

A GAME-BASED LEARNING ANALYTICS PLATFORM FOR THE ASSESSMENT OF CREATIVITY AND LOGIC **DEVELOPMENT IN** 3-4 YEAR-OLD **CHILDREN**

RAHMADI AGUS

SULTAN IDRIS EDUCATION UNIVERSITY

2024

A GAME-BASED LEARNING ANALYTICS PLATFORM FOR THE ASSESSMENT OF CREATIVITY AND LOGIC DEVELOPMENT IN 3-4 YEAR-OLD CHILDREN

RAHMADI AGUS

THESIS PRESENTED TO QUALIFY FOR A DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTING AND META-TECHNOLOGY SULTAN IDRIS EDUCATION UNIVERSITY

2024

UPSI/IPS-3/BO 32 Pind: 00 m/s: 1/1

Please tick (√)
Project Paper
Masters by Research
Master by Mixed Mode
PhD

INSTITUTE OF GRADUATE STUDIES

DECLARATION OF ORIGINAL WORK

This declaration is made on the 10th day of September 2024.

i. Student's Declaration:

I, Rahmadi Agus, P2016200516, Faculty of Computing and Meta-Technology hereby declare that the work entitled declares that the disertation for titled A game-based learning analytics platform for the assessment of creativity and logic development in 3-4 year-old children is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

Signature of the student

ii. Supervisor's Declaration:

I, Prof. Madya Dr. Suzani Mohamad Samuri hereby certifies that the work A game-based learning analytics platform for the assessment of creativity and logic development in 3-4 year-old children was prepared by the above named student, and was submitted to the Institute of Graduate Studies as a *partial/full fulfillment for the conferment of the requirements for Doctor of Philosophy, and the aforementioned work, to the best of my knowledge, is the said student's work.

10-09-2024

Date

Signature of the Supervisor

UPSI/IPS-3/BO 31 Pind.: 01 m/s:1/1

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / <i>Title</i> :	A game-based	l learning analytics platform for the assessment of
N-34-1001 - 1041-01-1	creativity and	logic development in 3-4 year-old children
No. Matrik / <i>Matric's No.</i> :	P2016200251	5
Saya / <i>I</i> :	Rahmadi Agu	S
7.7	-	(Nama pelajar / Student's Name)
di Universiti Pendidikan Su seperti berikut:-	Itan Idris (Perpu	nporan Kertas Projek (Kedoktoran/Sarjana)* ini disimpan stakaan Tuanku Bainun) dengan syarat-syarat kegunaan n Idris (Tuanku Bainun Library) reserves the right as follows:-
		ek ini adalah hak milik UPSI. Pendidikan Sultan Idris
penyelidikan.		penarkan membuat salinan untuk tujuan rujukan dar make copies for the purpose of reference and research.
antara Institusi Per	gajian Tinggi.	at salinan Tesis/Disertasi ini sebagai bahan pertukaran es of the thesis for academic exchange.
4. Sila tandakan (√)	bagi pilihan kate	gori di bawah / Please tick ($\sqrt{\ }$) for category below:-
SULIT/COM	IFIDENTIAL	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. / Contains confidential information under the Official Secret Act 1972
TERHAD/RE	STRICTED	Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan. / Contains restircted information as specified by the organization where research was done.
TIDAK TERI	HAD / OPEN AC	
Flori		And Andrew
(Tandatangan Pe	lajar/ Signature)	Fref. Madya Or. Suzani Mohamad Samuri Pensyarah Fakuli Komputeran dan Meta-Teknologi Universiti Pendidikan Sultan Idris
Tarikh: 10 - 09 - 2	024	35300 Tanjong Málim, Perak
		(Tandatangan Penyelia / Signature of Supervisor) & (Nama & Cop Rasmi / Name & Official Stamp)

Catatan: Jika Tesis/Disertasi ini SULIT @ TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai SULIT dan TERHAD.

