallel 
rays and (b) in the axis centre in focused rays. 
 

Figure 1.2 illustrates the two situations of a spherical dielectric bead that 

established a gradient optical force using a laser with a Gaussian intensity profile. In 

Figure 1.2 (a), two parallel rays of different intensities pass through the bead. Both 

undergo twice refractions. Figure 1.3 shows the vectorial force analysis for the 

situation. Figure 1.3 (a) shows that the momentum of higher intensity ray changes by 

∆𝒑ଵ = 𝒑ଵ,௨௧ − 𝒑ଵ,. To conserve the momentum, the same amount of momentum is 

transferred to the bead, giving arise to the reaction, 𝑭ଵ on the bead. Figure 1.3 (b) shows 

the same effect in the lower-intensity ray. Therefore, 𝑭ଵ and 𝑭ଶ total up to 𝑭ோ, which 

directs toward the laser axis as in Figure 1.3 (c). 

 

 
Figure 1.3. Vectorial force analysis for the situation in Figure 1.2 (a). 

𝒑ଵ,௨௧ 

−𝒑ଵ, 

∆𝒑ଵ = 𝒑ଵ,௨௧ − 𝒑ଵ, 

𝑭𝟏 

𝒑ଶ,௨௧ 

−𝒑ଶ, 

∆𝒑ଶ = 𝒑ଶ,௨௧ − 𝒑ଶ, 

𝑭𝟐 
𝑭𝟏 𝑭𝟐 

𝑭𝑹 

a)    b)     c) 
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Figure 1.4. Vectorial force analysis for the situation in Figure 1.2 (b). 

 

Figure 1.4 shows the vectorial force analysis for the situation in Figure 1.2 (b). 

The entering rays are focused and have the same intensity. Figure 1.4 (a) shows that the 

momentum of the right incoming ray changes by ∆𝒑ଵ = 𝒑ଵ,௨௧ − 𝒑ଵ,. To conserve the 

momentum, the same amount of momentum is transferred to the bead, giving arise to 

the reaction, 𝑭ଵ on the bead. The same effect occurs to the left incoming ray in Figure 

1.4 (b). Therefore, 𝑭ଵ and 𝑭ଶ total up to 𝑭ோ, which directs toward the laser axis as in 

Figure 1.4 (c). Therefore, a particle can experience a force pushed back directly to the 

laser beam if the beam is strictly focused (Dholakia et al., 2002). The introductory 

analysis gives an idea of the arising optical forces due to the nature of the light-carrying 

momentum. Further explanation will be discussed in Chapter 2. 

 

Optical tweezers or optical traps are practicably the most flexible for single-

particle molecule manipulation techniques. They simultaneously measure the three-

dimensional displacement of the trapped particle with sub-nanometer accuracy and sub-

millisecond time resolution. Moreover, it also can exert forces exceeding 100 pN on 

particles ranging in microns to nanometer size. These attributes make them suitable for 

the measurement of motion and force. The particles can now be trapped, observed, 

oriented and guided by the optical tweezers. Optical trapping could impact the 

𝒑ଶ,௨௧ 
−𝒑ଶ, 

∆𝒑ଶ = 𝒑ଶ,௨௧ − 𝒑ଶ, 

𝑭𝟐 

𝒑ଵ,௨௧ 
−𝒑ଵ, 

∆𝒑ଵ = 𝒑ଵ,௨௧ − 𝒑ଵ, 

𝑭𝟏 

𝑭𝟏 𝑭𝟐 
𝑭𝑹 

a)    b)     c) 
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bioengineering field, for example in aiming at micro-robotic surgeons (A. I. Bunea & 

Glückstad, 2019). Optical tweezers can be used in microfluidic devices as a probe 

enabling selective control of microparticles (Kumar et al., 2020). With these 

capabilities of optical tweezers, this research explores the usage of optical tweezers for 

controlling a fibrous irregular shape of MCC.  

 

 

1.2.4  Microfluidic Devices 

 

Microfluidics devices usually have channel dimensions of tens to hundreds of 

micrometres and can process fluids in small quantities from 1 attolitre up to 1 nanolitre. 

Microfluidic devices offer the potential to automate a broad range of physical, chemical 

and biological operations with high efficiency, repeatability and 

reproducibility. Among the methods of fabricating a microfluid device are micro-

cutting, ultrasonic machining, electro-discharge machining, micro-electrochemical 

machining, laser ablation and electron beam machining (Scott & Ali, 2021). An 

example of a microfluidic device is a capacitive-based pressure sensor using a spiral 

microchannel inspired by a fish cupula structure (Shahripul Azeman et al., 2020). 

