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ABSTRACT 

 

Internet of Vehicles (IoV) technology has been rapidly advancing, making intelligent 
transportation systems the future trend. This research revolves around building efficient 
and secure vehicular networks using data processing mechanisms backed by machine 
learning and information security. However, noise and incremental data present 
challenges to vehicular network development. This study proposes two novel federated 
learning frameworks, namely the Outlier Detection and Exponential Smoothing 
Federated Learning (OES-FED) and Federated Learning Framework Based on 
Incremental Weighting and Diversity Selection for IoV (FED-IW&DS), to overcome 
the above problems. The OES-FED framework leveraged anomaly detection and 
exponential smoothing to filter noise data, thus, improving model robustness and 
enhancing communication efficiency. In terms of accuracy, it outperformed the existing 
Federated Learning-Average (FED-AVG) and FED-SGD models on three datasets by 
44.46% and 2.36%, respectively. Furthermore, the FED-IW&DS framework that 
integrates incremental weights and diversity selection to effectively deal with issues of 
growing data scale was able to achieve rapid information sharing while preserving user 
privacy. The superiority of FED-IW&DS was clearly proven through its performance 
on two data sets, which found its accuracy to exceed that of the Fed-prox model by 30-
35%. Ultimately, integrating the OES-FED and FED-IW&DS frameworks unveiled 
two critical integration points: the execution order and transition point of the two 
frameworks. By synergistically integrating the two frameworks, the proposed strategy 
unlocked new federated learning solutions for IoV as it yielded up to 5-10% higher 
accuracy compared to employing either framework individually. This study highlights 
novel approaches that address noise and incremental data challenges in IoV, yielding 
substantial advancements in both theoretical research and practical applications. The 
research outcomes have several implications, of which the proposed solutions play an 
essential role in improving communication efficiency, enhancing data processing 
capabilities, protecting user privacy, and providing crucial theoretical support and 
practical reference for future research and optimization of data processing mechanisms 
in IoV. 
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KERANGKA PEMBELAJARAN BERSEKUTU YANG DIOPTIMUMKAN 
UNTUK INTERNET KENDERAAN BERDASARKAN PEMPROSESAN  

DATA HINGAR DAN DATA TAMBAHAN 

 

 

ABSTRAK 

 

Teknologi Internet Kenderaan (IoV) telah pesat membangun yang menjadikan system 
pengangkutan pintar sebagai trend masa depan. Penyelidikan ini berkisar tentang 
pembinaan rangkaian kenderaan yang cekap dan selamat dengan menggunakan 
mekanisme pemprosesan data yang disokong oleh pembelajaran mesin dan 
keselamatan maklumat. Walau bagaimanapun, data hingar dan data tambahan 
merupakan cabaran kepada pembangunan rangkaian kenderaan. Kajian ini 
mencadangkan dua kerangka pembelajaran bersekutu yang baharu, iaitu Pembelajaran 
Bersekutu Pengesanan Unsur Luaran dan Pelicin Eksponen (OES-FED) dan 
Pembelajaran Bersekutu Berdasarkan Pemberat Tambahan dan Pemilihan 
Kepelbagaian untuk IoV (FED-IW&DS), untuk mengatasi masalah di atas. Kerangka 
OES-FED menggunakan pengesanan penyimpangan dan pelicin eksponen untuk 
menapis data hingar yang dapat meningkatkan keteguhan model dan kecekapan 
komunikasi. Dari sudut ketepatan, ia mengatasi model Pembelajaran Bersekutu Purata 
(FED-AVG) dan FED-SGD sedia ada berdasarkan tiga set data sebanyak 44.46% dan 
2.36% masing-masing. Tambahan pula, kerangka FED-IW&DS yang menggabungkan 
pemberat tambahan dan pemilihan kepelbagaian untuk menangani isu pertambahan 
skala data secara berkesan telah berjaya mencapai perkongsian maklumat pantas sambil 
memelihara kerahsiaan pengguna. Kelebihan FED-IW&DS jelas terbukti melalui 
prestasinya pada dua set data yang mendapati ketepatannya melebihi model Fed-prox 
sebanyak 30-35%. Akhirnya, pengintegrasian kerangka OES-FED dan FED-IW&DS 
telah mendedahkan dua titik integrasi kritikal: turutan pelaksanaan dan titik peralihan 
kedua-dua kerangka tersebut. Dengan menggabungkan kedua-dua kerangka secara 
sinergi, strategi yang dicadangkan dapat menyediakan penyelesaian pembelajaran 
bersekutu yang baharu untuk IoV memandangkan ia menghasilkan ketepatan sehingga 
5-10% lebih tinggi berbanding menggunakan mana-mana kerangka secara individu. 
Kajian ini menyerlahkan pendekatan baharu untuk menangani cabaran data hingar dan 
data tambahan dalam IoV yang dapat menghasilkan kemajuan besar dalam 
penyelidikan teori dan aplikasi praktikal. Hasil kajian mempunyai beberapa implikasi, 
antaranya adalah meningkatkan kecekapan komunikasi, memantapkan keupayaan 
pemprosesan data, melindungi kerahsiaan pengguna, serta menyediakan sokongan teori 
penting dan rujukan praktikal untuk penyelidikan masa depan dan pengoptimuman 
mekanisme pemprosesan data dalam IoV. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

This chapter mainly introduces the research background, problem statement, research 

questions, research objects, research significance, research scope, and thesis 

organization. Nowadays, with the gradual increase in privacy awareness, a large amount 

of private data cannot be shared. Against this background, federated learning, which 

can perform machine learning training without sharing data, has attracted much 

attention since its emergence. It is applicable in many fields, and one of them is the 

Internet of Vehicles (IoV). However, privacy is not the only issue in IoV. In the era of 

big data, IoV can generate vast volumes of information in real time, but the 

effectiveness of the produced data is poor and full of noisy data. In addition, the global 

machine learning (ML) model cannot cover everything during training (Ardabili et al., 



2 

2020; Rasouli & Yu, 2021). For example, the performance deteriorates when faced with 

new types of incremental data. 

 

This study combines related techniques by reviewing the advancement of 

federated learning and machine learning. We effectively improve the noise data filtering 

ability, better integrate incremental data and existing data, and help alleviate the 

contradiction between the privacy requirements of car owners and the performance 

improvement the ML model. 

 

 

1.2 Research Background 

 

 

1.2.1 Federated Learning 

 

Artificial intelligence (AI) has been widely used in recent years, for instance, speech 

recognition, recommender systems, computer vision, vehicle-assisted driving, etc 

(Arias-Otalora et al., 2022; Bhatia & Singh, 2022; Das, 2019). The common feature of 

these technical applications is that they are based on a substantial body of evidence. 

