🕓 05-4506832 😵 pustaka.upsi.edu.my 📑 Perpustakaan Tuanku Bainun 💟 PustakaTBainun 👘 ptbupsi INFLUENCE OF ULTRASONIC VIBRATION ON TIN COATED BIOMEDICAL TI-13Zr-13Nb ALLOY

ARMAN SHAH BIN ABDULLAH

S 05-4506832 PuA thesis submitted in fulfilment of the PustakaTBainun of proupsi requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

🕓 05-4506832 😵 pustaka.upsi.edu.my 🕇 Perpustakaan Tuanku Bainun 💟 PustakaTBainun 🐻 ptbupsi

05-4506832

pustaka.upsi.edu.my

Kampus Sultan Abdul Jalil Sha

ABSTRACT

PustakaTBainun

ptbupsi

Biomedical grade of titanium alloys are prone to undergo degradation in body fluid environment. Surface coating such as Physical Vapor Deposition (PVD) can serve as one of the alternatives to minimize this issue. Past reports highlighted that coated PVD layer consists of pores, pin holes and columnar growth which act as channels for the aggressive medium to attack the substrate. Duplex and multilayer coatings seem able to address this issue at certain extent but at the expense of manufacturing time and cost. In the present work, the effect of ultrasonic vibration parameters on PVD-Titanium Nitride (TiN) coated Ti-13Zr-13Nb biomedical alloy was studied. Disk type samples were prepared and coated with TiN at various conditions: bias voltage (-125V), substrate temperature (100 to 300 °C) and nitrogen gas flow rate (100 to 300 sccm). Ultrasonic vibration was then subsequently applied on extreme high and low conditions of TiN coated samples at two different frequencies (8 kHz, 16 kHz) and three set of exposure times (5 min, 8 min, 11 min). Encouraging results of PVD coating are observed on the samples coated at higher polarity of nitrogen gas flow rate (300 sccm) and substrate temperature (300 °C) in terms of providing better surface morphology and roughness, coating thickness and adhesion strength. All TiN coated samples treated with ultrasonic vibration exhibit higher corrosion resistance than the untreated ones. Microstructure analysis under (Field Emission Scanning Electron Microscopy (FESEM) confirms that the higher ultrasonic frequency (16 kHz) and the longer exposure time (11 minutes) produce the most compact coating. It is believed that hammering effect from ultrasonic vibration reduces the micro channels' size in the coating and thus decelerates the corrosion attack. Nano indentation test conducted on the ultrasonic treated samples provides a higher Hardness/Elasticity (H/E) ratio than untreated ones. This suggests that the ultrasonic vibration treated samples could also have a lower wear rate.

05-4506832 🔮 pustaka.upsi.edu.my 👔 Perpustakaan Tuanku Bainun 💟 PustakaTBainun 👘 ptbupsi

ABSTRAK

Gred bioperubatan aloi titanium lebih cenderung mengalami kakisan dalam persekitaran cecair badan. Salutan permukaan seperti Physical Vapor Deposition (PVD) boleh digunakan sebagai salah satu alternatif untuk mengurangkan masalah ini. Hasil kajian sebelum ini menunjukkan bahawa lapisan salutan PVD terdiri daripada liang-liang, lubang pin, dan pertumbuhan kolumnar yang bertindak sebagai salah satu saluran untuk cecair menyerang substrat. Substrat yang disalut dengan dua lapisan atau lebih dilihat dapat mengatasi masalah ini pada kadar tertentu tetapi ianya melibatkan kos pembuatan yang tinggi dengan masa yang panjang. Dalam kajian ini, kesan parameter getaran ultrasonik ke atas PVD- Titanium Nitride (TiN) yang disalut ke atas aloi bioperubatan Ti-13Zr-13Nb telah dikaji. Sampel berbentuk cakera disediakan dan disalut dengan TiN pada voltan pincang (-125V), suhu substrat (100 hingga 300 °C) dan kadar aliran gas nitrogen (100-300 sccm). Getaran ultrasonik kemudiannya dikenakan ke atas sampel yang disalut dengan TiN dalam keadaan dua frekuensi yang berbeza (8 kHz, 16 kHz) dan tiga masa pendedahan (5 min, 8 min, 11 min). Hasil kajian salutan PVD yang menggalakkan diperolehi ke atas sampel yang dikenakan pada kadar aliran gas nitrogen dan suhu substrat yang tinggi dari segi morpologi dan keserataan permukaan, ketebalan salutan dan kekuatan lekatan yang lebih baik. Semua sampel yang dirawat dengan salutan TiN menggunakan getaran ultrasonik menunjukkan ketahanan kakisan yang tinggi jika dibandingkan dengan sampel tanpa rawatan. Analisis struktur mikro menggunakan Field Emission Scanning Electron Microscopy (FESEM) mengesahkan bahawa ultrasonik frekuensi yang tinggi dengan masa yang lama menghasilkan lapisan yang paling padat. Ini adalah disebabkan kesan ketukan yang dihasilkan oleh getaran ultrasonik yang mana dapat mengecilkan saiz saluran pada salutan tersebut dan dengan itu mengurangkan serangan kakisan. Ujian lekukan nano yang dijalankan ke atas sampel yang dirawat dengan getaran didapati menghasilkan nilai nisbah Hardness/Elasticy H/E yang tinggi jika dibandingkan dengan sampel tanpa rawatan. Ini menunjukkan bahawa sampel yang dikenakan rawatan getaran ultrasonik juga boleh menghasilkan kadar kehausan yang lebih rendah.