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

ACKNOWLEDGMENT

Bismillahirrahmanirrahim. Alhamdulillah, Endless gratitude to Allah SWT, the owner of everything in this world and to Prophet Muhammad SAW who was sent to be an example for mankind. I am also grateful to my supervisor, Prof Madya. Dr. Suzani Mohamad Samuri, for her guidance and support throughout my research journey, and also to Prof. Dr. Nor Azah binti Abdul Aziz as my second supervisor. In addition, I am also grateful to Universiti Pendidikan Sultan Idris Malaysia and Universitas Islam Kalimantan Muhammad Arsyad Al Banjari Banjarmasin for their facilities and support. I would also like to thank my wife, my father, my mother, my mother-in-law, family, friends, and fellow researchers for their support and contributions in this study. I would also like to thank all those who have participated in the success of this study. This research would not have been realised without the contributions of all parties. Hopefully the results of this study can provide benefits for the development of science and provide inspiration for further research. May goodness and success always accompany us all. Amin

ABSTRACT

The Game-based Learning Analytics Platform (GBLAP) is an innovative solution to the challenges currently facing the education sector. Its main benefits include improving assessment accuracy and providing more personalized and engaging data-driven learning experiences. This study examines the effectiveness of GBLAP in enhancing the accuracy of creativity and logic assessments in 3-4 year-old children compared to traditional methods, evaluates its acceptability among teachers and parents, and assesses the effectiveness of machine learning models in classifying child development data based on game interactions. The platform integrates artificial intelligence to create a more personalized and optimized learning environment. The System Usability Scale (SUS) instrument was adopted and adapted to obtain feedback from 2 teachers, 10 parents, and 10 children from Manhajul Husna Early Childhood Education, South Kalimantan, Indonesia, and 2 teachers, 10 parents, and 10 children from TASKA PERMATA Universiti Pendidikan Sultan Idris. The children's creativity and logic development data were classified using machine learning techniques by comparing three classification algorithms: Naïve Bayes, Multilayer Perceptron, and Decision Tree, into three categories: Good, Medium, and Low. The usability study demonstrated that GBLAP is an effective tool for real-time tracking of children's progress in creativity and logic assessments. The high average SUS score, above 70, indicates that the platform is well-accepted. For classification, the Multilayer Perceptron algorithm showed the best performance, with an accuracy of 72.97% on training data and 79.17% on testing data. The results suggest that GBLAP is effective, efficient, and engaging, and capable of providing accurate analysis of child development. This system offers valuable insights into children's understanding in the areas of creativity and logical thinking.

PLATFORM ANALITIK PEMBELAJARAN BERASASKAN PERMAINAN UNTUK PENILAI PERKEMBANGAN KREATIVITI DAN LOGIK DALAM KANAK-KANAK BERUMUR 3-4 TAHUN

ABSTRAK

Platform Analitik Pembelajaran Berasaskan Permainan (GBLAP) adalah penyelesaian inovatif kepada cabaran yang dihadapi dalam sektor pendidikan masa kini. Faedah utamanya termasuk peningkatan ketepatan penilaian dan penyediaan pengalaman pembelajaran yang lebih diperibadikan dan menarik berdasarkan data. Kajian ini menilai keberkesanan GBLAP dalam meningkatkan ketepatan penilaian kreativiti dan logik kanak-kanak berumur 3-4 tahun berbanding kaedah tradisional, menilai kebolehterimaan GBLAP dalam kalangan guru dan ibu bapa, serta menilai pembelajaran mesin keberkesanan model dalam mengklasifikasikan perkembangan kanak-kanak berdasarkan interaksi permainan. mengintegrasikan kecerdasan buatan untuk mencipta persekitaran pembelajaran yang lebih diperibadikan dan dioptimumkan. Instrumen Skala Kebolehgunaan Sistem (SUS) telah diterima dan diubah suai untuk mendapatkan maklum balas daripada 2 orang guru, 10 orang ibu bapa, dan 10 orang kanak-kanak dari Pendidikan Awal Kanak-Kanak Manhajul Husna, Kalimantan Selatan, Indonesia, serta 2 orang guru, 10 orang ibu bapa, dan 10 orang kanak-kanak dari TASKA PERMATA Universiti Pendidikan Sultan Idris. perkembangan kreativiti dan logik kanak-kanak telah diklasifikasikan menggunakan teknik pembelajaran mesin dengan membandingkan tiga algoritma klasifikasi: Naïve Bayes, Multilayer Perceptron, dan Decision Tree, ke dalam tiga kategori: Baik, Sederhana, dan Rendah. Kajian kebolehgunaan menunjukkan bahawa GBLAP adalah alat yang berkesan untuk penjejakan masa nyata kemajuan kanak-kanak dalam penilaian kreativiti dan logik. Skor purata SUS yang tinggi, melebihi 70, menunjukkan bahawa platform ini diterima baik. Bagi klasifikasi, algoritma Multilayer Perceptron menunjukkan prestasi terbaik, dengan ketepatan 72.97% pada data latihan dan 79.17% pada data ujian. Hasil kajian mencadangkan bahawa GBLAP adalah berkesan, cekap, dan menarik, serta mampu menyediakan analisis yang tepat tentang perkembangan kanak-kanak. Platform ini menawarkan pandangan berharga mengenai pemahaman kanak-kanak dalam bidang kreativiti dan pemikiran logik.

