

MOLECULAR AND ALLERGENIC CHARACTERIZATION OF **TROPOMYOSIN FROM** LOCAL MUD CRAB Scylla SPECIES

O 05-4506832 pustaka.upsi.edu.my

NUR FARAH HANI BINTI AZEMI

UNIVERSITI PENDIDIKAN SULTAN IDRIS

2024

MOLECULAR AND ALLERGENIC CHARACTERIZATION OF TROPOMYOSIN FROM LOCAL MUD CRAB Scylla SPECIES

NUR FARAH HANI BINTI AZEMI

O 05-4506832 pustaka.upsi.edu.my

THESIS SUBMITTED IN FULLFILLMENT OF THE REQUIREMENT FOR THE DOCTOR OF PHILOSOPHY (BIOLOGY)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2024

UPSI/IPS-3/BO 32 Pind : 00 m/s: 1/1

Please tick ($\sqrt{}$) Project Paper Masters by Research Master by Mixed Mode PhD

INSTITUTE OF GRADUATE STUDIES

DECLARATION OF ORIGINAL WORK

This declaration is made on the 9/7/2024

i. Student's Declaration:

pustaka.upsi.edu.my

I, NUR FARAH HANI BINTI AZEMI (P20161000929). FACULTY OF SCIENCE AND MATHEMATICS (PLEASE INDICATE STUDENT'S NAME, MATRIC NO. AND FACULTY) hereby declare that the work entitled <u>MOLECULAR AND ALLERGENIC</u> CHARACTERIZATION OF TROPOMYOSIN FROM LOCAL MUD CRAB *Scylla* SPECIES is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

Signature of the student

ii. Supervisor's Declaration:

I, <u>ASSOCIATE PROF. DR. ROSMILAH MISNAN</u> (SUPERVISOR'S NAME) hereby certifies that the work entitled <u>MOLECULAR AND ALLERGENIC</u> <u>CHARACTERIZATION OF TROPOMYOSIN FROM LOCAL MUD CRAB *Scylla* <u>SPECIES</u> (TITLE) was prepared by the above named student, and was submitted to the Institute of Graduate Studies as a * <u>partial</u>/full fulfillment for the conferment of <u>DEGREE OF DOCTOR OF PHILOSOPHY</u> (BIOLOGY) (PLEASE INDICATE THE DEGREE), and the aforementioned work, to the best of my knowledge, is the said student's work.</u>

19.4.2024

Date

ASSOC, PROF. DR. ROSBILAH BISHAR Senior Lecture truent of B-plogs Southy of Science and Mathemati-Sultan Mina Education University

Signature of the Supervisor

UPSI/IPS-3/BO 31 Pind : 00 m/s: 1/1

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / Title:

MOLECULAR AND ALLERGENIC CHARACTERIZATION OF

TROPOMYOSIN FROM LOCAL MUD CRAB SCYLLA SPECIES

No. Matrik /Matric's No.: P20161000929

05-4506832 🔣 pustaka.upsi.edu.my

Saya / /: NUR FARAH HANI BINTI AZEMI

(Nama pelajar / Student's Name)

mengaku membenarkan Tesis/Disertasi/Laporan Kertas Projek (Doktor Falsafah/Sarjana)* ini disimpan di Universiti Pendidikan Sultan Idris (Perpustakaan Tuanku Bainun) dengan syarat-syarat kegunaan seperti berikut-

acknowledged that Universiti Pendidikan Sultan Idris (Tuanku Bainun Library) reserves the right as follows .-

- Tesis/Disertasi/Laporan Kertas Projek ini adalah hak milik UPSI. The thesis is the property of Universiti Pendidikan Sultan Idris
- Perpustakaan Tuanku Bainun dibenarkan membuat salinan untuk tujuan rujukan sahaja. Tuanku Bainun Library has the right to make copies for the purpose of research only.
- Perpustakaan dibenarkan membuat salinan Tesis/Disertasi ini sebagai bahan pertukaran antara Institusi Pengajian Tinggi. The Library has the right to make copies of the thesis for academic exchange.
- Perpustakaan tidak dibenarkan membuat penjualan salinan Tesis/Disertasi ini bagi kategori TIDAK TERHAD.

The Library are not allowed to make any profit for 'Open Access' Thesis/Dissertation.

5. Sila tandakan (√) bagi pilihan kategori di bawah / Please tick (√) for category below:-

SULIT/CONFIDENTIAL

TERHAD/RESTRICTED

TIDAK TERHAD / OPEN ACCESS

Dete

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan

organisas/badan di mana penyelidikan ini dijalankan. I Contains restircted information as specified by the organization where research

Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. / Contains confidential information under the Official Secret Act 1972 Mengandungi maklumat terhad yang telah ditentukan oleh

> ASSOC. PROF. D.R. ROSALLAN MISAAN Senior Lockurer Desurtment of Biology Faculty of Science and Mathematics Sultan Mine Education University

(Tandatangan Penyelia / Signature of Supervisor) & (Nama & Cop Rasmi / Name & Official Stamp)

Tarikh: 15/04/2024

(Tandatangan Pelajar/ Signature)

Catatan: Jika Tesis/Disertasi ini SULIT @ TERHAD, sila lampirkan sutat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai SULIT dan TERHAD.

was done.

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

ACKNOWLEDGEMENTS

Allah made this PhD journey easier to the end of the snippet, even though it felt like giving up many times. Wake up to the sacrifices of many parties; it feels extremely unfair to waste their sacrifices.

Alhamdulillah, thank you so much to my supervisor, Associate Prof. Dr. Rosmilah Misnan. She is so good that it can be challenging for her at times. She wasn't bubbly, but she was courteous and generous with her time. She never forced me to do anything, but she always encouraged and reassured me that I could complete the laboratory work at my own pace. Thank you for also obtaining several grants that will cover the entire cost of this PhD study. Similarly, I am fortunate to have Dr. Keong Bun Poh as a brilliant co-supervisor. After nearly a semester of being stuck in an experiment, his brilliant idea saved the PhD study.

Alhamdulillah, I was blessed with a spouse and a child while pursuing my PhD. Mohammad Noruddin is a loving and patient husband and father. PhD was not an easy journey for me; he patiently served me in happy times, frustrated times, and many times when I was sick. Thanks to my lovely Nuha Medina for making me laugh when I'm down. My thanks also go to my in-laws, who treat me like one of their children. They were always eager to help me with every aspect of my PhD journey. Thank you for also loving and caring for Nuha. Similarly, my mother's, father's, and siblings' numerous prayers helped complete this study.