05-4506832 😵 pustaka.upsi.edu.my 🕇 Perpustakaan Tuanku Bainun 💟 PustakaTBainun 👘 ptbupsi

CHAPTER

TITLE

'AGE

	DEC	CLARATION		ii
	DEI	DICATION		iii
	ACI	KNOWLEDGEMENTS		iv
	ABS	STRACT		v
	ABS	TRAK		vi
	TAF	BLE OF CONTENTS		vii
05-2	LIS"	Perpustakaan Tuanku Bainun pustaka.upsi.edu.my F OF FIGURES	PustakaTBainun	ptbupsi Xiii
	LIST	Γ OF ABBREVIATIONS		xx
	LIST	F OF APPENDICES		xxii
1	INT	RODUCTION		1
	1.1	Background of the problem		1
	1.2	Problem statements		3
	1.3	Objectives of the study		3
	1.4	Scopes of the Study		4
	1.5	Significance of the Study		4
	1.6	Thesis organization		5
2	LITI	ERATURE REVIEW		6
05-4	2.1 1506832 2.2	Introduction pustaka.upsi.edu.my Implant biomaterials	PustakaTBainun	f ptbupsi
	2.3	Titanium and its alloys		10
		2.3.1 Unalloyed titanium		11

	٠	٠
V1	1	1

	2.3.2	Alpha a	nd near alpha alloy	11
	2.3.3	Alpha- l	oeta alloy	12
	2.3.4	Beta allo	ру	12
05-4506832	2.3.5	Ti-13Zr	-13Nb Pustakaan Tuanku Bainun PustakaTBainun PustakaTBainun	13oupsi
2.4	Issues	in biomate	erials	16
2.5	Overvi	iew of surf	face modification techniques	20
2.6	Physic	al vapour	deposition	25
	2.6.1	Principle	e of arc vapour deposition and	
		typical is	ssues	34
	2.6.2	TiN coat	ting via PVD technique	37
2.7	Ultrasc	onic and its	s types	39
	2.7.1	Ultrason	ic machining	40
	2.7.2	Principle	e of ultrasonic machining	42
2.8	Evalua	tion of coa	ating performance	43
	2.8.1	Overview	w of corrosion theory and	
		fundame	ntal	43
	2.8.2	Corrosio	n principle and mechanism	44
05-4506832	2.8.3	Types of	COTTOSION	46 ptbupsi
		2.8.3.1	Uniform corrosion	46
		2.8.3.2	Galvanic corrosion	46
		2.8.3.3	Crevice corrosion	49
		2.8.4.4	Pitting corrosion	49
		2.8.3.5	Selective leaching or dealloying	50
		2.8.3.6	Erosion corrosion	50
		2.8.3.7	Intergranular corrosion (IGC)	50
	2.8.4	Corrosio	n testing techniques	52
		2.8.4.1	Tafel plot	52
		2.8.4.2	Electrochemical impedance	
			spectroscopy (EIS)	54
	2.8.5	Coating a	adhesion strength measurement	55
	2.8.6	Nanoinde	entation testing	58
<u>05-4506832</u> 2.9	Summa	ary of liter	Kampus Sultan Abdul Jalil Shah	62