From these data, AI models learn specific abilities to complete various complex tasks 

and even perform operations that are difficult for human beings. Training an AI model 

requires massive amounts of data. For example, Facebook's face detection system was 

trained on 350 million images (Kosinski, 2021). Another example is that Tesla, an 

automobile company, is trying to realize the Society of Automotive Engineers (SAE) 

Level 5 fully automatic driving (FSD) method, which uses a few million Tesla drivers' 
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behaviors to train neural networks (Li et al., 2020). These drivers primarily make use 

of visible light cameras and images from other automotive components, such as the 

ultrasonic sensors for parking and the coarse-grained two-dimensional maps utilized 

for navigation.  

 

However, with the continuous occurrence of data leaks and privacy violations 

in the recent past, people have started to pay serious attention to whether their private 

data is being used without their consent or being used by others for commercial or 

political purposes. People gradually realize the importance of protecting data privacy 

for the data being used to train AI models. Moreover, the gradual strengthening of 

people's privacy awareness has prompted the formulation of relevant data laws and 

guidelines governing privacy. According to General Data Protection Regulation in 

Europe, top Internet companies have been fined continuously for leaking personal data. 

In 2021, Irish authorities fined WhatsApp €225 million (Rossini et al., 2021). In 2022, 

the French data regulator CNIL (French National Commission for Information and 

Freedom) fined Google and Facebook 150 million euros each and 60 million euros each 

for making it difficult for French users to opt out of cookie tracking (Nicholsono et al., 

2022). Luxembourg's main data privacy authority fined Amazon a record-breaking 746 

million euros (Li et al., 2021). In such a situation, organizing and collecting data will 

be extremely difficult. On the one hand, people will keep data confidential because of 

privacy, and companies cannot obtain enough data for training machine learning. On 

the other hand, due to regulatory reasons, different organizations and departments 

cannot share their small data and then cannot form big data, thus forming isolated data 

islands. 
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Most training data are produced and owned by individuals and departments in 

different organizations. The conventional approach to machine learning collects and 

transmits the data to a central server, which can read and control it. Therefore, this 

central server needs high-performance computing power to build machine learning 

models and handle sensitive data to avoid revealing data privacy. However, this method 

requires complete trust in the central server, which is unrealistic. In this case, data 

owners tend to hold their data in their own hands, thus forming isolated data islands. 

As a result, the foundation of vast amounts of data has disappeared, and artificial 

intelligence will enter a desperate situation. Therefore, how to extract useful 

information from scattered information with the idea that observing strict protection of 

privacy laws and regulations has become the primary problem in the development of 

contemporary AI. 

 

Figure 1.1 

Federated Learning (Source: Wikipedia) 

 

A great solution is provided by federated learning. Federated learning is a 

distributed machine learning framework first provided by Google in 2016. Multiple 
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clients can be trained global ML models collaboratively in federated learning, thus 

preventing the training data from leaving the local client (as shown in Figure1-1). As a 

new framework of distributed machine learning was initially proposed by the Google 

team, aiming at solving the problem of global input predictions that are updated for 

many mobile phone users. Most telephone users do not want to share their input, which 

is very private, while the global model needs to get input from many users (the more,  

the better). Federated learning aims to improve global ML predictions by sharing local 

ML model parameters while ensuring local data privacy. Traditional centralized 

learning upload local data from mobile devices to cloud computing centers or edge 

servers for global ML model education. However, each mobile device in the federated 

learning framework performs local ML model training and uploads the local ML 

models' parameters to the central server. Federated learning completes global ML 

model training in a distributed fashion. The mobile device only needs to exchange the 

local ML model parameters in this process. However, it does not need to share the local 

data, which protects the user's security and privacy (Chen et al., 2020; Choi & Pokhrel, 

2020; Zhang et al., 2021). In addition, the model of federated learning only needs to 

upload the ML model parameters and does not involve uploading local data, 

significantly reducing the communication cost. It effectively solves the problems of 

high data transmission cost and privacy leakage risk in traditional centralized learning 

(Pillutla et al., 2022; Tseng et al., 2022; Xu et al., 2021). 

 

In federated learning, there are many clients and one server (for aggregating 

global ML model parameters). It differs from centralized machine learning in many 

ways: (1) The central server is no longer trusted and is replaced by an ML model 

parameter aggregator. Aggregating the local ML model parameters submitted by the 
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clients is the central server's primary function. (2) The clients always save the data 

locally and only upload the parameters of the local ML model. The central server cannot 

collect the private data of each client. Federated learning is a form of networked 

machine learning that realize collaborative learning between clients who do not trust 

each other without sharing original data between data owners. Federated learning can 

fully use each participant's computing power, improve learning efficiency, and provide 

better privacy solutions for data owners. In addition, federated learning uses ML model 

parameter sharing to prevent data owners from migrating their data, thus significantly 

reducing privacy problems and communication expenses by traditional centralized ML. 

In recent years, federated learning has attracted significant attention in research and 

application fields. With the McMahan et al.'s Federated Averaging (FedAvg) algorithm 

(Konen et al., 2016), the idea of federated has come into the public view and has been 

widely used in various fields of artificial intelligence, such as the Internet of Vehicles, 

blockchain, medical care, banking (Lo et al., 2022; Ma et al., 2022; Rodriguez-Barroso 

et al., 2020). From the perspective of technological development, the current research 

on federated learning mainly focuses on data selection, data heterogeneity, 

communication costs and system robustness. Based on these federated learning 

researches, many excellent branching algorithms have been formed (from the very 

beginning to directly share private data for training, then to propose federated learning 

that only shares ML model parameters, and finally to various optimized practical deep 

learning combined with federated learning algorithms) (Mothukuri et al., 2021; Tuli et 

al., 2022; Verbraeken et al., 2020). These researches make federated learning 

technology gradually mature. 
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1.2.2 Image Processing in the Internet of Vehicles 

 

