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ABSTRACT

The objective of this study is to design and develop a piezoelectric micromachined
ultrasonic transducer (pMUT). The developed pMUTs are then characterized and
verified for underwater applications. PDMS and epoxy thick films are deposited
usingthe spin-coating technique. The wafer bonding method is employed to adhere to
the functional and structural layers. Bonding quality is analysed using FESEM
images while material interaction is studied using EDS analysis. Electrical
characterization is carried out on all developed pMUTs using impedance analysis.
Finally, the receiving and transmitting responses are determined and verified using
the pulse-echo technique in a freshwater tank. All pMUTs are successfully
constructed, with overall thicknessesranging from 880 to 980 um. PDMS and Epoxy
thick films are uniformly deposited at 1000 rpm. A strong bonding between the
piezoelectric active layer and the silicon substrate is observed using PDMS as an
adhesive, with a minimum thickness of 26.42um and a maximum of 64.76 pum. It is
verified that the speed of sound is measured at 1333.3 ms-1 using the developed
pMUT. At an operating frequency of 100 kHz, the DUT utilizing PDMS adhesive
demonstrated 66% higher sensitivity in receiving modeand 71% more sensitivity in
transmitting mode compared to the DUT using epoxy. PDMS adhesive has also
contributed to a wider operating frequency while epoxy adhesive carries a dead-
space below 80 kHz of operating frequency. In conclusion, pMUTs for underwater
applications can be fabricated using the wafer bonding method. The performance of
all developed pMUTs has been measured through mechanical characterization,
electrical analysis, and underwater verification. It is found that the proposed wafer
bonding method simplifies the fabrication of pMUT. The usage of PDMS as an
adhesive has contributed to increased sensitivity while maintaining operating
bandwidth.



Vi

TRANSDUSER ULTRASONIK DIMIKROMESIN PIEZOELEKTRIK (pMUT)
MENGGUNAKAN CANTUMAN WAFER UNTUK APLIKASI DALAM AIR

ABSTRAK

Objektif kajian ini adalah untuk merekabentuk dan membangunkan transduser
ultrasonik dimikromesin piezoelektrik (pMUT). pMUTs yang dibangunkan akan
melalui perincian dan pengesahan untuk aplikasi dalam air. Kaedah salut-putar
digunakan untuk mendepositkan saput tebal PDMS dan epoksi. Kaedah cantuman
wafer digunakan untuk melekatkan lapisan struktur dan lapisan penderiaan. Kualiti
cantuman dianalisa menggunakan imej FESEM manakala tindakbalas bahan akan
dikaji menggunakan analisis EDS. Perincian elektrik pula dijalankan ke atas semua
pMUT yang dibangunkan menggunakan analisis impedans. Akhir sekali, tindakbalas
penerimaan dan penghantaran ditentukan serta diperincikan di dalam tangki air tawar
melalui kaedah denyut-gema. Kesemua pMUT telah berjaya dibina pada ketebalan
keseluruhan di antara 880 ke 980 um. Filem tebal PDMS dan epoksi didepositkan
dengan sekata pada 1000 rpm. Cantuman yang baik antara lapisan aktif piezoelektrik
dan substrat silikon dapat diperhatikan dengan menggunakan PDMS sebagai pelekat,
pada ketebalan minimum 26.42 um dan maksimum 64.76 um. Kelajuan bunyi juga
telah disahkan pada 1333.3 ms-1 menggunakan pMUT yang telah dibangunkan.
Pada frekuensi 100 kHz, peranti yang menggunakan PDMS didapati 66% lebih
sensitif dalam mod penerimaan dan 71% lebih sensitif dalam mod penghantaran,
berbanding peranti yang menggunakan epoksi. PDMS juga didapati menyumbang
kepada kelebaran jalur operasi berbanding epoksi yang tidak memberikan reaksi di
bawah frekuensi 80 kHz. Kesimpulannya, kaedah cantuman wafer boleh digunapakai
untuk membina pMUT bagi aplikasi dalam air. Perincian mekanikal, analisis elektrik
dan pengesahan bawah permukaan air telah dijalankan untuk menentukan prestasi
kesemuapMUT yang telah dibangunkan. Kaedah cantuman wafer yang dicadangkan
didapati mampu meringkaskan proses pembuatan pMUT. Selain itu, penggunaan
PDMS sebagaibahan pelekat telah menyumbang kepada peningkatan sensitiviti tanpa
menjejaskan kelebaran jalur operasi.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Curie, J. and Curie, P. made the initial discovery of piezoelectricity in single crystals in
1880. However, it wasn't until 1917 that it was used in underwater acoustic applications.
That's when physicist Paul Langevin used quartz, a piezoelectric crystal, in his
hydrophone as part of his study into creating underwater acoustic transducers for
finding submarines. Later, his sound projector also used a quartz transducer. The idea
that dictates the distribution of electric polarization and illustrates how a piezoelectric
field responds to electrical stress by producing depolarization waves can be used to
explain the piezoelectric capabilities of a material. The internal polarization force

