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ABSTRACT

Biomedical grade of titanium alloys are prone to undergo degradation in

body fluid environment. Surface coating such as Physical Vapor Deposition (PVD)
can serve as one of the alternatives to minimize this issue. Past reports highlighted
that coated PVD.layer consists ofpores, pin holes and columnar growth which act as

channels for the aggressive medium to attack the substrate. Duplex and multilayer

coatings seem able to address this issue at certain extent but at the expense of

manufacturing time and cost. In the present work, the effect of ultrasonic vibration

parameters on PVD-Titanium Nitride (TiN) coated Ti-13Zr-13Nb biomedical alloy
was studied. Disk type samples were prepared and coated with TiN at various

conditions: bias voltage (-125V), substrate temperature (100 to 300°C) and nitrogen

gas flow rate (100 to 300 seem). Ultrasonic vibration was then subsequently applied
on extreme high and low conditions of TiN coated samples at two different

frequencies (8 kHz, 16 kHz) and three set of exposure times (5 min, 8 min, 11 min).

Encouraging results of PVD coating are observed on the samples coated at higher

polarity of nitrogen gas flow rate (300 seem) and substrate temperature (300°C) in

terms of providing better surface morphology and roughness, coating thickness and

adhesion strength. All TiN coated samples treated with ultrasonic vibration exhibit

higher corrosion resistance than the untreated ones. Microstructure analysis under

(Field Emission Scanning Electron Microscopy (FESEM) confirms that the higher
ultrasonic frequency (16 kHz) and the longer exposure time (11 minutes) produce the

most compact coating. It is believed that hammering effect from ultrasonic vibration

reduces the micro channels' size in the coating and thus decelerates the corrosion

attack. Nano indentation test conducted on the ultrasonic treated samples provides a

higher Hardness/Elasticity (H/E) ratio than untreated ones. This suggests that the

ultrasonic vibration treated samples could also have a lower wear rate.
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ABSTRAK

Gred bioperubatan aloi titanium lebih eenderung mengalami kakisan dalam

persekitaran eeeair badan. Salutan permukaan seperti Physical Vapor Deposition
(PVD) boleh digunakan sebagai salah satu alternatif untuk mengurangkan masalah
ini. Hasil kajian sebelum ini menunjukkan bahawa lapisan salutan PVD terdiri

daripada liang-liang, lubang pin, dan pertumbuhan kolumnar yang bertindak sebagai
salah satu saluran untuk eeeair menyerang substrat. Substrat yang disalut dengan dua

lapisan atau lebih dilihat dapat mengatasi masalah ini pada kadar tertentu tetapi ianya
melibatkan kos pembuatan yang tinggi dengan masa yang panjang. Dalam kajian ini,
kesan parameter getaran ultrasonik ke atas PVD- Titanium Nitride (TiN) yang disalut
ke atas aloi bioperubatan Ti-13Zr-13Nb telah dikaji. Sampel berbentuk eakera
disediakan dan disalut dengan TiN pada voltan pineang (-125V), suhu substrat (100
hingga 300°C) dan kadar aliran gas nitrogen (l00-300 seem). Getaran ultrasonik

kemudiannya dikenakan ke atas sampel yang disalut dengan TiN dalam keadaan dua
frekuensi yang berbeza (8 kHz, 16 kHz) dan tiga masa pendedahan (5 min, 8 min,
11 min). Hasil kajian salutan PVD yang menggalakkan diperolehi ke atas sampel
yang dikenakan pada kadar aliran gas nitrogen dan suhu substrat yang tinggi dari
segi morpologi dan keserataan permukaan, ketebalan salutan dan kekuatan lekatan

yang lebih baik. Semua sampel yang dirawat dengan salutan TiN menggunakan
getaran ultrasonik menunjukkan ketahanan kakisan yang tinggi jika dibandingkan
dengan sampe1 tanpa rawatan. Analisis struktur mikro menggunakan Field Emission
Scanning Electron Microscopy (FESEM) mengesahkan bahawa ultrasonik frekuensi