Figure 1.5 shows the cross-section of the sensor. An applied pressure will deflect the 

liquid-containing dome. The propylene carbonate, an electrolyte,  is used as a flexible 

moveable liquid to fill the spiral microchannel around the dome. The capacitance of the 

microchannel changes as detected by electrodes beneath it according to liquid 

displacement. The dome-shaped sensor with a spiral microchannel was fabricated using 

Polydimethylsiloxane (PDMS). 
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Figure 1.5. A capacitive-based pressor sensor using spiral microchannel, (a) cross-
sectional view before applied pressure and (b) the deflection of the dome structure 
due to an applied pressure (Shahripul Azeman et al., 2020). 
 

In addition to physical quantity detection, microfluidic devices can be tailored 

for biochemical sensing. Figure 1.6 shows such devices, a microfluidic-based 

immunoassay for prostate cancer detection (Meyer & Gorin, 2019). A substantial 

volume of blood is collected by a sample collector containing antibodies. The sample 

connects to a cassette to channel the blood-containing liquid through the microfluidic 

portion. The silver amplification reagents in the microfluidic portion react with active 

substances labelled to the antibodies to deposit a silver metallic film at the end of the 

channel. This film is inserted in a light path for quantitative measurement. The 

deposition of the film interferes with the light transmission. The detection method is 

based n the optical density of the deposited film. 
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Figure 1.6.  A microfluidic-based immunoassay for prostate cancer detection (Meyer 
& Gorin, 2019). 
 

Other than acting as a sensor, microfluidic devices include microactuators. Such 

an example is shown in Figure 1.7.  In this device, a photosensitive hydrogel functions 

as a microvalve in a microchannel. The functional metal-containing polymer hydrogel 

shrinks when illuminated with near-infrared light and returns to its original size once 

the illumination stops, thus limiting the liquid flow. Therefore, the microvalve can 

control a microflow using non-contact and non-mechanical methods. 

 

 
Figure 1.7. Hydrogel-based microvalve (Lin et al., 2021). 

 

 The examples described above indicated the wide possible microsensor and 

microactuators, called microtools based on microfluidics devices. The motivation for 
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the miniaturization in microfluidic devices calls for challenges and solutions for 

advanced fabrication, manipulation and detection methods. 

 

 

1.2.5  Optical Tweezers in Microfluidic Applications 

 

The potential of using optical tweezers for microtool applications in microfluidics 

devices has been forecasted as earlier as its invention (Ashkin, 1970). For example, a 

pair of spherical vaterite particles trapped in two separate optical tweezers were used 

as an optically driven micropump, as shown in Figure 1.8 (Leach et al., 2006). The 

birefringence property of the vaterite enables optical torque using circularly polarised 

light to induce flow in the microfluidic channel of tens micrometer space. The circularly 

polarised light was produced by introducing wave plates in the light path. 

 

 In Chapter 4, it can be shown that the microcrystalline cellulose used in this 

research also shows the birefringence property, which can be orientated and rotated 

using a specific state of polarised light. Figure 1.8 (a) shows that the vaterite pair is 

rotated to induce a downward flow. A flow rate of up to 5 μm/s can be induced in the 

microchannel using 1064nm optical tweezers. It is also interesting that the flow can be 

made reversible by tuning up the direction of the vaterite rotation. 
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Figure 1.8. An optically driven micropump, (a) A circularly polarised laser rotates a 
pair of 6-micrometre vaterite beads to induce flow and (b) The trace of the probe bead 
is used to quantify the flow in the micropump (Leach et al., 2006). 
 

 In the recent research, the kinetics of poly(ethylene oxide) (PEO) adsorption 

onto the surface of an immobilized silica microparticle of diameter 1 micron in a 

controlled flow and solution environment, was studied using optical 

tweezers and microfluidics as shown in Figure 1.9 (Geonzon et al., 2022). The polymer 

adsorption kinetics was evaluated by the layer thickness on the single microparticle by 

measuring the optical trap stiffness under predetermined liquid flow rates. As the PEO 

solution is introduced in the microchannel, it will adsorb onto the particle surface 

depending on the ionic concentration in the surrounding set by introducing sodium 

hydroxide solution. In this experiment, the optical tweezers function as an actuator 

which remotely holds the microparticle in an optical trap and as a sensing probe which 

measures the change in hydrodynamics drag due to the thickening of the adsorption 

layer. As the layer becomes thicker, the bead displacement due to the flow decreases as 

the hydrodynamic drag increases. 

vaterite 
beads 

probe 
bead 

(a)      (b) 
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Figure 1.9. Optical tweezers used to study adsorption kinetics on a single 
microparticle surface in a microfluidic channel. 
 