3	ME	THODO	LOGY		64
	3.1	Introdu	uction		64
	3.2	Overvi	iew of met	hodology	64
05-45	06 323 (Substr	ate materia	l and preparation DestakaTBainun	o ptbu 65
		3.3.1	Cutting	process	65
		3.3.2	Grinding	g and polishing of substrate metal	67
		3.3.3	Cleaning	g of the substrate	70
	3.4	CAPV	D coating	procedure-stage I preliminary	
		experin	nent		70
	3.5	Experi	ment setup	o for stage II and III	72
		3.5.1	CAPVD	coating procedure – stage II	72
		3.5.2	Ultrason	ic assisted ball impingement	
			procedur	e	73
	3.6	Analyti	ical and m	aterial characterizations	75
		3.6.1	Surface 1	norphology and compound	75
			analysis		
		3.6.2	TiN coat	ing adhesion strength analysis	77
05-45		3.6.3	Corrosio	n test procedure	2 ptbupsi 78
			3.6.3.1	Tafel plot	78
			3.6.3.2	Electrochemical impendence	
				spectroscopy (EIS)	79
			3.6.3.3	Hardness-elasticity (H/E) analysis	80
4	RES	ULTS A	ND DISC	USSION	81
	4.1	Introdu	ction		81
	4.2	Stage	I - Prelin	ninary experimental results and	
		discussi	on		81
	4.3	Stage II	– Experin	nental results and discussion	86
		4.3.1	Introduct	ion	86
		4.3.2	Effect of	CAPVD parameters on properties	
05-450	06832 (😯 pustaka u	of TiN co	atingakaan Tuanku Bainun S Pustaka TBainun	86
	4.4	Stage II	I – Experi	mental results and discussion	96
		4.4.1	Ultrasoni	c treatment (8 kHz) on TiN coated	
			samples (extreame high condition)	96

4.4.2 Ultrasonic treatment (8 kHz) on TiN coated		d		
			samples (extreame low condition)	106
		4.4.3	Ultrasonic treatment (16 kHz) on TiN	
05-450683	2) pustaka.upsi.e	coated samples (extreame high condition)	ptbupsi 114
		4.4.4	Ultrasonic treatment (16 kHz) on TiN	
			coated samples (extreame low condition)	122
		4.4.5	Effect of ultrasinic treatment on corrosion	
			properties of TiN coated sample	130
	4.5	Summa	ry of findings	139
5	CON		ONS AND RECOMMENDATIONS	140
	5.1	Introdu	ction	140
	5.2	Conclus	sions	140
	5.3	Recom	nendations for future works	141
REFERENC	ES			143

Appendices A-B O5-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 162-167 ptbupsi

TABLE NO.

O 5-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun LIST OF TABLES

TITLE

PAGE

2.1		Surgical use of biomaterial	8
2.2		Class of materials used in the body	9
2.3		Chemical composition range of Ti-13Nb-13Zr	13
2.4		Classification of biomaterials based on its interaction with	
		its surrounding tissue	18
2.5	05-4506832	Surface modification methods used for titanium and its	
		alloys implants	21
2.6		Steady state electrode material potential, volts referenced	
		to saturated calomel half-cell	48
2.7		Advantages and disadvantages of scratch test methods	57
2.8		Comparison of critical load values obtained by scratch	
		testing	58
3.1		Mechanical properties of Ti-13Zr-13Nb	65
3.2		CAPVD parameters used in preliminary experiment	71
3.3		CAPVD parameters used in stage II	72
3.4		Parameters for ultrasonic milling	75
4.1	05-4506832	Summary of output data from nanoindentation test for ultrasonic treated on TiN at 8 kHz for different exposure	
		times (extreme high condition)	102