yang tinggi dengan masa yang lama menghasilkan lapisan yang paling padat. Ini
adalah disebabkan kesan ketukan yang dihasilkan oleh getaran ultrasonik yang mana

dapat mengeeilkan saiz saluran pada salutan tersebut dan dengan itu mengurangkan
serangan kakisan. Ujian lekukan nano yang dijalankan ke atas sampel yang dirawat

dengan getaran didapati menghasilkan nilai nisbah HardnesslElasticy HIE yang
tinggi jika dibandingkan dengan sampel tanpa rawatan. Ini menunjukkan bahawa

sampel yang dikenakan rawatan getaran ultrasonik juga boleh menghasilkan kadar
kehausan yang lebih rendah.
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CHAPTER 1

INTRODUCTION

1.1 Background of the problem

The field of biomaterial has caught attention of researchers because it can

increase the length and quality of human life. Natural and artificial biomaterials are

used to make implants or structures that replace biological structures lost to diseases

or accidents. The application of biomaterial in musculoskeletal implants include

dental implants, artificial hips, and knees prostheses and incorporate the screws,

plates, and nails in these devices [1]. The materials used in surgical implants include

stainless steel (316LSS), Co-Cr-based alloys, and Ti alloys. Titanium based alloys
are preferable due to their excellent biocompatibility, outstanding corrosion

resistance, relatively good fatigue resistance, and lower elastic modulus [2, 3].

Several types of titanium alloys have been developed and one of them is Ti-

6Al-4V. Ti-6Al-4V was the first standard alloys employed as a biomaterial for

implants. Although this alloy has an excellent reputation in terms of its

biocompatibility and corrosion resistance, studies have shown that the release of

aluminium and vanadium ions from this alloy causes long term problem, such as

peripheral neuropathy, osteomalacia, and Alzheimer diseases [4]. Consequently
other titanium alloys group have been developed as alternatives to the Ti-6Al-4V
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alloy. Among them, Ti-13Zr-13Nb is the most attractive biomaterial due to its low

Young's modulus and non-toxic composition. It has been reported that Ti-13Zr-

13Nb alloy is preferred for biomedical applications due to its superior corrosion

resistance and biocompatibility. The good biocompatibility of this alloy is due to the

corrosion products of the minor alloying elements (niobium and zirconium) that are

less soluble than those of aluminium and vanadium. This material also has good
tensile and corrosion resistance compared to Ti-6AI-4V and Ti-6AI-7Nb alloys [5].

Although the Ti-13Zr-13Nb alloy has excellence corrosion resistance and

biocompatibility under normal conditions, it is still subject to corrosion, especially
when it is in contact with body fluids. The environment found in the human body is

very harsh owing to the presence of chloride ions and proteins. As an implant

corrodes, it releases toxic ions and causes inflammation, which may require further

surgery [6]. This issue can be addressed by using a surface coating or surface

modification techniques. Several studies have been conducted that attempt to

increase of Ti-13Zr-13Nb. Techniques including thermal oxidation [2, 7-12], anodic

oxidation [13-16], thermal spray [17], laser nitriding [18], plasma spray [19, 20],
Chemical Vapour Deposition (CVD) [21], and Ion Implantation [22] have all been

investigated. The processing temperature of surface modification techniques in these

studies are relatively high (600 - 2000 °C), which restricts the type of substrates that

can be used, as well as causing unexpected phase transitions and excessive residual

stresses. Nevertheless, a few studies use surface modification techniques with low

processing temperatures. Other surface modification techniques such as Physical

Vapour Deposition (PVD) offer promising results using low processing temperatures

«500° C) over a wide range of coating thickness. In this thesis, PVD coating on Ti-

13Zr-13Nb was proposed as a way to improve the corrosion resistance of medical

implants.
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1.2 Problem statements