 The above-mentioned example of the combination of optical tweezers and 

microfluidics shows various possible microtools applications which require non-

contact and remote control and detection at micro- and nano-scale.  

 

 

1.3 Problem Statement 

 

The biodegradable and non-toxic nature of microcrystalline cellulose microclusters 

presents promising potential for various applications, including microtool applications 

in combination with optical tweezers, such as drug carriers and microvalves in fluidic 

devices (Trache et al., 2016). However, conventional micro-control methods like 

magnetic tweezers are not applicable to microcrystalline cellulose due to its non-

magnetic properties, and even magnetic microprobes cannot be attached to it without 

altering its physical characteristics. Although cellulose ink can be manipulated with 

micropipettes at a resolution of 3 μm, using mechanical contact control may distort the 

cellulose microstructure (Herranen et al., 2019). 
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Furthermore, fibrous structures like microcrystalline cellulose pose challenges 

for optical tweezers due to the necessity of the controlled particles being optically 

transparent, homogeneous, and spherical in shape (Herranen et al., 2019). Nonetheless, 

recent studies have demonstrated the optical control of irregularly shaped and porous 

particles, suggesting a potential avenue for manipulating fibrous and irregularly shaped 

microcrystalline cellulose clusters using optical tweezers (Mahadi, Ayop, & Supian, 

2022); Mahadi, Ayop, Mat Yeng, et al., 2022). 

 

This research aims to investigate the feasibility of optically controlling 

microcrystalline cellulose microclusters, potentially paving the way for novel 

applications of cellulose-like materials in microtool technologies. By exploring this 

direction, this research are seek to address the limitations of conventional micro-control 

methods and unlock new possibilities for utilizing microcrystalline cellulose in 

microscale applications. 

 

Recent literature supports the importance of understanding the rheological 

properties of cellulose-based materials for microtool applications. For instance, studies 

by Rajeev et al. (2018) and G. H. Zhao et al. (2011) highlight the significance of 

viscosity measurements in optimizing optical trapping procedures for colloidal 

suspensions. 

 

Current advancements in optical trapping techniques have been reported in the 

literature. For example, the research by Lin et al. (2011) demonstrates approaches to 

enhance the trapping efficiency of microparticles in colloidal solutions, which could 

provide insights into optimizing optical trapping of MCCM. 
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The utilization of circularly polarized light for optical manipulation has been 

investigated in recent research. Studies by Shi et al. (2022) and Mahadi, Ayop, & 

Supian (2022) showcase the efficacy of circular polarization in precisely controlling the 

movement of microscale particles, providing a potential method for the optical 

manipulation of MCCM. 

 

For instance, research by J. Li et al. (2022) demonstrates the integration of 

optical manipulation with piezostage systems for achieving precise translation and 

rotation control of microscale objects. This recent literature highlights advancements in 

achieving precise microcontrol of particles using optical techniques and offering 

insights into potential methodologies for controlling MCCM. 

 

 

1.4 Research Questions 

 

These research questions align with the research objectives and aim to address specific 

aspects of the optical trapping and manipulation of microcrystalline cellulose 

microclusters, contributing to the broader understanding of their potential as microtools 

in combination with optical tweezers. The research questions are as below: 

 

i. What is the relationship between the concentration of microcrystalline 

cellulose microcluster (MCCM) solutions and their viscosity profiles, as 

measured using a rheometer? How does the viscosity of MCCM solutions 

vary with different concentrations? What is the viscosity range suitable for 

optical trapping procedures of MCCM? 
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ii. How can optical tweezers be optimized to efficiently trap a single MCCM 

within the size range of 0.5 μm to 4.0 μm in a 1% w/w MCCM solution? 

What are the parameters influencing the efficiency of optical trapping for 

MCCM? How can the optical trapping efficiency be improved for MCCM 

falling within the specified size range?  

 

iii. What is the efficacy of circularly polarized light in the optical manipulation 

of a single MCCM? How does the use of circularly polarized light influence 

the manipulation capabilities of MCCM? Can circularly polarized light 

effectively control the movement and position of MCCM in solution? 

 

iv. How can precise translation and rotation microcontrol of a single MCCM 

within a 2 μm shift range be achieved using optical techniques, potentially 

in conjunction with piezostage systems? What optical techniques are 

suitable for achieving precise translation and rotation control of MCCM? 

How can piezostage systems be integrated with optical techniques to 

enhance microcontrol capabilities for MCCM? 