CONTENTS

		Page
DECLARATION (OF ORIGINAL WORK	ii
DECLARATION (OF THESIS	iii
ACKNOWLEDGM	MENT	iv
ABSTRACT		V
ABSTRAK		vi
CONTENTS		vii
LIST OF TABLES	3	xii
LIST OF FIGURE	S.S.	xvi
05-45068 LIST OF ABBREV	VIATIONS Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Sha	XX ptbup
LIST OF PUBLIC.	ATION	xxi
APPENDIX LIST		xxiii
CHAPTER 1 INTE	RODUCTION	
1.1 Introducti	ion	1
1.2 Research	background	2
1.3 Research	Problem	7
1.4 Research	Objective	9
1.5 Research	Question	10
1.6 Research	Scope	10
1.7 Research	Organization	11
1.8 Chapter S	Summary	13

CHAPTER 2 LITERATURE REVIEW

	2.1	Introduction	14
	2.2	Systematic Review Protocol	15
	2.	.2.1 Method	15
	2.	.2.2 Information Sources	16
	2.	.2.3 Study Selection	16
	2.	.2.4 Search	17
	2.	.2.5 Eligibility Criteria	17
	2.	.2.6 Taxonomy Analysis	18
	2.3	Learning Analytics: An Overview	19
	2.4	Learning Analytics: Distributed Learning Environment	22
	2.5	Learning Analytics: The Education of Early Years	25
05-4506832	2.6	Learning Analytics: A Section on The Process of Learning	27 ptbur
	2.	.6.1 Learning analytics with blended and online learning	28
	2.	.6.2 Learning Analytics with Game-Based Learning	30
	2.	.6.3 Learning Analytics Use Data Mining Technique	34
	2.	.6.4 Critical Review and Analysis	37
	2.7	Game Based Learning Analytics	38
	2.8	Framework and Guidelines for The Education of Children 3-4 years old	41
	2.	.8.1 The PERMATA Curriculum	41
	2.	.8.2 The Merdeka PAUD Curriculum	45
	2.9	Game-Based Learning Analytics Using Artificial Intelligence	48
	2.	.9.1 The Machine Learning and Learning Analytics	49
	2.	.9.2 The Learning Analytics Classification Model	52
	2.10	Chapter Summary	53

CHAPTER 3 METHODOLOGY

	3.1	Introduction	55
	3.2	Preliminary Study Phase	56
	3.	2.1 Collecting Data on Developing Creative and Logic 3-4 year-old Children	57
	3.	2.2 Interviews and Observations About The Development Creative and Logic	58
	3.3	Identification Phase	62
	3.	3.1 Pilot study measuring the development of creativity and logic in children through game use	63
	3.	3.2 Game Design	67
	3.4	Development Phase	73
	3.	4.1 The Design of A Game-Based Learning Analytics Platform for The Assessment of Creativity and Logic Development	74
05-4506832	3.	4.2 The Process of Analysis and Modelling Data for The Classification and Prediction of Learning Outcomes Related to The Development of Creativity and Logic	75 ptbup
	3.	4.3 Software and Hardware use for The development of GBLAP	86
	3.	4.4 Usability Study of the GBLAP using the System Usability Scale (SUS)	87
	3.5	Validation and Evaluation Phase	101
	3.	5.1 Validation Process	101
	3.	5.2 Evaluation Process	102
	3.6	Chapter Summary	107
СН	APT	ER 4 RESULT AND DISCUSSION	
	4.1	Introduction	108
	4.2	Selection of the achievements of the development of creative and logic of the children	109