4.2	Corrosion parameters calculated from Tafel and EIS for	
	ultrasonic treated on TiN coating at 8 kHz for different	
4.3	holding times (extreme low condition) pustaka.upsi.edu.my frequestakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Summary of output data from nanoindentation test for	105 ptbupsi
	ultrasonic treated at 8 kHz for deferent exposure	
	times(extreme low condition)	110
4.4	Corrosion parameters calculated from Tafel and EIS for	
	ultrasonic treated on TiN coating at 8 kHz for different	
	times (extreme low condition)	113
4.5	Summary of output data from nanoindentation test for	
	ultrasonic treated at 16 kHz for deferent exposure times	
	(extreme high condition)	118
4.6	Corrosion parameters calculated from Tafel and EIS for	
	ultrasonic treated on TiN coating at 16 kHz for different	
	exposure times (extreme high condition)	121
4.7 🕟 05-4506832	Summary of output data from nanoindentation test for	ptbupsi
	ultrasonic treated at 16 kHz for deferent exposure times	126
	(extreme low condition)	
4.8	Corrosion parameters calculated from Tafel and EIS for	
	ultrasonic treated on TiN coating at 16 kHz for different	
	holding times (extreme low condition)	130

FIGURE NO.

TITLE

C 05-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun LIST OF FIGURES PustakaTBainun f ptbupsi

PAGE

2.1	Elastic modulus of metallic biomaterials	10
2.2	Cross sectioned views for multilayer Ti ₂ N ceramic coating on NdFeB substrate (a) crater with thin layer of	
	ceramic coating (b) and pin hole in the ceramic coating.	30
2.3	Schematic diagram of CAPVD process.	37
2.4	Main elements of an ultrasonic machining system.	41
2.5 05-4506832	Material removal mechanisms in USM.	ptbupsi 43
2.6	Electric double layers at metal-electrolyte interface in	
	the presence of chemisorbed anions	45
2.7	The electrochemical reactions associated with the	
	corrosion of ferum in an acid solution.	45
2.8	Excitation waveform for tafel plot.	53
2.9	Excitation measurement tafel plot.	54
2.10	Schematic of the nanoindentation of an elasto-plastic	
	solid by a conical cone at full load and unload	60
2.11	Schematic of the load-displacement curve	
	corresponding to the nanoindentation depicted by Figure	
	2.10	61
2.12 05-4506832	Wear behaviour versus Si content in CrN-based coating	ptbupsi
	systems. on specific wear rate and H^3/E^2	62

3.1	Flow chart of overall research methodology	66
3.2	Buehler Isomet 4000 precision cutter machine	67
3.3 🕓 05-4506832	Sample after cutting Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	67 upsi
3.4	Strues Tegramin 25 polishing machine	68
3.5	Summarize of grinding and polishing step on Titanium substrate	69
3.6	Substrate cleaning equipment (a) Bransonic 2500 (b) Steam cleaner	70
3.7	Cathodic Arc Evaporation machine.	71
3.8	Sonic mill ultrasonic machine AP-10001X)	74
3.9	Steel ball used for impinging the TiN coated substrate	74
3.10	Field Emission Scanning Electron Microscopy available	
	at faculty of mechanical engineering	76
3.11	X Ray Diffraction available at AMREC, SIRIM	76
3.12 05-4506832	Scratch tester machine available at UniMAP, Perlis	ptbupsi 77
3.13	(a) Overall set-up of corrosion test on potential machine	
	(b) Enlargement of corrosion cell set-up	79
3.14	Nanoindenter testing machine	80
4.1	SEM micrographs of TiN coating on Ti-13Zr 13Nb at	
	different substrate temperatures and nitrogen gas flow	
	rates.	82
4.2	Cross sectional views of TiN coating thickness obtained	
	at different substrate temperatures and nitrogen gas flow	
	rates	83
4.3	Effect of substarte temperature and nitrogen gas flow	
05 4504022	rate on coating thickness	84
4.4	Surface roughness of TiN coated at different nitrogen	proupsi
	gas flow rate and substrate temperature	85

