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ABSTRACT 
 

This study aimed to incorporate Fe and gC3N4 into Mesoporous Titania Nanoparticles 
(MTN) and investigate photodegradation of Dibenzothiophene (DBT). MTN with 
various aging time (x = 2, 4, 6 and 8 days) were synthesized via sol-gel method before 
being incorporated with 5wt% Fe (5Fe/MTN-x) and 5wt% gC3N4 (5FeMTN-
x/5gC3N4) using wet-impregnation method. The photocatalysts were characterized 
using X-ray Diffraction (XRD), Field-Emission Scanning Electron Microscopy 
(FESEM) with EDX analysis, UV-Visible Diffuse Reflectance Spectroscopy (UV-
DRS), Fourier-Transform Infrared Spectroscopy (FTIR), Surface Area Analysis 
(BET), Photoluminescence Spectroscopy (PL) and Raman Spectroscopy. 
Photocatalytic performance was evaluated through DBT photodegradation under 
ultraviolet (UV) light irradiation for 180 min. Parameters such as H2O2 volume, DBT 
concentration and photocatalyst dose were manipulated with prolonging the reaction 
time to 240 min. The results of XRD showed the formation of MTN with the presence 
of common peaks at 2: 25.34o - 75.00o corresponded to TiO2 anatase phase. FTIR 
and BET analyses also confirmed the formation of MTN and successful incorporation 
of Fe and gC3N4 into the hybrid catalysts. UV-DRS and PL results showed the 
extending of light absorption towards visible light region and lower rate of electron-
hole recombination was reached by the addition of Fe and gC3N4. The results 
displayed 5FeMTN-6/5gC3N4 owned the highest DBT photodegradation with 38.2% 
compared to the other photocatalysts. At the optimized conditions, 5FeMTN-
6/5gC3N4 reached 57.0% at 40 mg/L DBT concentration with 1 g/L photocatalyst 
dose and 0.01 mL H2O2. The presence of Fe and gC3N4 enhanced the photocatalytic 
performance by forming a heterojunction that promoted the generation and inhibit the 
electron-hole recombination. In conclusion, Fe and gC3N4 were successfully 
incorporate into MTN and reached 57.0% DBT photodegradation at optimized 
conditions. The implication of this study is this photocatalyst has good potential to be 
further investigated as a low-cost alternative for DBT removal in fuels.    

    
 
 
 
 

 

 

 



vi 
 

 

 

PENGGABUNGAN Fe DAN gC3N4 KE DALAM NANOZARAH TITANIA 
MESOFORUS UNTUK FOTODEGRADASI DIBENZOTIOFENA 

 

ABSTRAK 
 

Kajian ini bertujuan untuk menggabungkan Fe dan gC3N4 ke dalam Nanozarah 
Titania Mesoforus (MTN) dan mengkaji fotodegradasi Dibenzotiofena (DBT). MTN 
dengan masa penuaan berbeza (x = 2, 4, 6 dan 8 hari) disintesis melalui kaedah sol-
gel sebelum digabungkan bersama 5wt% Fe (5Fe/MTN-x) dan 5wt% gC3N4 
(5FeMTN-x/5gC3N4) menggunakan kaedah penjejalan basah. Sampel fotopemangkin 
dicirikan menggunakan analisis Pembelauan Sinar-X (XRD), Mikroskopi 
Pengimbasan Elektron Pancaran Medan (FESEM) dengan analisis EDX, Spektroskopi 
Resapan Pantulan Ultralembayung (UV-DRS), Spektroskopi Inframerah Fourier 
Transformasi (FTIR), Analisis Luas Permukaan (BET), Spektroskopi Fotoluminasi 
(PL) dan Spektroskopi Raman. Prestasi fotopemangkin dinilai melalui fotodegradasi 
DBT di bawah sinaran ultralembayung (UV) selama 180 min. Parameter seperti 
isipadu H2O2, kepekatan DBT dan dos fotopemangkin telah dimanipulasi dengan 
memanjangkan masa tindak balas kepada 240 min. Dapatan XRD menunjukkan 
pembentukan MTN dengan kehadiran puncak biasa pada 2: 25.34o - 75.00o sepadan 
dengan fasa anatase TiO2. Analisis FTIR dan BET juga mengesahkan pembentukan 
MTN dan kejayaan penggabungan Fe dan gC3N4 ke dalam pemangkin hibrid. Dapatan 
UV-DRS dan PL menunjukkan lanjutan penyerapan ke arah kawasan cahaya nampak 
dan kadar penggabungan semula lubang dan elektron yang lebih rendah dicapai 
dengan penambahan Fe dan gC3N4. Dapatan mempamerkan, 5FeMTN-6/5gC3N4 
memiliki fotodegradasi DBT tertinggi sebanyak 38.2% berbanding dengan 
fotopemangkin yang lain. Pada keadaan optimum, 5FeMTN-6/5gC3N4 mencapai 
57.0% pada 40 mg/L kepekatan DBT dengan 1 g/L dos fotopemangkin dan 0.01 mL 
H2O2. Kehadiran Fe dan gC3N4 meningkatkan prestasi fotokatalitik dengan 
membentuk heterosimpang yang menggalakkan penjanaan dan menghalang 
penggabungan semula elektron dan lubang. Kesimpulannya, Fe dan gC3N4 berjaya 
digabungkan ke dalam MTN dan mencapai 57.0% fotodegradasi DBT pada keadaan 
optimum. Implikasi kajian ini ialah fotopemangkin mempunyai potensi yang baik 
untuk dikaji dengan lebih lanjut sebagai alternatif kos rendah untuk pembuangan DBT 
dalam bahan api.   
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CHAPTER 1 
 