Alhamdulillah, thank you Allah for friends who are there for me in good and bad times. They are the ones who comfort me when I am upset and talk to me when I am alone. Without Kak Hidayat, Kak Ibah, Kak Ila, Kak Amy, Kak As, Diana, Mia, and Jiha, this PhD trip would have been extremely lonely. Mr. Faizi, Kak Lida, and Kak Ira, the laboratory assistant officers, are always available to assist with technical issues in the laboratory.

Alhamdulillah for the past six years, I've also been blessed with a pleasant and relaxing environment. Fortunately, there are very comfortable labs equipped with all of the necessary laboratory equipment. Six years is a long time, but Universiti Pendidikan Sultan Idris is the best university in the country, and they handle all of my student affairs. Above all, a heartfelt thank you to everyone who assisted me in completing my PhD, both directly and indirectly.

05-450

ABSTRACT

This study aims to characterize the molecular and allergenic properties of tropomyosin from local mud crab Scylla species. The methodology involved quantifying reference genes and tropomyosin levels in these crabs using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Additionally, recombinant tropomyosin gene and protein were created using recombinant DNA techniques. The reactivity of tropomyosin with IgE antibodies was assessed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and anti-tropomyosin monoclonal antibody immunoblotting. Bioinformatic tools were used to predict various characteristics such as physicochemical properties, structural composition, phylogenetic relationships, IgE-epitope regions, and docking simulations of the recombinant proteins. The findings indicated that elongation factor 1 alpha (EF1 α) was a suitable normalizer for qRT-PCR in the three mud crab species studied, and a combination of three reference genes per species was optimal for tropomyosin normalization. Tropomyosin was predominantly present in the abdominal muscle, with S. tranquebarica exhibiting the highest levels, followed by S. olivacea and S. paramamosain. A complete 855-base pair recombinant tropomyosin gene was successfully generated from a local mud crab. The induction with 1 mM IPTG at 37 °C for 4 hours resulted in 42 kDa histidine tagged-recombinant tropomyosin protein from S. olivacea, S. tranquebarica and S. paramamosain that was IgE-reactive to 90%, 65%, and 70% of crab-allergy patients, respectively. Analysis revealed tropomyosin as a temperature-stable coiled-coil alpha-helix protein with 11 IgE-binding sites, leading to cross-reactivity among mud crabs, other crustaceans, insects, arachnids and bacteria. Docking simulations demonstrated binding between these 11 IgE-binding epitopes and IgE antibodies, with distances ranging from 1.2 to 3.6 Angstroms. In conclusion, this study highlights the importance of comprehending the molecular and allergenic aspects of tropomyosin in local mud crab species. These findings have implications for developing diagnostic and therapeutic strategies for mud crab allergies.

PENCIRIAN MOLEKUL DAN ALERGENIK TROPOMYOSIN DARIPADA KETAM LUMPUR TEMPATAN SPESIS Scylla

ABSTRAK

Kajian ini bertujuan untuk mencirikan sifat molekul dan alergen tropomiosin daripada ketam lumpur tempatan spesies Scylla. Metodologi yang digunakan termasuk pengukuran gen rujukan dan tahap tropomiosin dalam ketam-ketam ini menggunakan real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Selain itu, gen dan protein tropomiosin rekombinan dicipta menggunakan teknik DNA rekombinan. Kereaktifan tropomiosin dengan antibodi IgE dinilai menggunakan elektroforesis gel poliakrilamida natrium dodesil sulfat (SDS-PAGE) dan pemblotan imuno antibodi monoklonal anti-tropomiosin. Alatan bioinformatik digunakan untuk meramal pelbagai ciri-ciri seperti sifat-sifat fizikokimia, komposisi struktur, hubungan filogenetik, rantai epitop IgE, dan simulasi penggandingan protein rekombinan. Penemuan menunjukkan bahawa faktor pemanjangan 1 alfa (EF1α) adalah penormal yang sesuai untuk qRT-PCR dalam tiga spesies ketam lumpur yang dikaji, dan kombinasi tiga gen rujukan bagi setiap spesies adalah optimum untuk normalisasi tropomiosin. Tropomiosin lebih banyak terdapat dalam otot abdomen, dengan S. tranquebarica menunjukkan tahap tertinggi, diikuti oleh S. olivacea dan S. paramamosain. Satu gen tropomiosin rekombinan dengan 855 pasangan bes yang lengkap telah berjaya dihasilkan dari ketam lumpur tempatan. Penginduksian dengan 1 mM IPTG pada suhu 37 °C selama 4 jam menghasilkan protein tropomiosin rekombinan dengan tag histidin 42 kDa dari S. olivacea, S. tranquebarica dan S. paramamosain yang reaktif terhadap IgE, masing-masing pada 90%, 65%, dan 70% pesakit alergi ketam. Analisis menunjukkan tropomiosin sebagai protein heliks alfa berpilin yang stabil suhu dengan 11 tapak pengikat IgE, yang menyebabkan reaktiviti silang di antara ketam lumpur, krustasia lain, serangga, araknida, dan bakteria. Simulasi penggandingan menunjukkan pengikatan antara 11 epitop pengikat IgE ini dan antibodi IgE, dengan jarak antara 1.2 hingga 3.6 Angstroms. Kesimpulannya, kajian ini menegaskan pentingnya memahami aspek molekul dan alergenik tropomiosin dalam spesies ketam lumpur tempatan. Penemuan ini mempunyai implikasi dalam pembangunan strategi diagnostik dan terapeutik untuk alergi ketam lumpur.