	4.3	The selects elements and attributes used in games to develop creative and logic	114
		4.3.1 Pilot study result on game analysis for the development of creative and logic	115
		4.3.2 Game creative and logic in children aged 3-4 years: 'A Day at the Zoo Game'	121
	4.4	Game-based Learning Analytics Platform Interfaces and Visualization	141
	4	4.4.1 Platform interface	152
	4.5	Measuring the 'A Day at the Zoo game' learning model	157
		4.5.1 Measurement of game-based learning analytics model for creativity development	159
		4.5.2 Measurement of game-based learning analytics model for logic development	166
	4.6	Classification and prediction of learning achievements in the areas of creative and logic through data modelling	173
05-4506832		4.6.1 Data and modelling classification of Pustaka Bainun	176
		4.6.2 Comparison classification models	214
		4.6.3 Summary modelling classification	218
	4.7	Usability study of The Game-based Learning Analytics Platform Using System Usability Scale	219
		4.7.1 Usability Results for Logic Game	220
		4.7.2 Usability Results for Creative Game	228
		4.7.3 Usability Results for Learning Analytics Platform	234
		4.7.4 Overall Usability Results for the Game-based Learning Analytics Platform	240
	4.8	Validation and Evaluation Game Based Learning Analytics Platform (GBLAP)	242
		4.8.1 Validation of Creative Game on GBLAP	242
		4.8.2 Validation of Logic Games on GBLAP	246

	4	8.3 Evaluation Game Based Learning Analytics Platform (GBLAP)	249
	4.9	Chapter Summary	253
CI	HAPT	ER 5 CONCLUSION AND FUTURE RESEARCH	
	5.1	Introduction	255
	5.2	Research Goals Attained	256
	5.3	Research Contributions	258
	5.4	Research Limitations	259
	5.5	Recommendations for Future Work	260
	5.6	Research Summary	260
RE	EFER	ENCES	263
ΑF	PENI	DIX	276

LIST OF TABLES

Table No.	Page
2.1 A Review of The Research: Learning Analytics and Game-Based Learning	31
2.2 A Review of The Research: Learning Analytics Use Data Mining Technique	35
2.3 Methods applied to the ML and LA	50
3.1 The Percentage of gesture that can be used by children on a touch screen (Abdul Aziz, Batmaz, Stone, & Chung, 2013)	61
3.2 Theme and Category of The Early Children Education and Care (Siddoo et al., 2016)	62
3.3 Score game on the basis of the time to completion	71
3.4 Overall Performance Scoring Process Pustaka TBainu Kampus Sultan Abdul Jalil Shah 3.4 Overall Performance Scoring Process	72
3.5 Data set variables from a game-based learning analytics platform for the development creativity and logic in 3–4-year-old children	77
3.6 Confusion Matrix for Two-Class Classification (Xu et al., 2020).	85
3.7 Minimum hardware specification	86
3.8 Session in The Evaluation Stage	90
3.9 The original SUS statements (Brooke, 1996) and the modified statements used in Finstad (2006) and Bangor et al. (2008)	92
3.10 English and the Translated Items of SUS for Children	95
3.11 The Five Positive and Negative Items in SUS Used to Get the Feedback From Teachers and Parents (Bangor et al., 2008).	96
3.12 The Positive and Negative Items in SUS used to get Feedback from Children	98
3.13 The acceptable SUS score with reference to the 'Acceptability Ranges' and 'Adjective Rating'	100

	3.14 Questionnaire for learning material experts	103
	3.15 Questionnaire for learning media experts	104
	3.16 Likert scale measurement	105
	3.17 Category percentage of validation results	106
	4.1 Items of the creativity development that are not achieved by 3-4 years old children from PAUD MAnhajul Husna (Indonesia)	110
	4.2 Items of the early mathematics and logic that are not achieved by 3-4 years old children from PAUD MAnhajul Husna (Indonesia)	111
	4.3 The information about scoring is taken from the game	123
	4.4 Creativity and Logic attributes ad assets in games	124
	4.5 Session stages during the implementation of games creative and logic	139
	4.6 Design game data table	143
	4.7 Design session log data table	143
05-45	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	143
	4.9 Design class data table	144
	4.10 Design parent data table	144
	4.11 Design teacher data table	145
	4.12 Description of each attribute for each children's performance visualization	155
	4.13 Playing activities children do each day	158
	4.14 Creativity game data from the first session	162
	4.15 Creativity game data from the second session	163
	4.16 Creativity game data from the third session	164
	4.17 Creativity game data from the fourth session	165
	4.18 Logic game data from the first session	169
	4.19 Logic game data from the second session	170
	4.20 Logic game data from the third session	171