4.5	XRD patterns of TiN coating deposited at 100 sccm (a)	
	100°C (b) 200°C, (c) 300°C of substrate temperature, at	
05-4506832	200sccm (d) 100°C (e) 200°C (f) 300°C, and at 300sccm, (g) 100°C, (h) 200°C. (i) 300°C	87 ^{psi}
4.6	SEM micrograph for TiN coated at different substrate	
	temperature and nitrogen gas flow rate	88
4.7	Size distribution of TiN coating microdroplets at various	
	nitrogen gas flow and substrate temperatures	89
4.8	Cross section view of TiN after coated at different	
	nitrogen gas flow and substrate temperature	91
4.9	Effect of substrate temperature and nitogen gas flow rate	
	on coating thickness.	92
4.10	Effect of substrate temperature and nitogen gas flow rate	
	on surface roughness	93
4.11	Optical image of scratch tracks along with graphs of	Ð
05-4506832	friction coefficient, friction force and normal forces at	ptbupsi
	bias voltage, substrate temperature and nitrogen gas	95
4.10	Critical load of TDI costed at any interest	<i>yJ</i>
4.12	critical load of 11N coated at various substrate	
	temperature and introgen gas now rate.	96
4.13	Surface morphology of extreme high conditions of TiN	
	after ultrasonic treated at 8 kHz for exposure time (a) 5	
	condition)	98
4.14	Cross sectional view of TiN after ultrasonic treated at 8	
	kHz for exposure times (a) 5 minute (b) 8 minute and	
	(c) 11 minute (extreme high condition)	99
4.15 05-4506832	Effect of ultrasonic treatment on TiN at 8 kHz for pustaka.upsi.edu.my for kampus Sultan Abdul Jali Shin different exposure times (extreme high condition)	ptbupsi 100
4.16	Load vs. displacement curve of TiN coated after ultrasonic treated at 8 kHz for exposure times (a) 5 min,	

xv

	(b) 8 min, and (c) 11 min (extreme high condition)	101
4.17 (c) 05-4506832	Tafel plots of TiN coated after ultrasonic treated at 8 kHz for exposure times a) 5 min (b) 8 min, and (c) 11 pustaka upsi.edu.my framewis Sultan Adult Jali Shah min, 16 kHz (extreme high condition)	ptbupsi 103
4.18	Nyquist plots for of TiN coated after ultrasonic treated at 8 kHz for various exposure times (extreme high condition)	104
4.19	Bode Plots (a) $\log z $ Vs log f and (b) Phase angle Vs log f for ultrasonic treated on TiN coating at 8 kHz for various exposure times (extreme high condition)	105
4.20	Surface morphology of TiN after ultrasonic treated at 8 kHz for exposure time (a) 5 minute (b) 8 minute and (c) 11 minute (extreme low condition)	107
4.21	Cross sectional view of TiN after ultrasonic treated at 8 kHz for exposure times (a) 5 minute (b) 8 minute and	- 100
05-45068324.22	Effect of ultrasonic treatment on TiN at 8 kHz for different exposure times (extreme low condition)	108
4.23	Load vs. displacement curve of TiN coated after ultrasonic treated at 8 kHz for times (a) 5 min, (b) 8 min, and (c) 11 min (extreme low condition)	110
4.24	Tafel plots of TiN coated after ultrasonic treated at 8 kHz for exposure times a) 5 min (b) 8 min, and (c) 11 min, (extreme low condition)	111
4.25	Nyquist plots for of TiN coated after ultrasonic treated at 8 kHz for various exposure times (extreme low condition)	112
4.26 05-4506832	Bode Plots (a) log z Vs log f and (b) Phase angle Vs log f for ultrasonic treated on TiN coating at 8 kHz for various holding times	ptbupsi
4.27	Surface morphology of TiN after ultrasonic treated at 16	