TABLE OF CONTENTS

	Page
DECLARATION OF ORIGINAL WORK	ii
DECLARATION OF DISSERTATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
05-450683 LIST OF ABBREVIATIONS Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	xxitbupsi
LIST OF APPENDICES	xxiv
CHAPTER 1 GENERAL INTRODUCTION	1
1.1 Background of the study	1
1.2 Problem statement	5
1.3 Research objectives	7
1.4 Research questions	7
1.5 Significance of research	8
1.6 Scope and limitations of research	9
CHAPTER 2 LITERATURE REVIEW	11
2.1 Introduction	11
2.2 Seafood and crab	11
2.3 Mud Crab <i>Scylla</i> spp.	14
2.3.1 Species of mud crab	15

	2.3.1.1 Scylla serrata	16
	2.3.1.2 Scylla olivacea	17
	2.3.1.3 Scylla tranquebarica	18
	2.3.1.4 Scylla paramamosain	18
	2.3.2 Mud crab as a food source	19
2.4	Allergy	19
	2.4.1 Pathogenesis of allergy	20
	2.4.2 Clinical symptoms of crab allergy	23
	2.4.3 Prevalence and epidemiology of crab allergy	25
	2.4.4 Diagnosis tests for crab allergy	27
	2.4.4.1 Skin Prick Test (SPT)	27
	2.4.4.2 Specific IgE test	28
	2.4.4.3 Oral Food Challenge (OFC)	29
	2.4.5 Treatment and management of crab allergy	Bainun 29 ptbups
2.5	Crab allergen	30
	2.5.1 Allergens found in crab species	31
2.6	Crab tropomyosin	37
	2.6.1 Tropomyosin expression in mud crab	39
	2.6.2 Recombinant tropomyosin allergen	40
	2.6.3 Allergenic properties of crab tropomyosin protein	41
	2.6.4 Tropomyosin biochemical characteristic	43
	2.6.4.1 Tropomyosin stability	43
	2.6.4.2 Tropomyosin cross-reactivity	44
	2.6.4.3 Tropomyosin resistance to enzymatic degrada	ation 47
	2.6.4.4 Tropomyosin high affinity for IgE antibodies	48
	2.6.4.5 Tropomyosin structural characteristics	48
2.	7 Conclusions (research gap)	49

C

Cŀ	52							
	3.1	Introd	uction				52	
	3.2	Resea	arch desig	gn			52	
	3.3	Resea	arch sam	oles			59	
		3.3.1	Mud cra	bs			59	
			3.3.1.1	Mud crab	nur	nber	59	
			3.3.1.2	Mud crab	fea	ture selection	60	
		3.3.2	Patient	sera			63	
	3.4	Resea	arch mate	erials			64	
		3.4.1	Gene ar	nd DNA pri	mer	S	64	
	3.5	Metho	odology				64	
		3.5.1	Method	ology for o	bjeo	ctive 1	68	
			3.5.1.1			PCR and real-time qRT-PCR method crab samples	70	
05-4506832						ud crab used for sample replication	70 ptbups	
				3.5.1.1.2		otal RNA extraction and concentration antification for sample selection	70	
					a)	Total RNA extraction	70	
					b)	Total RNA quantification	72	
					c)	cDNA synthesis	72	
			3.5.1.2			I-time qRT-PCR for confirmation of icity and gene identity	73	
				3.5.1.2.1	Ge	ne selection and primer design	73	
				3.5.1.2.2	PC	R reaction	75	
				3.5.1.2.3	Ag	arose gel electrophoresis	75	
				3.5.1.2.4		l extraction, DNA sequencing, and quence analysis	76	
				3.5.1.2.5	Re	al-time qRT-PCR reaction	77	

			3.5.1.2.6	Melting peak curve analysis for primer specificity validation	78				
			3.5.1.2.7	Standard curve analysis for real-time qRT-PCR acceptable performance value	78				
			3.5.1.2.8	Amplification plot analysis for real-time qRT-PCR limit of detection	79				
		3.5.1.3		Identification of suitable reference gene(s) in local mud crab species					
			3.5.1.3.1	Real-time qRT-PCR of candidate reference genes using mud crab samples and their Cq value analysis for the preliminary selection of suitable reference genes	79				
			3.5.1.3.2	RefFinder analysis for the actual selection of suitable reference genes	80				
			3.5.1.3.3	geNorm analysis for selection of the optimum number of suitable reference genes	80				
05-4506832	pustaka	3.5.1.4	tropomyo	tion of relative expression level of sin in local mud crab species	81 ptbups				
				Real-time qRT-PCR of tropomyosin in mud crab samples	81				
			3.5.1.4.2	Calculation of relative expression level of tropomyosin based on Livak's method formula	81				
	3.5.2	Method	ology for ol	bjective 2	83				
		3.5.2.1	Cloning s	imulation	85				
		3.5.2.2	Isolation amplificat	of tropomyosin gene by using PCR re- tion	85				
		3.5.2.3	Cloning of cloning ve	f tropomyosin gene into pJET1.2/blunt ector	86				
			3.5.2.3.1	Ligation of purified tropomyosin into pJET1.2/blunt producing pJET1.2- tropomyosin	86				
			3.5.2.3.2	Transformation of pJET1.2-tropomyosin into DH5α <i>E. coli</i>	87				
			3.5.2.3.3	DH5 α propagation and competent cells preparation	87				

			3.5.2.3.4		ansformation of pJET1.2-tropomyosin competent DH5α	88
			3.5.2.3.5	Scr PC	eening of positive clones by colony R	88
				a)	Colony PCR (using pJET1.2 primers) and agarose gel electrophoresis	88
				b)	Colony patching and plasmid extraction of positive clones	89
			3.5.2.3.6	sec	nfirmation of tropomyosin clones' uence by DNA sequencing and uence analysis	90
		3.5.2.4	Subclonir expressio	•	tropomyosin gene into pRSETA ector	91
			3.5.2.4.1		oducing <i>Bam</i> HI and <i>Eco</i> RI restriction Tyme sites by PCR	91
			3.5.2.4.2		pagation and extraction of uncut SETA	92
05-4506832			double re	stric	estion of tropomyosin and pRSETA by tion enzyme	92 O ptbups
· ·				Liga	ation of both tropomyosin and pRSETA produce pRSETA-tropomyosin	93
			3.5.2.4.5	into	nsformation of pRSETA-tropomyosin commercialized competent 21(DE3) pLysS <i>E. coli</i>	93
			3.5.2.4.6	PC	eening of positive clones by colony R and double restriction enzyme estion	94
				а) Colony PCR (using T7 primers) and agarose gel electrophoresis	94
				b) Colony patching, plasmid extraction, and double restriction enzyme digestion of positive clones	95
			3.5.2.4.7	sec	confirmation of tropomyosin clones' uence by DNA sequencing and uence analysis	95
	3.5.3	Methode	ology for o	bjec	tive 3	96
		3.5.3.1	•		duction of histidine tagged-recombinant protein in <i>E. coli</i>	98