 

 

 

INTRODUCTION 
 

 

 

 

1.1 Background Research 

 

Desulfurization of fuel oils such as diesel, fluidized catalytic cracking (FCC) gasoline, 

kerosene, jet fuel and heating oil has become an important topic in oil refining 

industry. Sulfur compounds in fuel oils were encouraged to be removed as they create 

problems during refining as well as during their commercial use. During refining, 

these sulfur compounds can cause corrosion problems in pumping, pipeline and 

refining equipment and also poisoning some of catalysts used in oil processing 

(Bhutto et al., 2016). During the commercial use of fuel oils, sulfur compounds has 

released the sulfur oxides (SOx) through combustion process which lead to   
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environmental problems such as acid rain, global warming and atmospheric pollution. 

Besides, the human health was also exposed to negative impact such as respiratory 

illness, heart disease and asthma (Hitam, Jalil, & Triwahyono, 2018). With the 

heightened interest for cleaner air and increased stringent environmental regulations 

for sulfur concentration in fuel worldwide, the plan to achieve little-to-no sulfur fuels 

(S-content<10 ppm) has been implementing by many developed and developing 

countries in order to reduce the negative effects on environment and health 

(Mandizadeh, Salavati-Niasari, & Sadri, 2017; Bhutto et al., 2016). Therefore, the 

removal of sulfur in fuel has become the hot topic for many researchers nowadays, as 

intensive studies were needed to find more economical and viable deep 

desulfurization technologies.  

 

Hydrodesulfurization (HDS) was the most widely used commercial method 

for sulfur removal in fuel oils (Bhutto et al., 2016). HDS process was indeed an 

efficient method in eliminating acyclic and aliphatic sulfur compounds such as thiols, 

sulfides and disulfides but it was difficult to reduce heterocyclic sulfur compounds 

such as thiophene (TS), dibenzothiophene (DBT) and its alkylated derivatives due to 

their steric hindrance (Hitam, Jalil, & Abdulrasheed, 2019). Besides, HDS method 

employs the use of hydrogen at an elevated pressure (20-100 atm of H2) and high 

operating temperature (300-400 oC) which were very costly option for deep 

desulfurization (Zeelani, Ashrafi, Dhakad, Gupta, & Pal, 2016; Zaid, Kait, & Mutalib, 

2016). Therefore, alternative ultra-deep desulfurization processes such as extractive 

desulfurization (EDS), adsorptive desulfurization (ADS), biodesulfurization (BDS) 

and oxidative desulfurization (ODS) were necessary to be developed (Mandizadeh et 

al., 2017).  
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Among those various desulfurization techniques, ODS was considered as one 

of the most encouraging techniques for deep desulfurization due to its mild operating 

conditions which can be operated under low temperature and ambient pressure, as 

well as its high ability to oxidize and convert refractory sulfur compound such as 

DBT without the hydrogen utilization (Ding et al., 2015). In fact, photocatalytic 

oxidative desulfurization (PODS) has gained attention as the promising technique to 

improve the performance of ODS, since photocatalysis was one of the advanced 

oxidation processes (AOPs) that can promote outstanding performance in degrading a 

wide range of toxic compounds under light irradiation. Besides, photocatalysis also 

provides other advantages such as easy operation, low-cost, sustainable technology, 

ability to perform at room temperature, environmental friendliness and capability to 

transform toxic contaminants into harmless products with high selectivity (Hitam et 

al., 2019). PODS was assumed to be a potential method to solve this problem since it 

promotes high catalytic activity, safety, low energy consumption and recycling ability 

(Zhu et al., 2014). This finding was supported by Miao et al. (2016) which stated that, 

PODS has been known to be a promising method as it provides a green path to 

photooxidize sulfur species to highly polar sulfoxides or sulfone product with the 

presence of ultraviolet (UV) or visible light as the energy source. 