balances the crystal strain force when the system is in equilibrium. The emitting

depolarization field will provide a rebalancing force to maintain the initial equilibrium



if this equilibrium is disturbed by the application of an external electric field or an

external mechanical load.

Mechanical stress will happen if the external force comes from an electric field
(applied voltage), but an electric field will be created if the external force comes from
a mechanical displacement (vibration). The term for this phenomenon is known as

piezoelectricity (Motamedi, 1994, p. 521).

A transducer is a device that changes one form of energy into another. In
receiving mode, an acoustic transducer transforms the mechanical energy of sound
waves into electric energy, while in transmitting mode, it transforms electrical energy
into sound waves. Micromachined ultrasonic transducers (MUTs) have recently

undergone substantial development for a variety of uses.

The MUTs that employ piezoelectric principles fall under the category of
piezoelectric MUTs (pMUTs). Due to the decreased impedance of pMUTs, more
energy input might be possible. It is simple to create arrays using MUT that have high
element density, small element size, and high resonant frequency (Li, Ren, Fan, &
Wang, 2017). The sensitivity of the single-element transducers has a big impact on a
MUT array's characteristics. Sensitivity is significantly influenced by the structure of

the pMUT and the piezoelectric film.\

Piezoelectric ceramics made of lead zirconate titanate (PZT) are the most
common active materials used in underwater acoustic transducers, while composites

that combine the advantages of ceramics and polymers are gaining more attention (L1,



Deng, & Carlson, 2012). This study suggested using the wafer bonding technique to
create an immersion-application PZT-based piezoelectric micromachined ultrasonic

transducer.

An active layer consisting of electrode PZT is adhered to the structural layer of
the silicon wafer using commonly used adhesive Polydimethylsiloxane (PDMS).
PDMS stands out as a favored elastomeric substance in scientific and engineering
fields, especially within biomedical engineering, owing to its widespread availability,
transparency, biocompatibility, and ease of manufacturing (Duffy, McDonald,
Schueller, & Whitesides, 1998). Epoxy is another potential adhesive material that on
the other hand, is chosen for its superior strength, rigidity, and strong adhesive
capabilities. The development phase includes a spin-coating method to apply adhesive
at various thicknesses. Each prototype has undergone structural, electrical, and
underwater characterizations. The structural analysis includes the elemental
composition of the material as well as the thickness of each material layer observed by

a field emission scanning electron microscope (FESEM).

One of the most crucial parts of the pMUT's construction is the adhesive layer.
When analyzing the two polymers that will be the subject of this study's emphasis,
flexibility stands out as a key distinction in the material choice for the adhesive layer.

Energy is produced by pMUT through vibration.

Several methods that make use of polymer adhesive have been developed,
mostly for device packaging. The adhesive layer should be suitable in terms of both

function and characteristics. The specifications are met by the two polymers used as



adhesives, PDMS and epoxy. Both types of polymers adhere to silicon-based ceramics.
In the electronics sector, PDMS is a high-performance material that is frequently
employed. This elastomeric polymer has a turnable hardness and great flexibility.
Excellent qualities are required for these features for vibration to work. A dielectric
polymer is PDMS which can be utilized as a heat-dissipation material in electronic
components due to its excellent thermal conductivity. On the other hand, electrical
circuit components and electronic gadgets are frequently coated and enclosed with
epoxy. It is a thermosetting adhesive with long-lasting, solid bonding. Typically, it
protects an item from harmful environmental influences and vibrations. An electrical
insulator is epoxy. However, it turns conductive when it contacts copper. Compared to

PDMS, it has a low heat conductivity.