			3.5.3.1.1	IPT	G induction	98
			3.5.3.1.2	Bac	terial cell lysis	99
			3.5.3.1.3	SDS	S-PAGE	99
				a)	Preparation of SDS-PAGE apparatus and gel	100
				b)	Sample preparation for SDS-PAGE analysis	101
				c)	Mini protean 3 cell set up and electrophoresis	101
				d)	Coomassie staining and destaining	101
				e)	Protein band intensities measurement	102
			3.5.3.1.5	•	imizing expression induction by nipulating IPTG concentration	102
		3.5.3.2	Purification	n of r	ecombinant protein by IMAC	103
\sim					aration of nickel purification column	103
05-4506832			3.5.3.2.2	Bindi	aan Tuanku Bainun ng, washing, and elution of line tagged-recombinant tropomyosin in	104
		3.5.3.3			of histidine tagged-recombinant otein by Bradford assay	104
		3.5.3.4	Anti-tropol immunoble		in monoclonal antibody	105
			3.5.3.4.1	Elect	rophoretic transfer and strip cutting	106
					unoblotting with monoclonal anti- myosin antibody	106
	3.5.4	Method	ology for ol	ojecti	ve 4	108
		3.5.4.1	Character tropomyos		n of IgE-reactivity of recombinant	109
			3.5.4.1.1		S-PAGE, electrophoretic transfer, and t strip cutting	109
			3.5.4.1.2	Pat	ient sera immunoblotting	109
		3.5.4.2	Molecular	dete	rminants prediction of tropomyosin	111

				3.5.4.2.1	Pr	ediction of physicochemical properties	111			
				3.5.4.2.2		ediction of secondary and tertiary ructure	112			
			3.5.4.3	Allergenic	de	terminants prediction of tropomyosin	112			
				3.5.4.3.1	Co	nstruction of phylogenetic tree	112			
				3.5.4.3.2	Pre	ediction of IgE-epitope region and site	113			
				3.5.4.3.3	Pro	otein docking simulation	113			
	СНАРТ	ER 4 R	ESULT A	AND DISC	USS	ION	115			
	4.1	Metho	d validati	on			115			
		4.1.1	Criteria	of validate	d P	CR and real-time qRT-PCR methods	115			
			4.1.1.1	Sample re	eplic	ation and total RNA concentration	115			
			4.1.1.2	Gene prin	ner	specificity	119			
			4.1.1.3	Tropomyo	osin	fragment identity	125			
			4.1.1.4			q value for real-time qRT-PCR analysis	127			
05-450683			4.1.1.5			T-PCR limit of detection	130 ptbupsi			
		4.1.2	Identific species		itabl	e reference genes in local mud crab	131			
			4.1.2.1	Analysis o	of re	al-time qRT-PCR Cq value	131			
				4.1.2.1.1	Pr€	eliminary selection of reference gene	131			
				4.1.2.1.2	Ac	tual selection of reference gene	133			
					a)	In <i>S. olivacea</i> on three different body parts	134			
					b)	In <i>S. paramamosain</i> on three different body parts	134			
					c)	In <i>S. tranquebarica</i> on three different body parts	134			
					d)	In S. <i>olivacea</i> , S. <i>paramamosain,</i> and S. <i>tranquebarica</i> on whole-body	134			
			4.1.2.2	Analysis o	of th	e optimum number of reference genes	140			
		4.1.3			dentification of tropomyosin expression level in local mud crab species					

	4.2	Cloni	ng of trop	oomyosin gene from local mud crab species	146
		4.2.1	•	n of tropomyosin gene	146
		4.2.2	Cioning	of tropomyosin into pJET1.2/blunt cloning vector	146
			4.2.2.1	DNA ligation of tropomyosin into pJET1.2/blunt cloning vector	146
			4.2.2.2	Screening of recombinant pJET1.2-tropomyosin using colony PCR	150
			4.2.2.3	DNA sequencing and sequence analysis of recombinant pJET1.2-tropomyosin	152
		4.2.3	Subclor	ning of tropomyosin into pRSETA expression vector	160
			4.2.3.1	Amplification of tropomyosin with <i>Bam</i> HI and <i>Eco</i> RI- containing primer	161
			4.2.3.2	Preparation of pRSETA plasmid vector	162
			4.2.3.3	Digestion and ligation of pRSETA plasmid and tropomyosin gene	163
05-4506832			4.2.3.4	pRSETA-tropomyosin transformation and transformation efficiency	166 ptbupsi
0			4.2.3.5		169
			4.2.3.6	Re-confirmation of recombinant tropomyosin identity	172
	4.3	Expre specie		recombinant tropomyosin protein from local mud crab	173
		4.3.1	Overex _l protein	pression of histidine tagged-recombinant tropomyosin	173
			4.3.1.1	Overexpressed recombinant tropomyosin protein	173
			4.3.1.2	Expression optimization of soluble fraction of histidine tagged-recombinant tropomyosin protein	177
		4.3.2		ion and protein concentration of histidine tagged- inant tropomyosin protein	182
		4.3.3	Identity	of histidine tagged-recombinant tropomyosin protein	184
			4.3.3.1	Anti-tropomyosin-binding band of recombinant tropomyosin protein	184

bioinfo	IgE-binding characterization of recombinant tropomyosin, and bioinformatic analysis of molecular and allergenic determinants of recombinant tropomyosin protein from local mud crab species						
4.4.1		ding band of histidine tagged-recombinant yosin protein	186				
	4.4.1.1	IgE-binding frequencies of histidine tagged- recombinant tropomyosin protein	192				
4.4.2	4.4.2 Molecular and allergenic determinants of local mud crab tropomyosin						
	4.4.2.1	Physicochemical properties	198				
	4.4.2.2	Secondary and tertiary structure	200				
	4.4.2.3	Phylogenetic tree relationship of tropomyosin from mud crab species	203				
	4.4.2.4	IgE-epitope prediction of tropomyosin from mud crab species	209				
	4.4.2.5	Protein docking simulation	212				
CHAPTER 5 C	ONCLUS	SIONS AND RECOMMENDATIONS	328				
05-4506832 5.1 Conclu	isions		229				
5.2 Recom	mendatio	ons	232				
REFERENCES	6		235				
APPENDICES							