The Internet of Vehicles (loV) is a network of vehicles with sensors, software and 

technology designed to connect and exchange data over the Internet based on agreed 

standards. IoV is an essential application of the Internet in the automotive industry and 

an emerging application of intelligent transportation. IoV can be defined in broad and 

narrow senses. In the broad sense, IoV uses advanced sensing technology, 5G network 

technology, cloud computing technology, intelligent technology, and automation 

control technology to fully sense road and traffic information for smooth, safe, and 

efficient operation. IoV can achieve intelligent collaboration between vehicles and 

vehicles, vehicles and roads, vehicles and people, and vehicles and environment. In a 

narrow sense, IoV can be defined as a VANET (vehicular ad-hoc network), an electronic 

multi-hop network with fast mobility. IoV transforms all moving vehicles into mobile 

hotspots or routers and forms a large-scale wireless mobile communication network 

using short-term communication between vehicles. Therefore, as shown in Figure 1-2, 

there are communications between vehicles (Vehicle to Vehicle, V2V), between 

vehicles and the roadside infrastructure (Vehicle to Infrastructure, V2I), and between 

vehicles and data centers (V2C) through this network, while providing intelligent 

applications and safe traffic services for vehicles. 
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Figure 1.2 

Internet of Vehicles (Source: Author's own photograph) 

 

Many governments or organizations have formulated IoV's strategic 

development plans to advance IoV research. Since the 1990s, the global IoV industry 

has developed for more than 30 years. Relying on a mature computer and big data 

technology, some developed countries have become leaders in the IoV field,such as 

North America, Europe, Japan, and South Korea. They have formed relatively complete 

and stable IoV technical standards, policies, and regulations. For example, the European 

Union has made specific specifications for the development of autonomous driving in 

"Putting European transport on track for the future": to achieve autonomous driving in 

some scenarios by 2022, and it is expected to achieve fully autonomous driving by 2030 

(Tuli et al., 2022). In 2020, the U.S. Department of Transportation published "Ensuring 

American Leadership in Automated Vehicle Technologies: Automated Vehicles 4.0", 
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which emphasizes supporting user safety and cybersecurity in autonomous driving, 

promoting efficient market operation, and improving transportation systems (Tuli et al., 

2022). In August of the same year, the Korean Ministry of Communications Technology 

released the "Future Mobile Communication R&D Strategy Leading the 6G Era", 

planning to list self-driving cars as one of the five main areas of the pilot project (Tuli 

et al., 2022). The German Federal Government issued a draft law on autonomous 

driving on February 10, 2021 (Frigo et al., 2019). The law aims to establish a suitable 

legal framework to start the normal operation of self-driving driverless cars in Germany 

by supplementing the existing provisions of the Road Traffic Act. 

 

The introduction of 5G networks and the progress of network function 

virtualization, software-defined network, and other technologies have made the 

technical obstacles to the development of IoV disappear. Currently, most IoV models 

are developed on cloud servers, which is convenient for collecting Vehicle classification, 

analyzing and processing them, and returning the integrated global model to the driving 

vehicle. However, many studies speculate that a vehicle equipped with sensors and 

cameras, at least 10 TB, will be collected of data every day soon when everything is 

connected (Ambroziak et al., 2022; Gan et al., 2023; Li et al., 2022). According to many 

official, authoritative statistics, as shown in Table 1-1, the global IoV market size 

surpassed 245.42 billion yuan in 2015, rose to 643.44 billion yuan in 2020, and is 

expected to surpass 1.5 trillion yuan in 2025. At that time, the percentage of global IoV 

penetration rose from 30.7% in 2018 to 45% in 2020, and it is estimated that it will 

cover nearly 60% of vehicles by 2025. In the information explosion age, the data 

generated in IoV is increasing exponentially. 
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Table 1.1  

IoV by Authoritative Statistics 

IoV market statistics 

It is estimated that more than one billion motor vehicles 
worldwide use networked devices. (Statista) 

By 2020, the global connected vehicles market will 
generate about $54 billion. 

It is estimated that in 2025, this figure will grow to 166 
billion dollars. (Statista) 

As of 2018, there were 119 million connected vehicles on 
the road. 

It is estimated that in 2023, the number of networking 
vehicles will reach 353 million. (Statista) 

In 2019, the global sales of connected vehicles with 
embedded telematics functions reached about 28.5 million. 
(Statista) 

The share of connected vehicles in new vehicle sales will 
increase from 35% in 2015 to 100% in 2025. (Mordor 
Intelligence) 

From 2021 to 2026, the telematics market of IoV is 
expected to achieve a compound annual growth rate of 
20.7%. (Mordor Intelligence) 

As of 2018, the United States has 32.7% of the world's 
connected vehicles. 

It is expected that by 2023, Europe will surpass the United 
States in the number of connected vehicles when they own 
31% of the connected vehicles in the world. 

Statistics of IoV 
telematics 

Intelligent information technology can reduce the high-risk 
behaviors of young drivers by more than 30%. (Mordor 
Intelligence) 

Risk reduction can reduce the claim cost of this age group 
by at least 30%. (Mordor Intelligence) 

Sales of advanced driver assistance systems (ADAS) and 
related technology products have increased from 45 million 
in 2014 to 54 million in 2018. (Mordor Intelligence) 
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Usage-based insurance (UBI) and telematics are changing 
the expectations of the insurance industry. 

It is estimated that in 2023, the global users' demand for 
UBI will increase to more than 140 million. (Mordor 
Intelligence) 

It is estimated that by 2030, UBI and insurance telematics 
will make a profit through automobile data, and the revenue 
will exceed 700 billion USD. (Mordor Intelligence) 

In 2019, 86% of fleets used long-distance communication, 
compared with 48% in 2017 and 82% in 2018. (Teletrac 
Navman) 

74% of vehicle fleets use telematics to monitor the location 
of vehicles. (Teletrac Navman) 

66% of fleets use telematics to track service time. (Teletrac 
Navman) 

61% of vehicle fleets use telematics to control and optimize 
vehicle speed. (Teletrac Navman) 

Long-distance 
communication for 

vehicle security 

Intelligent telematics can effectively improve the safety of 
vehicle queues. More than a quarter of freight companies 
list driver monitoring (32%), speed prevention (26%), and 
driver fatigue prevention (30%) as the most prominent 
safety advantages related to telematics. (Teletrac Navman) 

Telematics reduces accidents by 45%. (Driver's Alert) 

Telematics reduces speeding events by up to 75%. (Driver's 
Alert) 

Telematics can increase the seat belt utilization rate by 
90%. (Driver's Alert) 

Telematics reduces aggressive driving by 80%. (Driver's 
Alert) 

Remote 
management for 

vehicle queue 

Although fuel is considered the largest expenditure of 32% 
of the fleet, the fuel cost has been reduced by 55% due to 
telematics software. (Teletrac Navman) 

Tele information processing reduces the travel time of 
vehicles to their destinations by 68%. The procedure can 
reduce carbon dioxide emissions by 75%, or about 36 
million tons annually. (Mordor Intelligence) 
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These explosive growth data have important social significance. The pinnacle 

of IoV image data is various things that people encounter in travel. As the conduit for 

all information encountered, it contains rich information and has great value for 

promoting the development of IoV. IoV image data has penetrated people's travel, life, 

entertainment, and other aspects. It provides crucial support for objectively 

understanding the appearance of the real world in a data-driven manner and has turned 

into the focus of study for academics, business, and governments. (Cuzzocrea, 2021; 

Hao et al., 2019; He et al., 2021). Effectively mining the value of IoV image data, 

objectively classifying images, and summarizing the characteristics of images are of 

great significance for promoting social progress, improving people's quality of life, and 

maintaining sustainable social development. However, IoV image data is different from 

traditional large-scale data. In addition to its mass, it also has low quality and real-time 

characteristics. These properties pose severe challenges for mining the potential value 

of IoV image data (Cao et al., 2021; Diu et al., 2021; Xu et al., 2021). The specific 

characteristics are as follows. 