Exploring the performance of these two distinct adhesive materials, each
possessing unique qualities extensively utilized in the micro-electric industry, proves
to be incredibly fascinating. These resources have the potential to enhance the overall
performance of pMUTSs, a prospect that can be assessed comprehensively through

thorough studies.

A time-consuming and delicate deposition method is needed to fabricate pMUT
layer by layer. Several strategies will be thought up, and streamlining the entire process
will be the main objective. The range of application is limited to the adhesive layer's
various thicknesses. Hence, spin coating is the most appropriate technique for this
research since it is simple to create a homogenous coating that can be accomplished at

various thicknesses.



The following step involves utilizing FESEM to characterize the coating quality
and required thickness based on spin speed. In addition, any chemical reactions that
took place can be seen. The energy dispersive x-ray (EDX) analysis is a method of
elemental analysis connected to electron microscopy that is frequently employed. It is
based on the production of distinctive x-rays that indicate the existence of elements
present in the samples. Researchers employed scanning electron microscopy (SEM),
which has several benefits including being simple to use, requiring little to no sample
preparation, and operating quickly. In essence, SEM may make images by focusing an
electron beam across a surface. The interaction between the beam's electrons and the
sample results in a variety of signals that can be used to gather data (surface topography

and composition).

While developing piezoelectric transducers, measuring electrical impedance is
a crucial step. All electrical characteristics of the transducer are provided, along with
comparisons to expectations. Frequently, transducers are bonded to a substrate at
megahertz frequencies. This is the case, for instance, with plate transducers, which
eventually grow too thin and delicate to be used on their own. The electrical impedance
of the transducer might vary significantly depending on the substrate's presence. When
the attenuation of waves in the substrate is low and the end faces of the bounded
substrate are flat and parallel to the transducer, this occurs. These changes have nothing
to do with the properties of the transducer and are caused by the acoustic waves

reflecting off the ends of the substrate.

In this research, impedance analysis is used in electrical characterizations to

identify the appropriate electrical circuit for each device. Designing the electric



matching circuit that connects the driving or receiving circuit to the transducer is known
as electrical impedance matching. Moreover, the shape and electrical characteristics of
the wire and transducer must be designed. Impedance matching is accomplished by a
variety of devices placed in between an energy source and a load. Engineers use
transformers with transmission lines, resistors, inductors, capacitors, and other
components to match electrical impedances. It is very certainly necessary to match the
impedances between a source, transmission line, and load when working with digital or
analog signals. To ensure that a signal sent down the line is perceived as the same signal

at the receiver, impedance matching is crucial in transmission lines.

Impedance mismatching can cause pulse distortion and signal reflection
because of even a slight mistake. The window of error shrinks as the frequency rises.
Therefore, maximum power transfer becomes crucial at higher frequencies. If the
impedance is exactly matched, the circuit operates correctly and effectively. Due to
signal reflection, there are numerous negative effects in the circuit if the impedance is
not properly matched. The transmitted signals coincided with these reflected waves.
Moreover, it may result in data delays, phase distortion, and a decrease in the signal-to-

noise ratio.

In electrical and electronic applications, a load's power input is a crucial
variable. In DC circuits, the load is represented by a resistor with RL ohms of
resistance. Like this, we may represent it in AC circuits by using a complicated load

with an impedance of ZL ohm:s.

According to the maximum power transfer theorem, the DC voltage source



willonly supply the variable load resistor with the greatest amount of power when the
load resistance is equal to the source resistance. Like, according to the Maximum
Power Transfer Theorem, the AC voltage source will only provide the variable
complex loadwith the greatest amount of power when the load impedance is equal to

the complex conjugate of the source impedance.

The last characterization focuses on the estimation of the pMUT's sensitivity
or receiving and transmitting responses using the ultrasonic pulse-echo method in a
water tank. A sonar transducer can be performed to transmit and/or receive sound
waves. To emit or receive acoustic energy in the desired directions, directional
beams are generated by arrays of individual transducer elements, which are the
standard for sonar transducers. Many sonar systems use a distinct transducer on each
array for producing sound projector and receiving sound hydrophone, while some

sonar systemsemploy the same transducer for both functions.

1.2  Research Backgrounds

Recently, PMUT for underwater sensing applications has grown in popularity, and over
the past few years, an overview of this developing technology has been thoroughly
addressed (Akhbari, Sammoura, & Lin, 2016). Basic pMUT structures are often created
by sandwiching an active or functional layer made of a thin layer of piezoelectric
material between two electrodes. Within an active layer, energy transitions from
mechanical to electrical to mechanical take place. A structural layer typically supports

the active layer. Layers that are both active and structural are combined to create the



membrane.