LIST OF TABLES

Т	able No.		Page
	2.1	Allergens in different species of crab	35
	2.2	The amino acid sequence of IgE-binding epitope in brown shrimp tropomyosin	45
	2.3	Classification of IgE-binding epitope of Pen a 1	45
:	3.1	Details of research design	53
:	3.2	Registered identity code of the patient sera	64
:	3.3	Nucleotide flanking primer sequence	66
05-4506832	3.4	Name of gene, application, source/accession number, primer sequences, product size, and annealing temperature (Ta) involves in this study	67
	3.5	Genes' name, NCBI accession number, primer sequences, and expected size of the amplicon	74
:	3.6	SDS-PAGE gel formulations	100
:	3.7	Solutions for protein calibration curve	105
:	3.8	Steps in immunoblotting with monoclonal antibodies	107
:	3.9	Steps in immunoblotting with patient sera	110
2	4.1(a)	Total RNA concentration of muscle body part of S. olivacea	116
2	4.1(b)	Total RNA concentration of muscle body part of <i>S. tranquebarica</i>	117
2	4.1(c)	Total RNA concentration of muscle body part of <i>S.</i> paramamosain	118
2		Autogenerated expression stability value by RefFinder server for actual selection of suitable reference gene(s)	138
2	4.3	Number of bacteria colonies grow on media plate	168

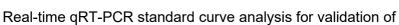
4.4 Percentage of sequence similarity of subcloning tropomyosin 172 sequences of S. olivacea (o1), S. tranquebarica (t1), and S. paramamosain (t1) using their cloned sequence as query input 4.5 Concentration of purified recombinant tropomyosin protein of S. 183 olivacea, S. tranquebarica, and S. paramamosain 4.6 Immunoblotting analysis of recombinant tropomyosin of S. 192 olivacea, S. tranquebarica, and S. paramamosain using sera from 20 mud crab-allergic patients 4.7 ProtParam predictions of tropomyosin protein from mud crab 198 species 4.8 Secondary structure composition of tropomyosin 201 4.9 Predicted IgE-epitope of tropomyosin among mud crab species 210 S. olivacea recombinant tropomyosin-IgE docking simulation 4.10(a) 217 4.10(b) S. paramamosain recombinant tropomyosin-IgE docking 220 simulation S. tranquebarica recombinant tropomyosin-IgE docking 223 4.10(c) simulation 05-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun O ptbupsi

LIST OF FIGURES

F	igure No).	Page
	2.1	Taxonomical classification of shellfish	13
	2.2	The complete taxonomy classification of mud crab	14
	2.3	Species of mud crab	15
	2.4	Mechanism of mud crab allergy	22
	2.7	Tropomyosin structure	38
	3.1	Location and date of mud crab collection	60
	3.2(a)	Mud crab gender differences	61
05-450683	3.2(b)	The presence of abdominal flat looseness or a mating scar distinguishes adult and juvenile mud crabs	62
\bigcirc	3.2(c)	The structure of the vas deferens distinguishes adult and juvenile male mud crabs	62
	3.3	Reference tropomyosin sequence used in this study	65
	3.4	Selection of restriction enzyme pair for recombinant tropomyosin protein study	66
	3.5	The flow of method used in Objective 1	69
	3.6	The flow of method used in Objective 2	84
	3.7	The flow of method used in Objective 3	97
	3.8	The flow of method used in Objective 4	108
	4.1(a)	PCR amplification with similar primers for isolation of tropomyosin fragment and candidate reference genes from mud crab species samples	121
	4.1(b)	Real-time qRT-PCR amplification for confirmation of tropomyosin fragment and candidate reference genes primer specificity	122
	4.2	DNA sequencing and sequence analysis of tropomyosin fragment for identity confirmation	126

4.3

method performance



O 5-4506832 O pustaka.upsi.edu.my

	4.4	Real-time qRT-PCR amplification curve analysis validation for the limit of detection	130
	4.5	Comparison of Cq value between candidate reference genes and tropomyosin fragment for preliminary selection of suitable reference gene	132
	4.6	geNorm analysis for identification of optimum number of reference genes	141
	4.7	Livak formula-based calculation to identify the relative expression of tropomyosin in mud crab species	144
	4.8	PCR-reamplification using similar PCR primers for isolation of tropomyosin DNA from mud crab species samples	147
	4.9	Colony PCR with pJET1.2 primers for screening of colonies containing pJET1.2-tropomyosin construct	151
	4.10	Nucleotide sequence alignment for demonstration of mud crab species tropomyosin identity	153
05-45068	4.11	Amino acid sequence alignment for mud crab species with mismatched tropomyosin amino acids	155
	4.12	Nucleotide sequence alignment for demonstration of mud crab genus tropomyosin identity with other available crab tropomyosin	157
	4.13	PCR amplification with subcloning primers for the insertion of restriction enzyme sites in isolated tropomyosin	161
	4.14	pRSETA plasmid propagation and extraction for tropomyosin DNA expression vector production	162
	4.15	Double restriction enzyme digestion and DNA ligation to produce pRSETA-tropomyosin constructs	165
	4.16	Transformation of pRSETA-tropomyosin into BL21(DE3) pLysS for the introduction of the construct into the host cell and propagation	167
	4.17	Colony PCR with T7 primers for screening of colonies containing pRSETA-tropomyosin construct	170
	4.18	Double restriction digestion for screening of colonies containing pRSETA-tropomyosin construct	171