 

i. Large scale. As the most intuitive data feature, the massiveness of IoV image 

data refers to the vast amount and sparse data value patterns. For example, Intel 

estimates that each self-driving car will produce almost 4,000GB of data per day, 

which is comparable to the amount of mobile data produced by just under 3,000 

cell phone users. Effectively revealing complete value patterns in massive data 

requires efficient data analysis methods. However, the current data mining 

methods based on high-performance computing paradigms include the cloud 

computing and edge computing ignore the processing efficiency of massive data. 

Finding a data analysis method for the massive IoV image data improves the 
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processing effectiveness of algorithm according to the high-performance 

computing paradigm, efficiently mines the total value of the massive data, and 

comprehensively performs the massive image data classification.  

 

ii. Low quality. The low quality of IoV image data refers to the low pattern density 

caused by the massive data, data containing missing items, and data containing 

noisy, random, and fuzzy data. To accurately mine the correct value of low-

quality data and avoid huge losses caused by unnecessary errors requires data 

analysis methods to have high robustness. However, most data analysis methods 

can not reveal the value of low-quality data. Therefore, a data analysis method 

for low-quality IoV image data can build robust features of low-quality data, 

reveal value patterns in low-quality data, and serve knowledge discovery and 

decision-making in a data-noisy environment. 

 

iii. Real-time. Real-time is another typical characteristic of IoV image data. The 

real-time nature of IoV image data is reflected in the fact that the data is 

generated rapidly and has an obvious flow pattern and the property of 

dynamically changing distribution. Image data value is time-sensitive, showing 

a decreasing trend over time. For example, regarding intelligent navigation, 

navigation software such as AutoNavi Maps and Google Maps must collect real-

time road traffic and vehicle location information to ensure accurate route 

planning (Belschner & Pereira, 1995; Furfaro & Nigro, 2003; Liu et al., 2014). 

Effectively capturing time-sensitive value patterns in real-time data requires 

data analysis methods with dynamic processing capabilities. However, most of 

the current data-driven computing methods are static methods. The model's 
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parameters are based on historical data and cannot cope with incremental image 

data. Therefore, there is an urgent need to study data analysis methods oriented 

toward the real-time characteristics of IoV image data. It needs to dynamically 

adjust the parameters in the ML model based on ensuring accurate 

discriminative analysis of knowledge patterns in historical data and, 

simultaneously, realize the mining of potential patterns in real-time incremental 

data. 

 

It is worth mentioning that massiveness, low quality, and real-time 

characteristics are not independent. They are an interconnected unity. Our research 

needs to study all the characteristics individually and finally integrate them to form an 

excellent unified framework. 

 

 

1.2.3 Why Federated Learning Combined with IoV?  

 

This subsection explains why federated learning and IoV can be integrated based on 

these three aspects: the challenge of IoV image data, the solution of IoV security and 

the advantages of federated learning. 

 

Intel CEO Brian Krzanich said: "Data is the new driving force for the future of 

autonomous driving." The method to implement traditional big data machine learning 

technology is to upload all data to a single server for global ML training. However, as 

mentioned above, with the significant increase of image data in IoV, this centralized 

machine learning method has many shortcomings, such as privacy leakage of car 
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owners, high communication costs and high transmission delay. These shortcomings 

gradually form IoV's challenges with isolated data islands, noise data, issues related to 

diversity and more data. These challenges, caused by resource constraints, seriously 

hinder the further development of IoV. 

 

 

i. The Challenge of Isolated Data Islands ---  

 

Corresponding to characteristic: massive "Isolated data island" refers to the closed and 

semi-closed phenomena such as asymmetry and redundancy caused by the subject's 

initiative, the technicality of the object, and the incompleteness of the policy 

environment and system construction during the formation, analysis, and use of the data 

set. Many fields have developed so they will build their own corresponding data 

management systems. These data management systems can standardize business 

processes, form standardized business models, and automatically accumulate relevant 

the system database for data to accumulate data resources for relevant individuals. 

When the value of data is prominent, this accumulated data can enable individuals in 

the field to develop further. However, the data in these databases of different individuals 

and different information data systems are often unable to communicate and can only 

be stored in their respective databases. Therefore the databases cannot be used 

uniformly. In this way, each individual and each database are separated, like isolated 

islands overseas, unable to connect and communicate, thus, leading to the occurrence 

of an isolated data island. 
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Several reasons for the challenge of isolated data islands in loV include vehicle 

owner reluctance, strict policies, and technical difficulties. (1) Vehicle owners' 

reluctance. IoV data includes some sensitive data about personal privacy, such as travel 

tracks, navigation information, in-vehicle recordings, and camera images. Most vehicle 

owners are reluctant to share these sensitive data. (2) Strict policies. Once these 

sensitive data are stored and processed in a centralized server, the risk of data leakage 

increases significantly. In 2018, the General Data Protection Regulation was processed 

to protect user data privacy in Europe (Riazi et al2019). In 2019, China launched the 

"Guide to Internet Personal Information Security Protection." The European Data 

Protection Committee (EDPB) adopted the "Guidelines on Processing Personal Data in 

the Context of Connected Vehicles and Mobility-Related Applications" in 2021. The 

guidelines introduced over the years explain the privacy protection, data risks, and 

countermeasures in different scenarios of IoV. These laws or guidance indicate that data 

owners must be supervised and be obligated to protect data. (3) Technical difficulties. 

Last but not least, there were about 119 million intelligent vehicles in 2018, and by 

2023, this number will nearly triple to 353 million. Meanwhile, as mentioned above, 

every smart vehicle will generate about 4,000 GB of data every day. Therefore, even 

though 5G is widely applied on this planet, it is still impossible to realize data sharing 

and real-time calculation in IoV. 