4.21 Logic game data from the fourth session	172
4.22 Variable of the dataset	176
4.23 Dataset from creativity development games	177
4.24 Dataset from logic development games	179
4.25 Pre-processing the childhood creative and logic development dataset	182
4.26 Calculating probability prior using LAP result development creativity and logic dataset	184
4.27 Conditional probability posterior	185
4.28 Variable and attribute dataset pre-processing nominal to numerical	194
4.29 The interconnected neuron topology in MLP has a weight for each hidden layer	196
4.30 Performance of the output layer in MLP classification	197
4.31 Comparison accuracy performance based on DT criterion	208
Decision Tree classification models on the training and testing data	215 toup
4.33 Logic game questionnaire for teacher	221
4.34 The description of all values based on the teacher's respond	221
4.35 The score for each item based on teacher's respond	222
4.36 The overall SUS score for logic game form teachers	222
4.37 Teacher's respond for question 11 and 12	223
4.38 Logic game questionnaire for children	224
4.39 The description of all values based on the children's respond	225
4.40 The score for each item based on children's respon	226
4.41 The overall SUS score for logic game from children	227
4.42 Creative game questionnaire for teacher	228
4.43 The score creative for each item based on teacher's respond	229

	4.44 The overall SUS score for creative game from teachers	230
	4.45 Teacher' respond for question 11 and 12 (creative)	230
	4.46 Creative game questionnaire for children	231
	4.47 The score creative for each item based on children's respon	232
	4.48 The overall SUS score for creative game from children	233
	4.49 Learning analytic platform questionnaire for teacher	234
	4.50 The score for each item based on teacher's respond	236
	4.51 The overall SUS score for learning analytic platform from teachers	236
	4.52 The score for each item based on parent's respond	238
	4.53 The overall SUS score for learning analytic platform from parents	239
	4.54 The overall SUS score obtained from the SUS method (Bangor et al., 2008)	241
05-4506	4.55 Validation results from Material Experts: Creativity Game Perpustakaan Tuanku Bainum PustakaTBainun PustakaTBainun	243
05-4506	4.56 Validation results from Media Experts: Creativity Game	244
	4.57 Validation results from Material Experts: Logic Game	246
	4.58 Validation results from Media Experts: Logic Game	248
	4.59 Comparing children's achievement for logic development based on teacher's assessment and game-based learning analytics platform (TASKA NCDRC, UPSI)	250
	4.60 Comparing children's achievement for creativity development based on teacher's assessment and game-based learning analytics platform (PAUD MANHAJUL HUSNA, BANJARMASIN)	251
	5.1 The connection among research objectives, research methodology and research goals	257

LIST OF FIGURES

rigure No.	Page
1.1 Learning Analytics Process (Bodily & Verbert, 2017).	4
2.1 Literature Review Structure	15
2.2 Flowchart of study selection on literature review	18
2.3 Taxonomy of research literature on learning analytics	19
2.4 LA Reference Model (M. A. Chatti et al., 2012)	23
2.5 The GLA process involves the use of serious games for the validation of the game, its application in the classroom, the real-time collection of information and the evaluation of the students (Morata et al., 2019)	40
05-4506 2.6 The PERMATA curriculum is based on six areas of learning for children	43 tbu
2.7 General algorithms for machine learning (Mahesh Batta, 2020)	49
3.1 Research Methodology Phases	56
3.2 Core Mechanics for Game Design	67
3.3 ADDIE Framework (Molenda, 2003)	69
3.4 Scenario structure in games creative and logic	72
3.5 Flowchart for learning analytics platform	74
3.6 Flowchart analysis and modelling data for classification and prediction of learning outcomes related to the development of creativity and logic	76
3.7 The SUS score category (Bangor et al., 2008)	99
4.1 Observation of children's play activities	118
4.2 Able (A): the children can do everything without the help of the teacher	119

	120
4.4 Flowchart for game creative and logic	132
4.5 Flowchart for game login	133
4.6 Screen login and register game	134
4.7 Example of Storyboard created for 'Welcome Screen' and 'Game Menu'	134 134
4.8 The process of the game is on display in the creative games section	135
4.9 The logic games are based on a play process that revolves around shapes, colours, puzzles and the homes of the animals	136
4.10 Result of game creative and logic	136
4.11 Interface for the game creative (login, game menu, step 1 to 4)	137
4.12 Interface for the game logic (login, game menu, let's learn about shape, colour, puzzle, and animal home)	138
05-450664.13 Diagram of satisfaction with educational games Shah	in 141 thup
4.14 Data entity relationship design	142
4.15 User excess level for the learning analytics platform	151
4.16 Interface for learning analytics platform	152
4.16 Interface for learning analytics platform4.17 Interface for user management menu	152 153
4.17 Interface for user management menu	153
4.17 Interface for user management menu4.18 Interface for classroom	153 153
4.17 Interface for user management menu4.18 Interface for classroom4.19 Teacher interface for one class	153 153 154
 4.17 Interface for user management menu 4.18 Interface for classroom 4.19 Teacher interface for one class 4.20 (a)-(b) Teacher's dashboard to see detail performance of each child 	153 153 154 155