The membrane is clamped on the edges of the piezoelectric material, which
when it tries to contract or expand causes a deformation that pushes the membrane out
of the horizontal plane, displacing the medium nearby and generating a pressure wave.
The electrostriction process is sensed by a piezo active layer, but the parameters that

relate to frequency will depend only on the design and materials that are chosen.

Less studies have recently concentrated on using PZT as the active component
in pMUT, which tunes its resonant frequency to suit underwater applications. The
majority of pMUTs functioned at a set resonance, and only modern designs allow for
the modification of the resonance frequency. Today, a wide variety of commercially
accessible materials, including platinum, gold, copper, and titanium, are available for
use as connections and electrodes in microfabricated devices. Each of these materials

has a unique performance.

The vibration membrane of the pMUT is made of a silicon-on-insulator (SOI)
wafer. This work demonstrates the manipulation of adhesive materials and their
thickness. The monitored outcome includes operational bandwidth, resonance
frequency, and transmit and receive replies. Changes in structural parameters will be
shown to have an impact on resonance frequency, electromechanical coupling
coefficient, and acoustic impedance in addition. In this study, pMUT thickness is
adjusted to tune the resonance frequency. More research will be done on the model to

examine overall performance after the model dimension is established.



Acoustic sensors used for underwater applications are highly dependent on the
operating frequency. This is because the operating frequency will determine the
phenomenon that will occur in the propagation of sound waves in the water. The
arrangement of molecules in the medium plays the most important role in determining
the propagation pattern of sound waves because sound waves are arranged periodically
between compression and rarefaction pressure. Therefore, the frequency will affect how
much attenuation will occur on the propagation of sound waves in water. The higher
the frequency, the higher the attenuation that will occur. Several phenomena including
reflection, absorption, diffraction, interference, and reverberation may cause this
attenuation. Because of this, most sonar operates at frequencies below 200 kHz and
only certain applications will sonar operate above 200 kHz. In addition, the operating
frequency also greatly affects the propagation distance of sound waves under the
surface of the water. Due to high attenuation, high frequencies cannot propagate as far

as waves at lower frequencies.

For echo sounder applications, for example, the commonly used operating
frequency is between 20 kHz and 250 kHz. The latest CHIRP technology on sonar can
use frequencies up to 400 kHz for water depths less than 50 m. there is always a trade-
off between frequency and distance for this sonar application. If high resolution is the
priority, then the propagation distance has to be reduced. If propagation distance
becomes a priority, then the overall resolution of the system must be sacrificed. For
example, the measurement of the depth of the seabed at a depth of 200 m cannot be
done at high resolution as with CHIRP technology because for penetration as far as 400
meters (the round trip of sound waves at a depth of 200 m), only signals at a frequency

of less than 50 kHz are used. On the other hand, the details of bottom profiling on
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CHIRP can only be carried out at a depth of less than 50 m because the details can only

be revealed by manipulating high frequencies.

Several other factors need to be emphasized during the construction and design
of underwater acoustic sensors. Among them is the operating depth of the sensor.
Operating depth will determine the amount of hydrostatic pressure that will be applied
to the sensor including the cable connected to the sensor. Operating depth specifications
must be clearly stated in the datasheets in addition to the specific pressure test that needs
to be done on the sensor which is usually carried out in the pressurizing chamber. For
this study, the targeted operating depth is only 1 meter, therefore the housing design
aspect for the sensor is not the focus of discussion. The shape of the housing also
sometimes describes the ability of a sensor to withstand hydrostatic pressure. For
example, a sensor capable of operating at a depth of 100 meters will use a spherical
housing while sensors for a depth of fewer than 100 meters usually use a cylindrical
housing. The material used in the housing also plays a role in protecting against

hydrostatic pressure.

Typically, there is more than one material that will be used for underwater
acoustic sensor housings. It depends on the role of the part, for example, a hard metal
material will be used to protect the piezoelectric element that is easily broken but a
rubber-based material is used on the wavefront to provide impedance matching for
transmission and reception. The material used in the wave front depends on the
thickness and the material used as an active material where the electro-acoustic process
occurs. The material that is usually used to protect the sensor structure is based on

bronze alloy or copper alloy. For the wavefront, butyl rubber is used as an impedance-
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matching layer.