 

 

ii. The Challenge of Noise Data---Corresponding to Characteristic: Low 
Quality  

 

When a variable is measured, noise data is any potential inaccuracy or variation that 

might impact how accurately and effectively following analytic processes are 
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performed. Erroneous, misleading, and anomalous data make up most noise data. 

Abnormal data is a term used to describe discontinuous data that significantly affects 

the outcomes of data analysis. 

 

Statistical learning methods for labels aim to design theoretically robust loss 

functions. However, after 2015, deep convolutional networks and recurrent neural 

networks became mainstream due to their better generalization performance in 

computer vision (Onan, 2022; Wang et al., 2019; Zhou, 2020). The research on 

eliminating noise has also gradually shifted from statistical learning to learning 

representations, from traditional statistical learning models to deep learning models. 

Despite achieving excellent generalization performance in many tasks, deep learning 

models still face many challenges in practical applications. The success of deep learning 

models relies heavily on large-scale and accurately labeled training sets, which is 

challenging to meet in many real-world tasks. For example, Image Net contains 

millions of annotated images, and these massive image data require much technical 

personnel to annotate. The knowledge limitation of each technician, these samples 

cannot be labeled 100% accurately, thus introducing noise to the dataset. Deep learning 

models cannot accurately eliminate noise in some fields, which can easily cause 

irreparable consequences. For example, in the field of medical applications, although 

medical data sets are usually relatively small, labeling these medical data requires 

expert knowledge in this field. At the same time, due to the influence of subjective bias 

among different experts, sample annotations often produce noise. Medical label noise 

can lead to incorrect predictions of deep learning models, which can negatively impact 

human health. 
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Another example is that vehicle-generated data will significantly rise., and the 

vast local data of vehicles is a significant load for IoV. These image data are easily 

affected by problems including unstable network environment and transmission speed 

of driving. In addition, due to the low quality of IoV image data, the local vehicle data 

used for training has much redundancy for IoV. Noise is pervasive in IoV. However, as 

the issue of data privacy has been taken seriously, less and fewer data is being collected. 

In order to succeed excellent accuracy, for training, deep learning models require a lot 

of high-quality data. (Xiaoqi et al., 2021; Xie et al., 2018). Most technicians lack 

domain expertise to accurately express the defects of IoV datasets, which will generate 

much noise. Therefore, there is an urgent need to establish a robust learning algorithm 

with theoretical guarantees to handle the noise data challenge of IoV. 

 

An excellent IoV deep learning model balances car owners' privacy protection 

requirements and high-quality data requirements. Under this premise, a practical IoV 

data-denoising framework is vital. 

 

 

iii. The Challenge of Incremental Data - Corresponding to Characteristic: 
Real-Time 

 

In the IoV data storage scenario, there are two ends: the data generation end is the 

source end, and the data storage end is the destination end. In traditional storage systems, 

the source and destination are often on the same node or the same network, such as 

traditional local databases, and local parallel storage. The distinction between the 

source and destination ends is not apparent in the traditional storage system. the source 

is local, and the destination is in the remote cloud in the cloud storage scenario. 
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Therefore, cloud storage faces challenges including high latency, high bandwidth, and 

high concurrency brought about by this particularity when ensuring data consistency 

between the source and destination. The cloud storage data center is one of the major 

sources of resource consumption, which includes not only the power consumed by the 

data center to maintain operations but also the consumption of hardware resources and 

network bandwidth during data upload, download, and synchronization. In cloud 

storage, when data is backed up to the destination, the bandwidth cost caused by data 

synchronization is a problem that must be considered. For multiple small changes to a 

large file, if the entire file is sent to the server in complete synchronization, it will 

inevitably waste a lot of network bandwidth. 

 

 However, IoV's cameras are deployed on vehicles, which makes it difficult for 

traditional storage systems to meet practical requirements. From the perspective of 

camera data acquisition, data acquisition is not a one-time process but a steady, gradual 

acquisition process. The increasing data will inevitably improve target recognition 

ability and expand the application range. A prerequisite, however, is the need to deal 

successfully with a larger amount of image data of increasing size. The process requires 

that the recognition algorithm be able to train the recognition model when how many 

samples there are, and categories is sufficient and to learn additional target categories 

and training samples. 

 

 The real-time incremental data generated in IoV is huge. Different road 

conditions result in its incremental data such as uphill and downhill in urban and 

suburban areas, day and night, rain, or snowy and sunny days. It is necessary to update 

the old ML models to better accommodate driver assistance or safety warning features 
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in IoV. Key research focuses on fusing incremental data with older ML models and 

ensuring that all vehicles can effectively participate in global ML model training. Thus, 

the ability to process incremental data in IoV is to the forefront. 

 

 

iv. The Challenge of Data Diversity---Corresponding to Characteristic: 
Massive & Real-Time 

 

The IoV system needs to learn new knowledge from new image data continuously and 

requires good preservation of the old categories and old knowledge learned before. 

Many effective multi-instance methods (Breivold & Rizvanovic, 2018; Jiang & Liu, 

2017; Singh et al., 2014) have been created in the recent years to address the 

computational difficulties brought about by data diversity. Many techniques have been 

provided to solve the issue of catastrophic forgetting. However, almost no frameworks 

are proposed to meet the challenge data diversity in IoV. 

 

However, traditional federated learning methods do not take into account the 

weights of incremental data and rely heavily on the repetition of the training process, 

even leading to a serious degradation of the accuracy and bias of the global ML model. 

The common goal of federated and incremental learning is to acquire more reliable 

prediction results from local ML model parameters of multiple vehicles. Theoretically, 

the more significant difference of each local ML model parameter, the better the result 

will be. If the local ML models are highly homogeneous and non-complementary, there 

is no point in training global ML models, which just replicate them and also increase 

the computational cost. Our desired framework combines the strengths of different local 
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ML models in loV to bridge the existing gap and better address the data diversity 

challenge. 

 

With the popularization of IoV technology, vehicles collect many location and 

image data through positioning technology and photography technology. This data 

contains a lot of personally identifiable information about users. Once leaked, it may 

lead to severe consequences. Adequate protection of people's privacy can eliminate 

concerns about personal privacy data leakage, increase people's confidence, and help 

realize information sharing in smart cities (Ceballos & Larios, 2016). At present, 

vehicle privacy protection technology can be divided into three groups: based on data 

about the user's attributes, based on user behavior information and based on user 

relationship network. Privacy protection technology based on data about the user's 

attributes mainly refers to realizing user identity protection through anonymity and 

concealment (He, 2017). Using user-based technology, preserve privacy behavior 

knowledge can stop attackers from employing the correlation between user attributes 

and behavior information to construct user data models. Therefore, the technology 

comprehensively protects user location privacy, mainly including the pseudo-location 

and generalization methods (Baker-Eveleth et al., 2022). User relationship networks-

based privacy protection technology primarily uses the potential relationship between 

users and multi-hop users to protect user privacy data. The most popular method is to 

select trusted users. As a result, privacy protection technology aims to reduce the risk 

of leakage of user privacy information while ensuring the quality of related services. 