4.2	4 Summary of creativity game results	161
4.2	25 The stages of the logic game children will play	167
4.2	26 Logic game results (A) results for each game and (B) results for all games	168
4.2	27 Supervised learning workflow (Mahesh Batta, 2020)	174
4.2	28 Pre-processing dataset on RapidMiner	182
4.2	29 Splitting ratio training and testing dataset	183
4.3	0 Classification model of the Naive Bayes algorithm in RapidMiner	186
4.3	1 Naive bayes model in RapidMiner	187
4.3	2 Accuracy performance of training and testing data based on sampling type	188
4.3	3 Accuracy training data naive bayes model	189
4 3	4 Accuracy testing data naive bayes model	189
1.5		
	5 Classification results from testing data with RapidMiner	191 thups
05-450684.3		
05-45068 4 :3	5 Classification results from testing data with RapidMiner	191btbups
4.3 4.3	55 Classification results from testing data with RapidMiner PustakaTBainun 66 Artificial neural network architecture (Schaffer, 1993)	191 toups
4.3 4.3 4.3	65 Classification results from testing data with RapidMiner PustakaTBainun 66 Artificial neural network architecture (Schaffer, 1993) 67 Pre-processing dataset nominal to numerical in RapidMiner	191 toups 192 193
4.3 4.3 4.3 4.3 4.3	65 Classification results from testing data with RapidMiner 66 Artificial neural network architecture (Schaffer, 1993) 67 Pre-processing dataset nominal to numerical in RapidMiner 68 Dataset after nominal to numerical pre-processing	191 toups 192 193 193
4.3 4.3 4.3 4.3 4.3 4.4	55 Classification results from testing data with RapidMiner 66 Artificial neural network architecture (Schaffer, 1993) 67 Pre-processing dataset nominal to numerical in RapidMiner 68 Dataset after nominal to numerical pre-processing 69 Classification model of the MLP algorithm in RapidMiner	191 192 193 193 195
4.3 4.3 4.3 4.3 4.4 4.4	55 Classification results from testing data with RapidMiner 66 Artificial neural network architecture (Schaffer, 1993) 67 Pre-processing dataset nominal to numerical in RapidMiner 68 Dataset after nominal to numerical pre-processing 69 Classification model of the MLP algorithm in RapidMiner 60 MLP model in RapidMiner 61 MLP classification learning analytics development creativity	191 toups 192 193 193 195 195
4.3 4.3 4.3 4.3 4.4 4.4 4.4	25 Classification results from testing data with RapidMiner 26 Artificial neural network architecture (Schaffer, 1993) 27 Pre-processing dataset nominal to numerical in RapidMiner 28 Dataset after nominal to numerical pre-processing 29 Classification model of the MLP algorithm in RapidMiner 20 MLP model in RapidMiner 21 MLP classification learning analytics development creativity and logic 22 Accuracy performance of training and testing data based on	191 toups 192 193 193 195 195 198
4.3 4.3 4.3 4.3 4.4 4.4 4.4	25 Classification results from testing data with RapidMiner Postaka Teainun 26 Artificial neural network architecture (Schaffer, 1993) 27 Pre-processing dataset nominal to numerical in RapidMiner 28 Dataset after nominal to numerical pre-processing 29 Classification model of the MLP algorithm in RapidMiner 20 MLP model in RapidMiner 31 MLP classification learning analytics development creativity and logic 32 Accuracy performance of training and testing data based on sampling type	191 toups 192 193 193 195 195 198