xvi

	kHz for exposure time (a) 5 minute (b) 8 minute and (c) 11 minute (extreme high condition)	115
4.28	Cross sectional view of TiN after ultrasonic treated at 16 pustaka upsi.edu.my in Kampus Sultan Abdul Jeli Shah kHz for exposure times (a) 5 minute (b) 8 minute and	otbupsi
	(c) IT minute (extreme night condition)	110
4.29	Effect of ultrasonic treatment on TiN at 16 kHz for different exposure times (extreme high condition)	117
4.30	Load vs. displacement curve of TiN coated after ultrasonic treated at 16 kHz for holding times (a) 5 min, (b) 8 min, and (c) 11 min	118
4.31	Tafel plots of TiN coated after ultrasonic treated at 8 kHz for exposure times a) 5 min (b) 8 min, and (c) 11 min, (extreme high condition)	119
4.32	Nyquist plots for of TiN coated after ultrasonic treated at 16 kHz for various exposure times (extreme high	
C	05-4506832 Condition Pustaka-upsi.edu.my	120 otbupsi
4.33	Bode Plots (a) log z Vs log f and (b) Phase angle Vslog f for ultrasonic treated on TiN coating at 16 kHz forvarious exposure times (extreme high condition)	21
4.34	Surface morphology of TiN after ultrasonic treated at 16 kHz for exposure times (a) 5 minute (b) 8 minute and (c) 11 minute (extreme low condition) 1	.23
4.35	Cross sectional view of TiN after ultrasonic treated at 16 kHz for exposure times (a) 5 minute (b) 8 minute and (c) 11 minute (extreme low condition) 1	24
4.36	Effect of ultrasonic treatment on TiN at 16 kHz for different holding times (extreme low condition) 1	25
4.37	Load vs. displacement curve of TiN coated after ultrasonic treated at 16 kHz for exposure times (a) 5 min (b) 8 min and (c) 11 min (avtreme law condition)	otbupsi 26
1 28	Tafal plate of TiN costed offer ultraceric treated at 16	20
4.30	Tatel plots of the coaled after ultrasonic treated at 10	

	kHz for exposure times (a) 5 min (b) 8 min, and (c) 11 min, (extreme low condition)	127
4.39	Nyquist plots for of TiN coated after ultrasonic treated pustaka upst.edu.my at 16 kHz for various holding times (extreme low condition)	ptbupsi
4.40	Bode Plots (a) log z Vs log f and (b) Phase angle Vs log f for ultrasonic treated on TiN coating at 16 kHz for various holding times (extreme low condition)	129
4.41	Equivalent circuit to fit electrochemical impedance data	130
4.42	SEM micrographs of TiN coated samples (extreme high PVD coating condition) after being treated under ultrasonic vibration at different frequency and exposure times	132
4.43	SEM micrographs of TiN coated samples (extreme low PVD coating condition) after being treated under ultrasonic vibration at different frequency and exposure Kampus Sultan Abdul Jalil Shah	ptbupsi
4.44	Effect of TiN coated samples after subjected with ultrasonic vibration a) before (b) after ultrasonic vibration	133
4.45	Effect of ultrasonic frequencies on coating thickness at different exposure times on (a) high and (b) low extreme conditions	135
4.46	Schematic diagram for coated sample before and after subjected with ultrasonic vibration	135
4.47	Effect of ultrasonic frequencies on coating hardness at different exposure times on (a) high and (b) low extreme conditions	136
4.48 🕓 05-4506832	Effect of ultrasonic frequencies on current density at) ptbupsi
	different holding time on (a) high and (b) low extreme conditions	137

4.49	Effect of ultrasonic frequencies on charge transfer	
	resistance at different holding time on (a) high and (b)	
	low extreme conditions	138
4.50 05-4506832	15-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun Schematic diagrams representing the phenomena occur	
	when sample coated with TiN immersed in Kokubo	
	solution along with their equivalent circuits	138

O5-4506832 🛞 pustaka.upsi.edu.my 🖪 Perpustakaan Tuanku Bainun VestakaTBainun PustakaTBainun VestakaTBainun

© 05-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah LIST OF ABBREVIATIONS

А	-	Area		
a-C	-	Amorphous carbon		
CA-PVD	-	Cathodic arc physical		
		vapour deposition		
C _{dl}	-	Double layer capacitance		
Cp-Ti	-	Commercial pure titanium		
CVD	_	Chemical vapour deposition	_	
DLC 05-4506832	pus	Diamond like carbon	PustakaTBainun	O ptbupsi
E _{corr}	-	Corrosion potential		
EIS	-	Electrochemical vapour		
		deposition		
FESEM	-	Field emission scanning		
		electron microscope		
FRA	-	Frequency response		
		analyser		
H/E	-	Hardness/Elasticity		
HFCVD	-	Hot filament chemical		
		vapour deposition		
I _{corr} 05-4506832	pus	Corrosion current density Bainun Kaka.upsi.edu.my	PustakaTBainun	ptbupsi
IGC		Intergranular corrosion		