 

The above privacy protection technologies are mainly realized by hiding the 

real information of vehicle users. However, in the traditional centralized machine 
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learning training process, the training set data are all raw data uploaded by vehicle users. 

Although the above method can protect the privacy of users, it cannot solve the data 

security problem of centralized training well. The development of AI technology has 

made a qualitative leap in information extraction technology. We hope to use deep 

learning in distributed machines to meet these challenges, that is, distributed learning. 

Distributed learning has the following characteristics. 

 

i. In the current research, distributed learning requires the central server to have 

high control over the client and its data. Clients accept instructions from the 

central server and is fully under its control. For example, in the distributed 

computing model of MapReduce, the central server can issue an instruction to 

allow clients to exchange data with each other. 

ii. Fully distributed learning is peer-to-peer technology. Most of the research 

direction is data security. There is very little research on IoV. 

iii. Clients under distributed learning are usually located in dedicated computer 

rooms, interconnected with high-speed broadband, and the network and 

operating environment are very stable. 

iv. In distributed learning, the data from various clients is usually divided evenly 

and randomly dispersed. They have independent and identical distribution 

characteristics, which is very suitable for designing efficient training algorithms.  

 

Most distributed learning assumes a well-resourced environment where clients 

are stable nodes. However, overly ideal environment assumptions lead to algorithms 

that are often difficult to implement in IoV in practical applications. IoV is an 

interactive network composed of data information, such as the vehicle itself and things 
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outside the vehicle. IoV collects its environment and status information by wireless 

communication devices including GPS, RFID, sensors, and cameras of the vehicle to 

the server. After receiving the local data, the server will analyze and process it and 

finally provide different functional services to the running vehicles. IoV was required 

to provide a large amount of user privacy data because distributed learning has absolute 

control over the client's data. As people increasingly focus on the privacy protection of 

personal data, the amount of data that can be publicly used in IoV is minimal, thus, 

leading to unsatisfactory effects of some ML models applied in IoV. 

 

Federated learning technology will be an excellent solution. It can improve the 

precision of the global ML model while saving the data locally in the vehicle. Federated 

learning is an encrypted distributed machine learning technology. Introducing it into 

the IoV architecture makes it possible to build a safe and efficient data-sharing 

framework with the help of the local training of all parties involved in federated 

learning without the need to migrate local data. Federated learning can combine 

vehicles and service providers in IoV to jointly train a ML model for a specific task. 

During the training of the ML model, local ML parameters and global ML parameters 

are exchanged between the vehicle and the server. In addition, the vehicle does not need 

to migrate local data during the training process, effectively avoiding leakage during 

data transmission. Federated learning has the following advantages over traditional 

machine learning methods. 

 

i. Address the issue of isolating data islands. Individual dataset owners are 

reluctant to share their data. In federated learning, data from each client is stored 
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locally and won't be leaked to the outside, which can effectively protect user 

privacy. 

ii. Efficient use of bandwidth resources. The client only sends the local ML model 

parameters to the server, not the dataset. The approach reduces the cost of data 

communication and reduces the burden on the network. 

iii. Ensure the integrity of the global ML model. Federated learning is to send the 

complete global ML model to the client without splitting the model, which can 

guarantee that there will be no negative transfer. 

iv. Ensure client equality. In federated learning, each local client is a fair, 

cooperative relationship, and there is no situation of unequal status, and each 

participant will get a performance improvement. 

 

Based on those advantages, federated learning has been used in several 

situations, including finance, medical care, and mobile phones (Luo et al., 2021; 

Wainakh et al., 2020; Yang et al., 2019). With the rapid development of Mobile Edge 

Computing (MEC) technology, The Roadside Unit (RSU) acts as the central server and 

the vehicle as a local client. It is no longer a dream to deploy a framework for federated 

learning in the IoV scenario.  

 

Although the federated learning in IoV can obtain the above benefits, it also 

faces many challenges. On the one hand, the federated learning process that the vehicle 

and the central server require certain computing power, storage capacity, energy, and 

wireless resources. The central server connects wired devices and has sufficient 

resources. However, vehicles are terminal devices in MEC, and their computing 

resources and energy are limited. The balance of computing and wireless transmission 
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resource allocation can directly affect the federated learning training process. On the 

other hand, the channel bandwidth between the vehicle and the central server is usually 

limited, and wireless transmission will have error rate and delay problems. Therefore, 

how is an urgent problem to be solved is to reasonably allocate limited computing and 

wireless resources in IoV to achieve better global ML model training. 

 

Due to the real-time mobility of vehicles, differences in computing power, and 

differences in communication infrastructure in different regions, directly combining 

federated learning technology with IoV may bring excessive computing burdens to 

some vehicle nodes. In addition, dishonest service providers privately use vehicle data 

to mine as much information as possible, causing the privacy of vehicle users to leak. 

Therefore, it is necessary to carry out a targeted transformation of federated learning 

technology to provide more efficient and secure solutions. 

 

 

1.3 Problem Statement 

 

In the contemporary domain of the IoV, the importance of frameworks dedicated to 

vehicle privacy protection is increasingly underscored due to their direct connection to 

the safeguarding and security of user privacy. With the rapid advancement of 

technology, vehicles are generating an ever-increasing volume of data. The challenge 

of protecting this data from misuse or breach has become a pressing issue to address. 

Despite the emergence of numerous privacy protection frameworks, the majority still 

require users to submit their original private data, thereby elevating the risk of privacy 

leaks and causing significant concern and resistance among many users. 
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The reliance on original data not only compromises the effectiveness of privacy 

protection but also leads to the formation of isolated data silos within the IoT. These 

silos restrict the flow and sharing of data, impeding the further development of IoV 

technology. Hence, striking a balance between protecting user privacy and enabling 

efficient data flow and sharing presents a significant challenge in the current IoV 

landscape. 