 

 

1.5 Research Objectives 

 

This research aimed to optically trap and manipulate a single microcrystalline 

microcellulose microcluster (MCCM). This research was done to broaden the potential 

of cellulose-based as microtools in combination with optical tweezers. Specifically, 

these research objectives are: 
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i. to measure the viscosity of various concentrations of MCCM solutions using 

rheometer and identify the viscosity range suitable for optical trapping 

procedures,  

 

ii. to enhance optically trap a single MCCM within the size range of 0.5 to 4.0 μm 

in a 1% w/w MCCM solution by utilizing optical tweezers,  

 

iii. to approach the optical manipulation of the single MCCM using circularly 

polarised light, and 

 

iv. to achieve precise translation and rotation microcontrol of the single MCCM 

within a 2 μm shift range by employing optical techniques, possibly in 

conjunction with piezostage systems.  

 

 

1.6 Research Significances 

 

This research was conducted to optical micro-control of the fibrous and irregularly 

shaped microcrystalline cellulose microcluster. The significance of this research is as 

follows. 

 

i. The trapping MCC microcluster is challenging because of its physical 

geometry. Every single MCC has a unique fibrous and irregular shape. A 

systematic research on the optical manipulation of the MCC, such as 
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reported in this research, contributes to the knowledge of trapping cellulose-

liked particles for various intended applications.   

 

ii. These optical tweezers require only a minimal sample, which is in the order 

of microliter (μL). This reduces sample preparation costs, especially for the 

expensive or limited sample. 

 

iii. MCC is a biodegradable and non-toxic material which can be embedded in 

a microfluidic device with optical manipulation technique. Optical tweezers 

offer non-contact mechanical control over a single microcluster. Multiple 

control over several microclusters is also possible with optical gratings. 

 

iv. Explores the possibility of optically controlling the microcrystalline 

cellulose microcluster, which could open a new direction in cellulose-like 

material usage for microtool applications. 

 

 

1.7 Scope of the Research 

 

This research focuses on the optical trap and manipulating a single microcrystalline 

cellulose microcluster (MCCM) in a solution. The microcrystalline cellulose is tested 

using an optical tweezer with changing physical properties such as size and laser power 

density. The optical tweezers used in this research were Thorlabs Modular Optical 

Tweezers System OTKB/M. A single MCCM trapped using a linearly polarised laser 

with wavelength 976nm at numerical aperture 1.4 and limited laser power densities 
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from 0.6 MW/cm² to 2.2 MW/cm². The type of cellulose used in this research was 

microcrystalline cellulose in deionized water without additional surfactant or 

derivatives. The rheometer was used to determine the optimal sonication time for 

microcrystalline cellulose solutions based on the viscosity trend for further use in 

optical trapping and manipulation. The sonication time in this research was set to 60 

minutes for microcrystalline cellulose solution preparation. The suitable size range for 

microcrystalline cellulose microcluster (MCCM) formation and the ideal concentration 

used in optical trapping were determined based on optical microscopy observation. The 

trapping and manipulating process of the MCCM was performed within an effective 

radius of 0.5 μm to 4.0 μm. Smaller MCCM was challenging to observe using the 

current setup as the resolution limit of the objective lens use is 0.5 μm. A larger MCCM 

is not interested in the research since high laser power is required to perform such an 

experiment and is not cost-effective. 

 

 

1.8 Summary of the Research 

 

This thesis consists of five chapters. The first chapter of this research explained the 

background, problem statement, objectives, significance, and scope of the research. The 

second chapter has briefly explained the principle of the optical tweezer, calibration of 

the optical trapping and its applications, microtools applications, and microcrystalline 

cellulose and its potential in microtool applications. The third chapter describes the 

methodology used in this research. It is divided into microcrystalline cellulose sample 

preparation and optical tweezers assembly. The sample is also examined with a 

rheometer for viscosity measurement. The microcrystalline cellulose microcluster 



21 
 

(MCCM) is also examined under optical microscopy for size observation. For the 

optical tweezer, the polarization control of the laser is described. The manipulation of 

the MCCM angular velocity analysis of the rotated trapped microcrystalline cellulose 

microcluster will be described in detail. The following section, Chapter 4, discusses the 

findings obtained from the research. The microcrystalline cellulose microcluster 

(MCCM) was produced and was optically trapped and manipulated using optical 

tweezers. The effective radius "𝑟", angular velocity, 𝜔 of the trapped MCCM were 

determined using the procedure described in Chapter 3, Research Methodology. The 

final section concludes the finding and objectives of the research and provides 

recommendations for further studies that could be improved in future. 

 

 

 

 