IPTG induction for expression of histidine tagged-recombinant 4.19 175 tropomyosin

xix

128

ХΧ

05-45068	4.20	Measurement of protein band intensity using ImageJ software, specifically analyzing pixels within similarly specified areas of the 0.5 mM IPTG-induced soluble fraction bands among the samples from <i>S. olivacea</i> (a), <i>S. tranquebarica</i> (b), and <i>S. paramamosain</i> (c).	176
	4.21	IPTG induction for optimization of histidine tagged-recombinant tropomyosin expression	178
	4.22	Measurement of protein band intensity of S. olivacea samples using ImageJ software, specifically analyzing pixels within similarly specified band areas of the samples under induction with various concentrations of IPTG	179
	4.23	IMAC for the purification of histidine-tagged recombinant tropomyosin	183
	4.24	Immunoblotting against anti-tropomyosin monoclonal antibodies for identity confirmation of histidine tagged-recombinant tropomyosin	185
	4.25	IgE immunoblotting of histidine tagged-recombinant tropomyosin from <i>S. olivacea</i> for reactivity confirmation	187
	4.26	IgE immunoblotting of histidine tagged-recombinant tropomyosin from <i>S. tranquebarica</i> for reactivity confirmation	188
	4.27	IgE immunoblotting of histidine tagged-recombinant tropomyosin from <i>S. paramamosain</i> for reactivity confirmation	189 ^{ptbups}
	4.28(a)	ImageJ analysis the intensities of presence IgE-binding band from <i>S. olivacea</i> recombinant tropomyosin.	193
	4.28(b)	ImageJ analysis the intensities of presence IgE-binding band from <i>S. paramamosain</i> recombinant tropomyosin.	194
	4.28(c)	ImageJ analysis the intensities of presence IgE-binding band from <i>S. tranquebarica</i> recombinant tropomyosin.	195
	4.29	Structure remodeling for prediction of the 3-Dimensional structure of tropomyosin from mud crab species	201
	4.30(a)	Phylogenetic tree of <i>S. olivacea</i> tropomyosin for demonstration of its evolutionary relationships between species	205
	4.30(b)	Phylogenetic tree of <i>S. tranquebarica</i> tropomyosin for demonstration of its evolutionary relationships between species	206
	4.30(c)	Phylogenetic tree of <i>S. paramamosain</i> tropomyosin for demonstration of its evolutionary relationships between species	207
	4.31	Amino acid binding interactions between IgE antibodies' Fc receptor and mud crab recombinant tropomyosins.	227

05-4506832

LIST OF ABBREVIATIONS

a-helix	Alpha-helix
ALS	Asthma-like symptoms
APC	Antigen-presenting cell
β-actin	Beta-actin
Blast	Basic local alignment search tool
Blastn	Basic local alignment search tool nucleotide
Blastp	Basic local alignment search tool protein
bp	Base pair
BSA	Bovine serum albumin
cDNA _{ustaka.upsi.edu.my}	Complementary DNA ainun Kampus Sultan Abdul Jalil Shah
Cq	Quantification cycle
DBPCFC	Double-blind placebo-controlled food challenge
ddNTPs	Dideoxy nucleoside triphosphates
DNA	Deoxyribonucleic acid
dNTPs	deoxyribonucleotide triphosphate
E. coli	Escherichia coli
EF1α	Elongation factor 1 alpha
FAO	Food and Agriculture Organization
FceRI	Fc epsilon receptor I
GADPH	Glyceraldehyde 3-phosphate dehydrogenase
GC	Guanine cytosine
gDNA	Genomic DNA
IgE	Immunoglobulin E

05-4506832 😵 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

IL	Interleukin
IMAC	Immobilized metal affinity chromatography
IPTG	Isopropyl-beta-D-thiogalactoside
mRNA	Messenger ribonucleic acid
MSC	Multiple cloning sites
NCBI	National Center for Biotechnology Information
NTC	Non-template control
OD	Optical density
OFC	Oral food challenge
PCR	Polymerase chain reaction
PVDF	Polyvinylidene fluoride
RDT	Recombinant DNA technology
Real-time qRT-PCR	Real-time quantitative reverse transcription-polymerase chain reaction
RNA pustaka.upsi.edu.my	Ribonucleic acid
S. olivacea	Scylla olivacea
S. paramamosain	Scylla paramamosain
S. serrata	Scylla serrata
S. tranquebarica	Scylla tranquebarica
S. oceanica	Scylla oceanica
SDS	Sodium dodecyl sulphate
SDS-PAGE	Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
slgE	Specific Immunoglobulin E
SPT	Skin prick test
Th	T helper
WHO	World Health Organization
18S rRNA	18S ribosomal RNA

12S rRNA

12S ribosomal RNA

O 05-4506832 S pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Perpustakaan Tuanku Bainun PustakaTBainun optupsi

LIST OF APPENDICES

- А Chemicals, consumable items, non-consumable items, general instruments, kits, software and plasmid.
- В Specified gene region shows the sequence alignment of the designed DNA primers for candidate reference genes and the tropomyosin fragment.
- С Blunt end ligation
- D Sequence analysis of recombinant proteins
- Е Protein quantification
- F ClusPro 2.0 models and lowest docking energy
- G Published journal articles
- Н Conference and competition participation

05-4506832

pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun O ptbupsi

CHAPTER 1

INTRODUCTION

1.1 Background of the study

PustakaTBainun **(**) 05-4506832 📢 pustaka.upsi.edu.my Shellfish are marine invertebrates with a shell that belong to the Phylum Mollusca (which includes clams, mussels, scallops, squids, abalones, and whelks) and the crustacean of Phylum Arthropoda (which includes crabs, prawns, lobsters, crayfishes, krills, mantis, sandhoppers, and pillbugs) (Ruethers et al., 2018). Crabs, shrimps, prawns, lobsters, and crayfishes are among the 52,000 crustacean species known worldwide, with the majority of edible species belonging to the Order Decapoda (Ghafor, 2020). With over 807,0000 tons of harvest in 2018, crab is listed as the second most commercialized decapod species after shrimp (Food and Agricultural Organization [FAO], 2020a).

> The mud crab Scylla spp. or locally known as "Ketam Nipah" is a swimming crab found in brackish and coastal mangrove areas. Four species of mud crabs have been discovered namely Scylla serrata (S. serrata), Scylla olivacea (S. olivacea),

2

Scylla tranquebarica (S. tranquebarica), and Scylla paramamosain (S. paramamosain) (Keenan, Davie, & Mann, 1998). In Malaysia, there were S. olivacea, S. tranquebarica, and S. paramamosain that are commonly found in Kedah, Perak, Melaka, Terengganu, Sarawak, and Sabah (Nurul Ain, Noor Amalia, Muhammad Ali, Julian, & Seok-Kian, 2019; Haidr, Rosmilah, Som, & Alsailawi, 2018). The distribution of *S. serrata* species, on the other hand, is least reported locally based on a single study conducted in 1997, 2017, and 2020, respectively (Fazhan et al., 2020; Fazhan et al., 2017; Takeharu, 2001). Mud crab identity has been investigated in many countries including Malaysia (Ruhana & Durrah Syazwani, 2019), Bangladesh (Parvin, Islam, Hoq, & Alam, 2018; Rouf, Shahriar, Sarower, & Ahsan, 2016), Thailand (Jirapunpipat, Aungtonya, & Watanabe, 2008), Japan (Ogawa, Hamasaki, Dan, Obata, & Kitada, 2012), and India (Prasanthi & Ramesh, 2019; Devi & Joseph, 2015), resulting in different species distribution throughout the countries.