 

Regrettably, despite the proliferation of privacy protection frameworks in the 

vehicle privacy protection sector, most still necessitate the submission of original 

private data by users. This requirement poses a substantial privacy leak risk, eliciting 

strong resistance from them. The reluctance of users to cooperate has gradually led to 

the creation of isolated data silos within the IoT, significantly limiting the effective 

utilization and circulation of data. Moreover, in the field of IoV image data processing, 

finding a vast amount of meaningful picture data is inherently challenging. Additionally, 

improving the performance of global Machine Learning (ML) models not only requires 

ample data support but also an efficient training methodology. However, existing 

methods often rely on datasets, which considerably limits the models' generalization 

ability and practicality. Evidently, finding a straightforward and effective global ML 

model training method without depending on original private data emerges as one of 

the urgent issues to be addressed in the vehicle privacy protection field. 

 

Furthermore, in the implementation and operation of IoV image data, the issue 

of noise data gradually surfaces, becoming a critical factor constraining further 

technological progress. Deep learning, especially supervised learning, has achieved 

significant success in applications like image classification. However, it's essential to 



27 

acknowledge that supervised deep learning models' performance heavily relies on 

training sets with minimal noise data. In practice, obtaining large-scale training sets 

with little noise is challenging due to unavoidable subjective biases and measurement 

errors in the manual annotation process. This noise not only affects the training 

effectiveness of models but also severely interferes with the convergence direction of 

ML models, leading to a notable decline in model performance. 

 

Thus, addressing how to manage noise data in IoV images and effectively 

improve model accuracy under such conditions becomes another pressing issue for this 

study. This not only relates to the further development and application of IoV 

technology but also holds significant practical significance for enhancing deep 

learning's performance in image processing domains. 

 

Beyond these concerns, the rapid advancement of IoT technology daily 

generates a vast volume of image data, posing substantial storage pressures on IoT 

systems. The explosive growth of image data makes storing real-time incremental data 

particularly challenging. More complexly, these additional data often highly resemble 

existing old data, with a considerable overlap in the information conveyed. Therefore, 

finding ways to reduce the storage burden of incremental data while effectively 

integrating new and old data to construct an efficient and stable IoT framework also 

emerges as a critical issue to address.  

 

Lastly, research must filter more reliable image data classification results from 

the numerous participating vehicle clients' local ML model parameters. It's evident that 

different types of incremental data significantly influence the local ML model 
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parameters. If the parameters of various local ML models exhibit significant differences, 

their complementarity increases, thereby aiding in enhancing the training effect of the 

global ML model. Conversely, when local ML models show high homogeneity and lack 

sufficient complementarity, the training of the global ML model becomes meaningless, 

merely amounting to repetition. This not only fails to improve model performance but 

also incurs unnecessary computational costs. 

 

Therefore, selecting and utilizing sufficiently diverse local ML model 

parameters to optimize the global ML model's training effect is crucial. Solving this 

issue not only pertains to the efficiency of IoT image data processing but also 

significantly impacts enhancing the performance and stability of the entire IoT system. 

 

 

1.4 Research Objectives 

 

The overarching goal of this study is to address the challenges identified in IoV image 

data processing through federated learning. The specific research objectives (ROs) are:  

 

RO1: To develop an IoV noise data processing framework on top of the federated 

learning model. 

RO2: To establish an incremental data processing framework based on federated 

learning, to mitigate data homogeneity. 

RO3: To integrate the noise data processing framework with the incremental data 

framework to efficiently handle both noise and incremental data in IoV. 
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RO4: To explore the interplay between noise data processing and incremental data 

processing within the overall framework, investigating whether the sequence of 

data processing impacts the proportion of incremental data types. 

 

 

1.5 Research Questions 

 

Aligned with the stated objectives, this study poses the following research questions 

(RQs) to guide the investigation. 

 

RQ1: Is the IoV noise data processing framework based on the federated learning 

model effectively constructed? 

RQ1.1: Do the outlier detection, Kalman filtering, and exponential smoothing 

algorithms within the framework effectively filter noise data in IoV?  

RQ2: Is the incremental data framework based on federated learning effectively 

constructed for the IoV context? 

RQ2.1: Does the integration of federated and incremental learning address the 

performance balance issue between incremental and existing data within the 

global ML model? 

RQ3: Does combining the noise data processing framework with the incremental data 

processing framework achieve effective handling of both noise and incremental 

data? 

RQ4: Is the sequence of processing data types related to the proportion of incremental 

data types? 
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1.6 Research Significance 

 

In the context of the IoV, this study introduces a federated learning-based framework 

designed to efficiently process both noise and incremental data. The construction of this 

framework not only offers a novel approach to data management within the IoV domain 

but also significantly supports the practical application and expansion of federated 

learning models. As a vast platform for data generation and exchange, the IoV 

ecosystem produces an enormous amount of data daily, including a substantial 

proportion of noise and incremental data. Noise data may arise from sensor inaccuracies, 

transmission errors, among other sources, while incremental data is generated by factors 

such as the addition of new vehicles and the opening of new roads. Addressing the 

effective management of these data types to enhance the performance and accuracy of 

IoV systems is an urgent challenge. The proposed framework employs a combination 

of outlier detection, Kalman filtering, and exponential smoothing algorithms for 

effective noise data management. Outlier detection identifies and eliminates aberrant 

data points, Kalman filtering smooths noisy data through prediction and update steps, 

and exponential smoothing further reduces random errors in the data. This 

amalgamation of algorithms significantly enhances data quality and reliability. For 

incremental data, this study adopts incremental learning techniques, which allow for 

the assimilation of new data without the need for retraining the entire model. This 

method enables the framework to rapidly adapt to the inclusion of new data, 

maintaining the model's timeliness and accuracy without compromising system 

performance. 
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Overall, the federated learning-based framework proposed in this research, 

through the integrated application of outlier detection, Kalman filtering, exponential 

smoothing algorithms, and incremental learning techniques, offers an effective solution 

for data processing in the IoV context. The implementation of this framework is 

anticipated to improve the performance and accuracy of IoV systems, further advancing 

IoV technology. 

 

Firstly, the federated learning framework ensures data privacy while enhancing 

model training efficiency and accuracy, catering to the dynamic data and privacy 

protection requirements within the IoV environment. 

 

Secondly, by integrating outlier detection, Kalman filtering, and exponential 

smoothing algorithms, the framework effectively processes noise data, enhancing the 

accuracy and reliability of IoV data under this framework. 

 

Thirdly, employing incremental learning technology allows the framework to 

adapt in real-time to the incorporation of new data, maintaining timeliness and accuracy 

to meet the dynamic changes in IoV data. This capacity is crucial for advancing real-

time traffic management, route prediction, and other applications within the IoV, 

highlighting the framework's importance in improving IoV system performance and 

reliability and propelling the development of intelligent transportation and autonomous 

driving. 