Open circuit potential

-

OCP

PVD	-	Physical vapor deposition		
R _{ct}	-	Charge transfer resistance		
SCE 05-4506832	P usta	ka Saturated calomel electrode	PustakaTBainun	ptbupsi
sccm	-	Standard cubic centimetres		
		per minute		
SiC	-	Silicon carbide		
TiN	-	Titanium nitride		
TiAlN	-	Titanium aluminum nitride		
UBM	-	Unbalanced magnetron		
		sputtering		
USM	-	Ultrasonic machining		
XRD	-	X-ray Diffraction		
		Spectroscopy		

O5-4506832 🛞 pustaka.upsi.edu.my 🖪 Perpustakaan Tuanku Bainun VestakaTBainun PustakaTBainun VestakaTBainun

05-4506832	pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah LIST OF APPENDICES	ptbupsi
APPENDIX	TITLE	PAGE
A	Output images of microdroplets counting using image analyser	162
В	Effect of CAPVD parameters adhesion strength of TiN	
	coating	163
05-4506832	pustaka.upsi.edu.my F Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun	ptbupsi

05-4506832 🛛 📢 pustaka.upsi.edu.my

CHAPTER 1

ptbupsi

INTRODUCTION

Background of the problem 1.1

The field of biomaterial has caught attention of researchers because it can increase the length and quality of human life. Natural and artificial biomaterials are used to make implants or structures that replace biological structures lost to diseases or accidents. The application of biomaterial in musculoskeletal implants include dental implants, artificial hips, and knees prostheses and incorporate the screws, plates, and nails in these devices [1]. The materials used in surgical implants include stainless steel (316LSS), Co-Cr-based alloys, and Ti alloys. Titanium based alloys are preferable due to their excellent biocompatibility, outstanding corrosion resistance, relatively good fatigue resistance, and lower elastic modulus [2, 3].

Several types of titanium alloys have been developed and one of them is Ti-6A1-4V. Ti-6A1-4V was the first standard alloys employed as a biomaterial for implants. Although this alloy has an excellent reputation in terms of its biocompatibility and corrosion resistance, studies have shown that the release of aluminium and vanadium ions from this alloy causes long term problem, such as peripheral neuropathy, osteomalacia, and Alzheimer diseases [4]. Consequently other titanium alloys group have been developed as alternatives to the Ti-6Al-4V

alloy. Among them, Ti-13Zr-13Nb is the most attractive biomaterial due to its low Young's modulus and non-toxic composition. It has been reported that Ti-13Zr-13Nb alloy is preferred for biomedical applications due to its superior corrosion resistance and biocompatibility. The good biocompatibility of this alloy is due to the corrosion products of the minor alloying elements (niobium and zirconium) that are less soluble than those of aluminium and vanadium. This material also has good tensile and corrosion resistance compared to Ti-6Al-4V and Ti-6Al-7Nb alloys [5].

Although the Ti-13Zr-13Nb alloy has excellence corrosion resistance and biocompatibility under normal conditions, it is still subject to corrosion, especially when it is in contact with body fluids. The environment found in the human body is very harsh owing to the presence of chloride ions and proteins. As an implant corrodes, it releases toxic ions and causes inflammation, which may require further surgery [6]. This issue can be addressed by using a surface coating or surface modification techniques. Several studies have been conducted that attempt to increase of Ti-13Zr-13Nb. Techniques including thermal oxidation [2, 7-12], anodic oxidation [13-16], thermal spray [17], laser nitriding [18], plasma spray [19, 20], Chemical Vapour Deposition (CVD) [21], and Ion Implantation [22] have all been investigated. The processing temperature of surface modification techniques in these studies are relatively high (600 - 2000 °C), which restricts the type of substrates that can be used, as well as causing unexpected phase transitions and excessive residual stresses. Nevertheless, a few studies use surface modification techniques with low processing temperatures. Other surface modification techniques such as Physical Vapour Deposition (PVD) offer promising results using low processing temperatures (<500° C) over a wide range of coating thickness. In this thesis, PVD coating on Ti-13Zr-13Nb was proposed as a way to improve the corrosion resistance of medical implants.