4.46 Model structure of decision tree algorithm (Charbuty & Abdulazeez, 2021)	203
4.47 Classification model of the decision tree algorithm in RapidMiner	204
4.48 Decision tree model in RapidMiner	205
4.49 Comparison gain ratio, information gain, and gain index of criteria model structure of the decision tree algorithm	206
4.50 Accuracy performance of training and testing data on the gain ratio criterion	208
4.51 Accuracy performance of training and testing dan on the information gain criterion	209
4.52 Accuracy performance of training and testing data on the Gini index criterion	210
4.53 Confusion matrix training data DT	212
4.54 Confusion matrix testing data DT	213
4.55 Comparison the accuracy of classification algorithms based on linear sampling was a supposed to the comparison of classification algorithms based on linear sampling was a supposed to the comparison of classification algorithms based on linear sampling was a supposed to the comparison of classification algorithms based on linear sampling was a supposed to the comparison of classification algorithms based on linear sampling was a supposed to the comparison of classification algorithms based on linear sampling was a supposed to the comparison of classification algorithms based on linear sampling was a supposed to the comparison of classification algorithms based on linear sampling was a supposed to the comparison of classification algorithms based on linear sampling was a supposed to the comparison of classification algorithms based on linear sampling was a supposed to the comparison of classification algorithms become a supposed to the comparison of classification algorithms become a supposed to the comparison of classification algorithms become a supposed to the comparison of classification algorithms become a supposed to the comparison of classification algorithms become a supposed to the comparison of classification algorithms become a supposed to the comparison of classification algorithms become a supposed to the comparison of classification algorithms become a supposed to the comparison of classification algorithms become a supposed to the comparison of classification algorithms become a supposed to the comparison of classification algorithms become a supposed to the comparison of classification algorithms become a supposed to the comparison of classification algorithms become a supposed to the comparison of classification algorithms become a supposed to the comparison of classification algorithms become a supposed to the classification and the compari	216
4.56 Comparison the accuracy of classification algorithms based on shuffled sampling	217
4.57 Comparison the accuracy of classification algorithms based on tratified and random sampling (automatic)	218
4.58 The Overall results for SUS Analysis on Games and Learning Analytics Platform	241
4.59 Comparison between the children's achievement for logic development based on teacher's assessment and game-based learning analytic platform	251
4.60 Comparison between the children's achievement for creativity development based on teacher's assessment and game-based learning analytic platform	252

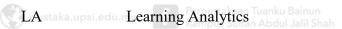
LIST OF ABBREVIATIONS

Α Able

ΑI Artificial Intelligence

ANN Artificial Neural Network

CLCollaborative Learning


DT Decision Tree

EDM Education Data Mining

GBLAP Game Based Learning Analytics

ΙP In Progress

LAP Learning Analytics Platform

LMS Learning Management System

MLMachine Learning

MLP Multilayer Perceptron

MOOC Massive Open Online Courses

MSE Mean Squared Error

NA Not Able

NB Naïve Bayes

The National Child Data Center **NCDC**

NCDRC The National Child Development Research Center

Pendidikan Anak Usia Dini **PAUD**

System Usability Scale SUS

TAP Technology And Play

TASKA Taman Asuhan Kanak-Kanak

UPSI Universiti Pendidikan Sultan Idris

VMTwG Virtual Math Team with Geogebra

LIST OF PUBLICATION

- 1. "Learning Analytics Contribution in Education and Child Development: A Review on Learning Analytics", International Journal of Assessment and Evaluation in Education , Vol 8, Dec 2018 (36-47), ISSN 2 232-1926 / eISSN 2600 -870X.
- 2. "Educational Game for Learning Skills in Creative and Logic Development Children Aged Three Years", International Journal of Advanced Research in Technology and Innovation, Vol. 1, No. 3, 12-20, 2019, e-ISSN: 2682 -8324.
- 05-4506832 3. "LACLOD: Learning Analytics for Children's Logic Development", The International Journal of Multimedia & Its Applications (IJMA), Vol.13, No. 1/2, April 2021.

APPENDIX

- A **Ethical Approval**
- В Example of the consent form for the teachers
- C Example of the consent form for the parents
- D Example of the consent form for children
- E Expert verification form
- Example of the SUS form for teachers Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 05-4506832

- G Example of the SUS form for parents
- Η Example of the SUS form for children

CHAPTER 1

INTRODUCTION

This chapter is an introduction to the research topic, the problem statement, and the research objectives. It also presents and describes the scope of the study as well as the experimental and technical aspects of the study. The background to the research is presented in Section 1.2. In section 1.3 the problem statement is presented, which forms the basis for the direction of the research. The research objectives are described in section 1.4. Section 1.5 is a discussion of the scope of the research, while section 1.6 is a provides a brief outline of how the final Dissertation gets structured. Finally, section 1.7 provides a summary of this chapter.