 

Fourthly, the combination of noise data processing and incremental data 

handling in the IoV context provides a comprehensive and efficient data management 
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solution for a large-scale, highly dynamic data environment. This approach not only 

addresses data quality and dynamic changes but also supports intelligent transportation, 

autonomous driving, and the construction of smart cities by enhancing system 

performance and reliability. 

 

Fifthly, comparing the proposed noise data processing framework with baseline 

models validates its effectiveness and superiority in handling noise data within the IoV 

environment. This comparison offers new solutions for data processing in the IoV field 

and serves as a valuable reference for similar data challenges in other domains. 

 

Sixthly, the incremental data processing framework proposed for the IoV 

environment aims to prevent homogenization of local ML models, achieve data 

diversity, and demonstrate superior incremental data handling capabilities. This design 

addresses the challenges of data dynamics and distributed processing in the IoV, 

ensuring personalized local models can optimize performance using new data through 

incremental learning. 

 

Seventhly, the study suggests that the sequence of processing noise and 

incremental data may indeed relate to the proportion of incremental data types. This 

highlights the need for flexibility and adaptability in data processing strategies, 

essential for dynamic environments like the IoV. 

 

Eighthly, the framework employs advanced techniques and methodologies, 

including outlier detection, Kalman filtering, exponential smoothing algorithms, and 

incremental learning, to ensure dual enhancement of data quality and model 
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performance. This comprehensive approach demonstrates exceptional performance in 

addressing noise and incremental data challenges within the IoV, supporting the 

evolution of IoV technology and the improvement of intelligent transportation systems. 

 

This research framework presents a solution for handling incremental and noise 

data challenges in the IoV, not only advancing IoV technology and enhancing intelligent 

transportation system performance but also supporting the sustainable development of 

smart cities. Its universal applicability also offers beneficial insights for addressing 

similar data challenges in other fields. 

 

 

1.7 Research Scope 

 

This research is committed to innovating and improving the processing of noise and 

incremental data in the Internet of Vehicles (IoV) domain through the comprehensive 

application of advanced technologies such as machine learning algorithms, federated 

learning, and incremental learning. The scope of this study is broad yet detailed, 

encompassing a range from foundational algorithmic research to exploration of 

practical applications. 

 

Federated Learning in IoV: The focus within federated learning, particularly in 

the context of IoV, centers on enabling intelligent collaboration and efficient learning 

among vehicles while safeguarding data privacy and security. This includes designing 

federated learning algorithms suitable for IoV environments, optimizing system 

architectures for efficient vehicle-to-vehicle communication and model updates, 
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exploring data privacy and security preservation during federated learning processes, 

and investigating practical application scenarios and potential challenges within IoV. 

 

Noise Data in IoV: Addressing the prevalent issue of noise data within IoV, this 

study concentrates on devising effective noise data filtering methods using machine 

learning, K-Means algorithms, and Kalman filter techniques. This entails researching 

accurate identification and classification of noise data in IoV, as well as algorithmic 

enhancements to improve the efficiency and accuracy of data filtering, thereby 

elevating data quality. 

 

Incremental Learning in IoV: Given the challenge of handling massive data 

volumes in IoV, incremental learning technology is adopted as a core solution. 

Traditional machine learning models often struggle with the vast amounts of data due 

to storage constraints and fail to efficiently process new incremental data. This research 

investigates the design and implementation of incremental learning algorithms tailored 

for the IoV environment to achieve continuous, efficient processing of massive data 

sets. Incremental learning enables ongoing learning and adaptation to new data, 

maintaining model accuracy and robustness and addressing the challenges of large-

scale, rapidly changing data in IoV, thus enhancing data processing efficiency and 

accuracy. 

 

Overall, by integrating technologies such as Internet of Things (IoT) algorithms, 

joint learning, machine learning, and incremental learning, this study aims to provide 

innovative solutions for various challenges in the IoT domain. Our research, with its 
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extensive and in-depth scope, seeks to advance IoT technology development and 

application, contributing to the progress towards an intelligent society. 

 

 

1.8 Thesis Structure 

 

The focus of this research is to propose solutions to various challenges in IoV. Some 

public IoV datasets are used for experiments to verify our proposed framework. This 

thesis is divided into five chapters, with the following specific contents. 

 

The first chapter introduces the thesis's research background and significance, 

content, scope and organization. The second chapter conducts a literature review from 

multiple perspectives, including IoV, federated learning and incremental learning. The 

improvements and innovations of our framework are described in the third chapter. The 

experimental results are explained in detail in the fourth chapter. Lastly, the fifth chapter 

is the summary and outlook. 

 

 

1.9 Chapter Summary 

 

This chapter has laid the foundational principles of this research, and offered a 

comprehensive overview as well as delineated the basic principles that guide our 

investigation. We have articulated the research objectives, questions, and goals that 

form the cornerstone of this thesis, structuring the inquiry and hypotheses that drive our 

study forward. These elements collectively underscore the focus of our work, 
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establishing a clear path toward addressing the challenges identified within the context 

of the IoV. 

 

The justification for this research has been substantiated based on its relevance 

and significance in the current landscape. By situating our study within the broader 

context of IoV, we have demonstrated the pressing need for innovative solutions to 

noise and incremental data processing challenges that this domain faces. A brief 

discussion on the conceptual framework was presented, setting the stage for a deeper 

exploration of the key technologies employed in our research. These include federated 

learning, machine learning algorithms, incremental learning, and noise data filtration 

techniques, which are pivotal for advancing IoV data processing capabilities. 

 

Moreover, this study's formation process was elucidated, emphasizing the 

iterative approach taken from conceptualization to execution. This process was 

underpinned by a thorough review of contemporary literature relevant to our research 

domain. Such a review not only enriched our understanding of the state-of-the-art in 

IoV data processing but also highlighted gaps and opportunities for innovation that our 

study aims to address. By critically engaging with existing scholarly work, we have 

positioned our research to contribute meaningful advancements to the field of IoV. 

 

In concluding this chapter, it is evident that our research stands on a robust 

foundation of scholarly inquiry and technological exploration. The objectives, 

questions, and goals outlined here reflect a strategic approach to tackling the 

complexities of data processing within the IoV. As we progress, the methodologies and 

analyses detailed in the subsequent chapters are geared towards validating our 
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hypotheses and achieving the research outcomes we have set forth. Ultimately, this 

study aims not only to advance the academic discourse on IoV but also to offer practical 

solutions that can be implemented to improve the efficiency, reliability, and security of 

IoV systems, paving the way for a more connected and intelligent transportation 

ecosystem. 