1.3 Problem Statements

Several approaches are implied by the fabrication of pMUT to obtain results and
applications. Several researchers employ complex and time-intensive methods when
applying layers of piezoelectric coatings onto substrates. It is intriguing to offer simple
solutions to get the same result. The concept of discovering a solution for an identical
attitude to the underwater application is influenced by the successful application of
pMUT on terrestrial platforms. The problem statements that underpin this research can

be distilled as follows from earlier works of literature:

1) To attain the appropriate thickness for the intended operating frequency for
current excellent materials like PZT, a tedious and delicate deposition process
that repeatedly incorporates sol-gel, spin coating, sintering, and high voltage
polarizingis needed (Shilpal, Sreelakshmi & Ananthaprasad, 2016). It takes a
while to build a pMUT layer by layer, and if the appropriate operating
frequencies and responses are not obtained, the process of building the pMUT

will be resumed.

ii)) A huge number of commercially available PZT transducers are designed for
terrestrial purposes and are not suitable for submersion. Terrestrial applications
differ significantly from those designed for underwater use due to the distinct

acoustic properties and environmental conditions they are optimized for. These
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differences necessitate unique designs and considerations in construction and

operation to ensure optimal performance in their respective mediums.

ii1) Little information is reported on the pMUT's underwater calibration and testing

protocol's standard operating procedure using a simple fabrication technique.

For bulk underwater transducers, there are a lot of written publications available.

1.4  Research Objectives

The objective of this research is to propose a simplified approach in developing

pMUTsusing wafer bonding for underwater applications below 200kHz of operating

frequencythat include:

1)  To utilize the in-house spin coating for the deposition of adhesive layering.

ii))  To fabricate pMUT with PDMS and epoxy using a wafer bonding technique on

thesilicon substrate (Si/PZT) employing PZT as an active transduction

material.
iil) To characterize pMUT s structure of different adhesive materials on bonding.
v) To evaluate the performance of the pMUT's encapsulation's

electricalcharacteristics.
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v)  To compare how well the pMUT performs underwater with different

adhesivematerials.

15 Research Questions

The research questions are as follows:

i) Can an on-the-shelf PZT disc be utilized as an active element for immersion pMUT?

i1) Will the wafer bonding method and in-house spin coating provide sufficient

bonding strength for the pMUT to operate at a frequency of up to 200 kHz?

1i1) What is the effect of packaging and encapsulation on the electrical properties of

thepMUT?

iv) What is the transmit sensitivity, receiving sensitivity, operating bandwidth, and

resonant frequency of the pMUTSs?

v) Which adhesives contributed to the higher efficiency of pMUT?



iii)

1.7
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1.6 Research Scopes

This research is carried out within these scopes:

Only two types of adhesive material were studied namely PDMS and industrial

epoxy as these two adhesives are commonly used for wafer bonding.

Piezoelectric PZT discs used in this research are supplied by a single
manufacturerto maintain the consistency of the findings. All the available discs
on the shelf are not specifically designed for underwater use; they are

primarily intended forterrestrial applications.

Underwater calibration is carried out in the freshwater water tank and the
separation distance is set to less than 1m due to the tank-size limitation. The
reported findings for transmitting voltage response (TVR) and open circuit
receiving the response (OCRR) is in the physical dimensional unit of V/Pa and
Pa/V respectively rather than in standardized unit of dB re 1V/uPa at 1 m and

dB re IpPa/V at 1 m.

Thesis Outline

This thesis consists of five chapters. Chapter one of this thesis discusses the

introductory, problem statements, objectives scopes, and limitations of this study.
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In chapter two, the entirety of the pertinent literature is organized into three key
categories: commonly used materials, designs or architectures, and characterizations of
pMUTs. Based on structural, electrical, and undersea analyses, the characterization

parts were sub-categorized.

All the methodologies used in this study are classified and organized according
to the study's goals in chapter three of the methodology section. Methodologies are

matched with the objectives of the research.

The findings about physical characterizations, electrical characterization data,
and acoustics characterization results are presented separately in chapters four and
three, respectively, along with considerations that are pertinent to each. At the end of

every sub-chapter is a discussion of relevant results.

The fifth and final chapter summarizes the findings and suggests a course of

action for this investigation.