Mud crab allergy has been studied in several countries including Malaysia (Hasan, Rosmilah, Keong, & Haider, 2019; Mustafa et al., 2018; Nurul Izzah, Rosmilah, & Zailatul Hani, 2015; Rosmilah et al., 2015), China (Hu et al., 2017; Fei et al., 2016), and Australia (Crewe et al., 2016). Overall, *S. serrata, S. tranquebarica*, and *S. paramamosain* have been discovered as a cause of mud crab allergy due to the presence of several allergens while allergy to *S. olivacea* has yet not been investigated. Protein allergens present in mud crab species include tropomyosin (Hasan et al., 2019; Liu et al., 2018; Mustafa et al., 2018; Yu et al., 2011), arginine kinase (Yang et al., 2015; Mao et al., 2013; Yu et al., 2013), triosephosphate isomerase (Xia et al., 2019), sarcoplasmic calcium-binding protein (Hu et al., 2017), myosin light chain (Li et al., 2019; Abramovitch, Lopata, O'Hehir, & Rolland, 2017), filamin C (He et al., 2020), and actin (Mustafa et al., 2018), with tropomyosin is the dominant allergen being found.

05-4506832

pustaka.upsi.edu.my

3

Tropomyosin, a regulatory protein in crab muscle tissue, has emerged as a major allergen triggering a spectrum of allergic reactions, from rhinitis to anaphylactic shock (Lee et al., 2017; Farah Dayana, 2011). The demand for high-quality seed production in the industry has led to increased scrutiny of mud crab biology, particularly in areas such as the reproductive system (Muhd-Farouk et al., 2019). Consequently, there has been a rise in real-time gRT-PCR studies aimed at elucidating the expression patterns of functional genes during normal body development processes in mud crab species. Given its pivotal role in muscle function, tropomyosin levels significantly outweigh those of other known allergens and exhibit variation across different body parts of the crab (Kamath et al., 2013; Motoyama et al., 2007). Notably, the abdomen, cheliped, and walking legs contain edible meat, which is responsible for triggering allergic symptoms. However, despite its importance, the transcriptional level of the tropomyosin gene in these edible muscle parts remains largely unexplored, particularly in male mud crabs. This knowledge gap underscores the need for assessing tropomyosin gene expression in various tissue sources to accurately estimate the allergenicity levels in mud crab tissues (Wang et al., 2018).

Tropomyosin, recognized as a pan-allergen across various invertebrate species including crustaceans, mollusks, mites, and parasites, poses a challenge in distinguishing between allergenic and non-allergenic variants due to the lack of distinct isoform classes (Asnoussi et al., 2017; Kamath et al., 2013; Jeong et al., 2004; Ayuso et al., 2002). This variability in DNA sequences encoding tropomyosin leads to diverse protein structures, offering a unique avenue for the development of targeted immunotherapy against specific organisms (James et al., 2018; Gunning et al., 2005). To overcome the limitations associated with natural extracts in allergy diagnostics, there has been a notable shift towards recombinant allergen technology.

Recombinant allergens present a contemporary intervention providing a pure and well-defined alternative to natural extracts in diagnostic allergy tests (Smoldovskaya et al., 2016). Abundant recombinant tropomyosin proteins have been successfully produced from various crustacean species such as the crucifix crab (Cha f 1), blue swimming crab (Por p 1), and Chinese mitten crab (Eri s 1), exhibiting known molecular weights, stability, and immunoreactivity comparable to their natural counterparts (Abramovitch et al., 2013; Liang et al., 2008; Leung et al., 1998). This study seeks to bridge the existing research gap by producing recombinant tropomyosin genes and proteins from local mud crab species *like S. olivacea, S. tranquebarica* and *S. paramamosain*, thereby contributing to a more comprehensive understanding of shellfish allergenicity and enhancing diagnostic strategies for individuals prone to allergies.

Advances in allergen research, aided by computer technology and bioinformatic tools, have deepened our understanding of allergen properties and trimmed experimental costs (Yang et al., 2016). Analyzing amino acid sequences is pivotal in examining tropomyosin, predicting its stability and cross-reactivity across species (Asnoussi et al., 2017; Shafique et al., 2013; Chu et al., 2000; Motoyama et al., 2008). Allergens, primarily proteins, initiate allergic reactions by interacting with immune cells through various pathways (Mak & Saunders, 2006). However, the specific properties and physicochemical traits of tropomyosin from local mud crab species remain unexplored. While cross-reactivity, wherein similar allergens trigger immune responses, is evident in tropomyosin, its extent in mud crab species is uncertain (Jeong et al., 2006; Lopata, Kleine-Tebbe, & Kamath, 2016). Simulations of protein interactions can illuminate how tropomyosin interacts with IgE antibodies, providing insights into its allergenic properties. Hence, a portion of this chapter aims to

5

utilize bioinformatic analysis to forecast the molecular and allergenic aspects of tropomyosin from local mud crab species.

1.2 Problem statement

The problem statement revolves around the assessment of the potential of mud to cause allergic reactions, which can be determined by examining the expression levels of the tropomyosin gene. Past research has primarily focused on detecting tropomyosin, yet there is a notable gap in quantifying its levels (Wang et al., 2018; Shekhar, Kiruthika, & Ponniah, 2013). Tropomyosin, being a muscle protein, holds significance in this context. The specific issue lies in the lack of knowledge regarding the levels of tropomyosin in the edible body parts (abdomen, cheliped, and leg) of local mud crab species. The proposed research solution involves utilizing real-time qRT-PCR to measure the relative expression of tropomyosin, but a crucial requirement is the identification of a stable reference gene for normalization purposes (Bustin et al., 2009). Among the potential reference genes evaluated, including 18S rRNA, Myosin, GADPH, and EF1 α , the most stable one will be selected. The overarching research objective is to determine the tropomyosin gene expression level in local mud crab species, thereby addressing the existing gap in knowledge and contributing to a better understanding of the allergenic potential associated with mud crab consumption.