 

In order to improve the PODS activity, some modifications of the existing 

catalysts have been done by researchers. Generally, the photocatalytic efficiency can 

be improved by several techniques such as synthesize of high surface area materials, 

the use of support material, coupling with other semiconductors, formation of a defect 

structure to improve charge-carrier separation and coupling with organic or inorganic 

materials (Hitam et al., 2019). 
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Over the last few decades, various photocatalysts have been developed for 

PODS and semiconductor-based catalysts such as zinc oxide (ZnO), titanium oxide 

(TiO2), tungsten oxide (WO3), etc were known to exhibit excellent photocatalytic 

performance (Kang et al., 2019). The presence of photocatalyst in PODS was crucial 

as it promotes the oxidation of sulfur-containing compounds by enhancing the rate of 

active species formation and improving the charge transfer. From previous studies, 

the instantaneous increased of sulfur removal depends on the increasing amount of 

photocatalyst (Aazam, 2014; Abdelaal & Mohamed, 2014). However, the decreasing 

in sulfur removal was occurred as the further addition of photocatalyst was beyond 

the optimum value. It was due to the excess amount of catalyst tends to inhibit the 

light source and decrease photoelectron productivity which results in reducing the 

photocatalytic oxidation efficiency (Li et al., 2016). In this perspective, TiO2 as 

semiconductor photocatalyst has received considerable attention due to its 

commercial availability, high chemical stability and excellent catalytic properties 

(Petronella et al., 2017). This finding was supported by Hosseini and Faghihian 

(2019) which stated that, TiO2 was one of various semiconductors that has been 

widely utilized in photodegradation experiments due to its elevated photocatalytic 

activity, photochemical stability, affordability and safe to use. 

 

 

1.2 Problem Statement 

 

TiO2 has been widely used in the PODS of DBT in fuel due to its promising 

photoactivity, non-toxicity, chemical stability and low cost (Hitam et al., 2019). 

However, TiO2 has several drawbacks that limit its practical application such as has 
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narrow spectrum utilization due to its wide band gap (3.2 eV) and rapid 

recombination of electron-hole pairs (Jaafar, Jalil, & Triwahyono, 2017). 

Modification of TiO2 into a mesoporous structure was reported successfully increased 

the stability and photoactivity of the photocatalyst (Zhang et al., 2020). Besides that, 

the modification of TiO2 with transition metal and polymeric carbon material can also 

enhance the photoactivity of the photocatalyst (Sadanandam, Zhang, & Scurrell, 

2018; Zaid et al., 2016). Among those various metallic dopants, Fe was considered to 

be the promising candidate for this research due to the ionic radius of Fe3+ (0.69  ) 

was nearly similar to Ti4+ (0.745  ), which in turn can help the Fe3+ ions to be easily 

incorporated into TiO2 crystal lattice. As a result, Fe3+ will restrict the recombination 

of electron-hole pairs by performing as a charge carrier trap, which can significantly 

enhance the photoactivity (Marami, Farahmandjou, & Khoshnevisan, 2018). In recent 

years, gC3N4 as a well-known polymer has got much attention from researchers due to 

its advantages such as low cost, electronic characteristics, high chemical and thermal 

stability, and also an efficient non-metallic photocatalyst (Gahlot, Dappozze, Mishra, 

& Guillard, 2021; Abedini, Allahyari, & Rahemi, 2021). The incorporation of both Fe 

and gC3N4 can improve the separation of photogenerated electron-hole pairs as it can 

form heterojunction known as Z-scheme mechanism that allow the reduction and 

oxidation reactions occurred from different sites of photocatalyst (Zhu, 

Murugananthan, Gu, & Zhang , 2018). Nevertheless, there was no study has been 

done to investigate the potential of mesoporous TiO2 with incorporation of Fe and 

gC3N4 in the degradation of DBT under UV light yet. 
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1.3 Research aim 

 

The aim of this research was to investigate the photocatalytic efficiency of 

mesoporous TiO2 nanoparticles (MTN) with addition of Fe and gC3N4 for the 

photodegradation of DBT in model fuel under UV light irradiation.  

 

 

1.4 Research Objectives 

 

The objectives of this research are: 

 

1) To synthesize MTN via sol-gel method and modification with Fe and gC3N4 

via wet-impregnation method.  

2) To study the physicochemical properties of prepared photocatalysts. 

3) To elucidate the photocatalytic activities of prepared photocatalysts in 

photodegradation of DBT under UV light. 

 

 

1.5 Scope of study 

 

In this research, MTN was synthesized via sol-gel method and modified with Fe and 

gC3N4 as a photocatalyst for the photodegradation of DBT in model oil under UV 

light irradiation. Different aging time (x = 2, 4, 6 and 8 days) were used to prepare the 

bare MTN-x. Then, 5wt% of Fe was added into MTN-x to form 5Fe/MTN-x before 

being modified with 5wt% of gC3N4 dopant by wet-impregnation method and denoted 
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as 5FeMTN-x/5gC3N4. Then, the physicochemical properties of prepared 

photocatalysts were characterized using X-ray diffraction (XRD), Surface area 

analysis (BET), UV-Visible diffuse reflectance spectroscopy (UV-DRS), Field-

Emission scanning electron microscopy (FESEM), Fourier-transform infrared 

spectroscopy (FTIR), Photoluminescence (PL) and Raman spectroscopy. The 

photocatalytic activity of 5FeMTN-x/5gC3N4 was compared with undoped MTN-x 

and also 5Fe/MTN-x in order to determine the effectiveness of the combination of Fe 

and gC3N4 into MTN for photodegradation of DBT in model oil under UV light. After 

photocatalytic reaction, the degraded DBT solution was characterized by GC-MS to 

determine the degradation product.  