05-4506832 😵 pustaka.upsi.edu.my 🕇 Perpustakaan Tuanku Bainun 💟 PustakaTBainun 👘 ptbupsi

1.2 Problem statements

Surface coatings, such as PVD, can minimize the corrosion rate of titanium alloys that are exposed to body fluids. Past reports indicated that coated PVD layers have pores, pin holes, and columnar growths that act as channels for aggressive mediums to attack the substrate [23-26]. Duplex and multilayer coatings address this issue but at the expense of manufacturing time and cost. Therefore, an alternative method is needed to reduce the penetration of body fluids and react with bare substrate. One of possible surface modifications to PVD coatings uses a mechanical treatment. Several studies have demonstrated that sand blasting PVD coatings increases the compactness and hardness of the coating, which leads to lower wear rates [27-34]. However, very limited literature exists on surface mechanical treatment especially on the application of ultrasonic vibration to reduce corrosion attack of TiN coated Ti based implants. Most researchers have reported the behaviour of mechanical treatment on wear rate mechanism only. Therefore, a detailed study is needed to evaluate the effect of ultrasonic treatments on PVD-TiN coated Ti-13Zr-13Nb alloys in terms of corrosion resistance.

1.3 Objectives of the study

The objectives of this study were:

- i. To analyse the effect of PVD coating parameters on the surface morphology, coating thickness, and adhesion strength of TiN coated biomedical grade Ti alloys.
- ii. To investigate the effect of ultrasonic vibration treatment on the hardness and O5-4506832 pustaka.upsi edu.my Perpustakaan Tuanku Bainun coating thickness of TiN coated samples.
- iii. To compare the corrosion performance of ultrasonic treated and untreated TiN coating samples under simulated body fluids.

1.4 Scopes of the study

The study was conducted using the following limits:

ptbupsi pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun i. Ti-13Zr-13Nb was used as the substrate material. ii. The variable CAPVD parameters included nitrogen gas flow rates (100-300 sccm) and substrate temperature (100-300° C). The bias voltage was fixed at -125V. iii. An ultrasonic machine (Sonic mill AP-10001X) was used to hammer the TiN coated samples using micro steel balls. Ultrasonic parameters varied from 8 to 16 kHz for 5, 8, and 11 minutes of iv. exposure time. FESEM was used to characterize surface morphology and coating thickness. v. A nano-indenter was used to determine TiN hardness. vi. Tafel plot and EIS were used to evaluate corrosion on untreated and treated TiN coated samples. A Kokubo solution was used to simulate body fluids during corrosion

vii. A Kokubo solution was used to simulate body fluids during corrosion 05-4506832 pustaka.upsi.edu.my resistance testing.
Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

1.5 Significance of the study

The use of ultrasonic vibrations as a post treatment on TiN coated layers was expected to reduce corrosion when the implant was subjected to body fluids. The hypothesis was that ultrasonic vibration would provide micro-steel ball impingement that would result in a TiN coated layer with higher hardness and less porosity. The technique applied was less expensive than the multilayer and duplex coatings suggested by other researchers. The application of TiN coated Ti-13Zr-13Nb is appropriate for orthopaedic plates that are commonly used in bone surgery. The success of this method will improve the life of prosthesis and reduce implant revision costs. In addition, this study will help manufacturers produce more sustainable biomedical implants by increasing the surface hardness of the implant and thus providing better wear resistance capabilities. This study will also add to the knowledge and understanding of the behaviour of TiN coatings on biomedical implants.

1.6 Thesis organization

This thesis consists of five chapters. Chapter 1 is the introduction, which covers the background of research, the problem statement, and the objectives, scope, and significance of study. Chapter 2 provides an overview of general implant materials, a review of surface modification techniques, PVD, ultrasonic vibration, and an evaluation of coating performances. At the end of this chapter, the literature is summarized and gaps in the research are discussed.

In Chapter 3, the experimental approach adopted in this study is discussed including the substrate material and its preparation, and an explanation of the procedure for testing CAPVD and ultrasonic treatments. The analytical equipment used in this study is also discussed in this chapter, including a corrosion test, adhesion strength, nano indenter, FESEM, and XRD.

In Chapter 4, the results of Experiment Stages I, II and III are described and discussed. Experiment Stage I discusses the preliminary trials conducted before the actual experiment began. In Stage II, the effects of CAPVD parameters on surface morphology, coating thickness, and adhesion strength are discussed. Stage III describes the effect of ultrasonic treatments under extreme PVD conditions on corrosion resistance and hardness. Chapter 5 presents the conclusions from this study and recommendations for future work.