The second research problem identified revolves around the introduction of recombinant tropomyosin allergen as a potential substitute for natural extracts in diagnostic tests. While natural extracts have limitations, recombinant allergens offer advantages such as control over production, consistent composition, standardized dosing, and minimized variability content (Curin, Garib, & Valenta, 2017; Larsen,

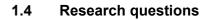
an Tuanku Bainun Itan Abdul Jalil Shah

Broge, & Jacobi, 2016). However, there is a problem concerning the lack of studies focusing on recombinant tropomyosin as a replacement for natural extracts. Tropomyosin, a muscle protein, is of particular interest in this context. The specific problem lies in the absence of complete sequence information for tropomyosin gene and protein constructs from local mud crab species such as *S. olivacea*, *S. tranquebarica* and *S. paramamosain*. The proposed research solution involves cDNA cloning and subsequent expression of the recombinant tropomyosin gene and express the recombinant tropomyosin protein from local mud crab species, aiming to address the current lack of sequence information and pave the way for utilizing recombinant tropomyosin in diagnostic tests as an alternative to natural extracts.

The third research problem arises from a lack of comprehensive understanding concerning the allergenic properties of recombinant tropomyosin proteins derived from local mud crab species. Despite their designed similarity to natural proteins, there is a notable gap in knowledge regarding key aspects such as IgE-reactivity, stability, crossreactivity, and molecular determinants, which are crucial factors in assessing allergenic potential (Nugraha et al., 2019; Hoh & Swaminathan, 2017; Smoldovskaya et al., 2016; Chen, Yang, Wei, & Tao, 2014). The identified gap underscores the limited exploration of crucial factors such as IgE-reactivity, stability, cross-reactivity, and molecular determinants associated with these proteins. To address this problem, the research solution proposes a two-fold approach involving IgE-binding tests and bioinformatic analysis. This includes investigating physiochemical properties, structural characteristics, evolutionary relationships, IgE-binding epitopes and protein-protein docking. By conducting these analyses, the research aims to elucidate the IgE-binding properties and predict the molecular and allergenic determinants of recombinant tropomyosin proteins from local mud crab species.

C)

PustakaTBainun


7

1.3 **Research objectives**

) 05-4506832 😯 pustaka.upsi.edu.my 🕴

The objectives of this study are:

- 1. To determine the tropomyosin gene expression level in local mud crab species.
- 2. To determine the sequence of recombinant tropomyosin gene from local mud crab species.
- 3. To express the recombinant tropomyosin protein from local mud crab species.
- 4. To characterize the IgE-binding properties, and prediction of molecular and allergenic determinants of recombinant tropomyosin protein from local mud

crab species.

- 1. What is the tropomyosin gene expression level in local mud crab species?
- 2. What is the product of the recombinant tropomyosin gene from local mud crab species?
- 3. What is the product of recombinant tropomyosin protein from local mud crab species?

- 8
- 4. What are the IgE-binding properties of recombinant tropomyosin protein, and the predicted molecular and allergenic determinants of recombinant tropomyosin protein from local mud crab species?

1.5 Significance of research

Measurement of the level of tropomyosin expression helps to postulate the rate of allergenicity which would educate the community about the precautions of which mud crab species and which body parts are harmful. From a clinical standpoint, data can be helpful as a dietitian reference in treating allergic mud crab patients. While that, choosing the suitable real-time qRT-PCR reference gene(s) will help produce a more precise and accurate expression of tropomyosin or other genes under normal

The complete tropomyosin sequence obtained serves as a preliminary step and reference gene for predicting allergic tropomyosin determinants and producing recombinant tropomyosin protein in mud crab species. Furthermore, the existence of a complete tropomyosin sequence from all local mud crab species indicates the presence of nucleotide and amino acid polymorphism, which is a criterion used to distinguish the allergenicity of tropomyosin between all the local species of mud crab at the molecular level.

Purified recombinant tropomyosin is being produced for allergic-specific immunotherapy and is the ideal candidate for rational and reliable allergy diagnosis. Many clinical caused-tropomyosin can be developed as pure recombinant allergens that mimic their natural allergen's epitope properties using recombinant DNA

technology. With the existence of pure recombinant allergens, allergenic properties of individual allergens, including IgE-binding properties, can be characterized, and the fundamental mechanisms of mud crab allergy production can be understood.

Functional recombinant tropomyosin can be used as а source in desensitization treatments that only require a single specific allergen rather than several allergens. Efficient manufacturing of functional recombinant tropomyosin may also assist the development of a hypoallergenic tropomyosin vaccine specific to the species of mud crab. Furthermore, bioinformatic analysis is the easiest and quickest way to know the possible cause of allergy by comparing tropomyosin cross-reactivity with other known species. All expected allergenic properties of tropomyosin, including physicochemical properties and structure composition help, develop and generate functional recombinant tropomyosin protein. Besides, future interventions can avoid extreme allergy reactions by reducing the number of allergens for cross-reactivity as a result of amino acid homology analysis, phylogenetic tree analysis, and IgE-epitope prediction.

1.6 Scope and limitations of research

The study primarily focused on mud crab species found in specific local waters in Kedah, Terengganu, and Sabah, focusing mainly on adult male specimens to ensure consistency and control over variables. This focus enables a thorough investigation into the expression of tropomyosin across three key body parts under normal physiological conditions, aiming to enhance comprehension of its role. The decision to employ the DNA sequence of *S. serrata* for producing recombinant tropomyosin is likely influenced by its accessibility and similarity to local mud crab species. Moreover,

10

the inclusion of a histidine-tagged fusion protein aids in the purification and identification process during protein production. The limitation of allergenicity assessment to a small sample size of 20 sera from crab-allergic patients is attributed to practical challenges in obtaining suitable samples. Additionally, the comprehensive analysis of molecular and allergenic properties of tropomyosin, encompassing physicochemical characterization, structural prediction, epitope mapping, phylogenetic analysis, and protein-protein docking analysis, aims to offer a thorough understanding of its characteristics and interactions, demonstrating the research's methodological thoroughness and scientific objectives.

🖸 05-4506832 🔮 pustaka.upsi.edu.my 👖 Perpustakaan Tuanku Bainun 🚺 PustakaTBainun 👘 ptbupsi