Surface coatings, such as PVD, can minimize the corrosion rate of titanium

alloys that are exposed to body fluids. Past reports indicated that coated PVD layers
have pores, pin holes, and columnar growths that act as channels for aggressive
mediums to attack the substrate [23-26]. Duplex and multilayer coatings address this

issue but at the expense of manufacturing time and cost. Therefore, an alternative

method is needed to reduce the penetration of body fluids and react with bare

substrate. One of possible surface modifications to PVD coatings uses a mechanical

treatment. Several studies have demonstrated that sand blasting PVD coatings
increases the compactness and hardness of the coating, which leads to lower wear

rates [27-34]. However, very limited literature exists on surface mechanical

treatment especially on the application of ultrasonic vibration to reduce corrosion

attack of TiN coated Ti based implants. Most researchers have reported the

behaviour of mechanical treatment on wear rate mechanism only. Therefore, a

detailed study is needed to evaluate the effect of ultrasonic treatments on PVD-TiN

coated Ti-13Zr-13Nb alloys in terms of corrosion resistance.

1.3 Objectives of the study

The objectives of this study were:

1. To analyse the effect ofPVD coating parameters on the surface morphology,

coating thickness, and adhesion strength of TiN coated biomedical grade Ti

alloys.
11. To investigate the effect ofultrasonic vibration treatment on the hardness and

coating thickness ofTiN coated samples.
111. To compare the corrosion performance of ultrasonic treated and untreated

TiN coating samples under simulated body fluids.
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1.4 Scopes of the study

The study was conducted using the following limits:

1. Ti-13Zr-13Nb was used as the substrate material.

ii. The variable CAPVD parameters included nitrogen gas flow rates (100-300

seem) and substrate temperature (100-300° C). The bias voltage was fixed at

-125V.

111. An ultrasonic machine (Sonic mill AP-10001X) was used to hammer the TiN

coated samples using micro steel balls.

iv. Ultrasonic parameters varied from 8 to 16 kHz for 5, 8, and 11 minutes of

exposure time.

v. FESEM was used to characterize surface morphology and coating thickness.

A nano-indenter was used to determine TiN hardness.

VI. Tafel plot and EIS were used to evaluate corrosion on untreated and treated

TiN coated samples.
vn, A Kokubo solution was used to simulate body fluids during corrosion

resistance testing.

1.5 Significance of the study

The use ofultrasonic vibrations as a post treatment on TiN coated layers was

expected to reduce corrosion when the implant was subjected to body fluids. The

hypothesis was that ultrasonic vibration would provide micro-steel ball impingement
that would result in a TiN coated layer with higher hardness and less porosity. The

technique applied was less expensive than the multilayer and duplex coatings

suggested by other researchers. The application of TiN coated Ti-13Zr-13Nb is

appropriate for orthopaedic plates that are commonly used in bone surgery. The

success of this method will improve the life of prosthesis and reduce implant
revision costs. In addition, this study will help manufacturers produce more
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sustainable biomedical implants by increasing the surface hardness of the implant
and thus providing better wear resistance capabilities. This study will also add to the

knowledge and understanding of the behaviour of TiN coatings on biomedical

implants.

1.6 Thesis organization

This thesis consists of five chapters. Chapter 1 is the introduction, which

covers the background of research, the problem statement, and the objectives, scope,
and significance of study. Chapter 2 provides an overview of general implant

materials, a review of surface modification techniques, PVD, ultrasonic vibration,

and an evaluation of coating performances. At the end of this chapter, the literature is

summarized and gaps in the research are discussed.

In Chapter 3, the experimental approach adopted in this study is discussed

including the substrate material and its preparation, and an explanation of the

procedure for testing CAPVD and ultrasonic treatments. The analytical equipment
used in this study is also discussed in this chapter, including a corrosion test,

adhesion strength, nano indenter, FESEM, and XRD.

In Chapter 4, the results of Experiment Stages I, II and III are described and

discussed. Experiment Stage I discusses the preliminary trials conducted before the

actual experiment began. In Stage II, the effects of CAPVD parameters on surface

morphology, coating thickness, and adhesion strength are discussed. Stage III

describes the effect of ultrasonic treatments under extreme PVD conditions on

corrosion resistance and hardness. Chapter 5 presents the conclusions from this study
and recommendations for future work.