1.2 Research background

The Covid-19 pandemic has had a profound effect on the education sector throughout the country. The response to this event has created a challenge to innovate, necessitating extraordinary adjustments in all aspects of education. In response to the challenges posed by the pandemic, educational institutions and countries have implemented a range of innovative measures, including the introduction of new forms of learning, the integration of online courses, and the provision of teacher training. The increasing requirement for distance learning, the rapid adaptation to technology, and the focus on child welfare have emphasised the importance of flexible and resilient learning solutions. It is imperative that platforms continue to evolve in order to remain effective and useful tools in supporting children's learning during and after the pandemic.

There were early successes in the integration of interactive technologies into learning in initiatives such as that of (Roberts et al., 2016) prior to the COVID-19 pandemic. The application of learning analytics platforms to analysed children's interactions with mathematical materials showed great potential for understanding how children learn and develop in an educational context. This approach, focusing on children aged 2 to 8, demonstrates an awareness of the importance of starting interactive and engaging learning at an early age.

The use of interactive technologies, such as educational games and learning platforms, has long been recognised as an effective means of increasing children's engagement in learning. This approach not only makes learning more engaging but also

enables personalisation of the learning process, which can help customise the curriculum and learning experiences according to children's individual needs.

The study conducted by Morata et al. (2019) indicates that game-based learning analytics is an invaluable instrument for comprehending and fostering children's academic advancement. The utilisation of this technology enables the collection of more pertinent and comprehensive data on children's interactions with learning games. This, in turn, provides valuable insights for teachers, thereby facilitating more effective teaching and learning. The data generated by in-game learning analytics can demonstrate the specific skills that children are developing or that require further attention (Morata et al., 2019).

By adopting the approach outlined by (M. A. Chatti et al., 2012) this research can make a valuable contribution to the field of game-based learning and learning analytics, with a particular focus on the collection, measurement, analysis and reporting of data on children's interactions with interactive learning platforms. The learning analytics process, as outlined by (Bodily & Verbert, 2017), can be divided into several important stages, including data collection, analysis and intervention, and postprocessing. The initial stage of the learning analytics process is data collection and preprocessing. This involves recording user activities from interactions with the platform, after which the data is normalised and transformed for analysis. The process of data analysis and intervention involves the identification of patterns through the application of statistical techniques, machine learning, or analytical algorithms to the pre-processed data. Post-processing is the evaluation of analysis and intervention results for the purpose of continuous improvement, as depicted in Figure 1.1. By following these

stages, learning analytics can make a significant contribution to the improvement of children's learning processes, thereby enabling teachers and decision-makers to design developmental and effective learning (Siemens & Baker, 2012). The role of teachers and parents in the management of the educational changes brought about by interactive technologies is of crucial importance. They have an important role to play in ensuring that these developments proceed smoothly and that they provide the maximum possible advantages for children (Ansari & Purtell, 2017; Hu et al., 2017)

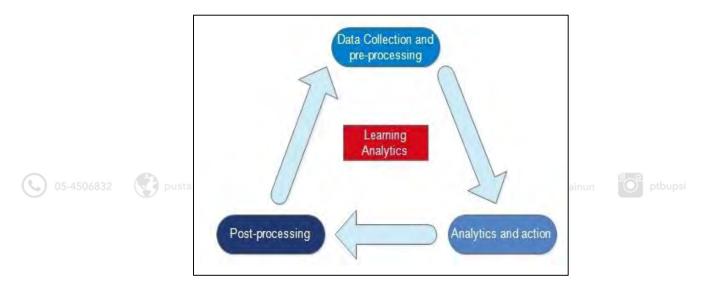


Figure 1.1. Learning Analytics Process (Bodily & Verbert, 2017)

Technology education is very important for children between the ages of three and four, as this is a critical early period in children's development. During this period, children are highly receptive to information and can absorb knowledge at a rapid pace (Hinostroza et al., 2013). The use of technology, including smartphones, by children between the ages of two and five years is amazing. According to a study by (Roskos et al., 2017), children in this age group continue to develop their fine motor, cognitive, and creative skills, which allow them to interact with technological devices at a high

level of proficiency. The ability to swipe, tap and use smartphone touchscreens, for example, helps with fine motor development.

The approaches and systems in place for early childhood education in Malaysia and Indonesia highlight the importance of paying special attention to this crucial period in a child's development. In Malaysia, there is a framework, PERMATA Negara, for the learning of children under the age of four, reinforced by national standards. The education centres that work with children under the age of four are known as TASKA. This approach allows for the implementation of a consistent set of standards and a structured curriculum to support children's development at an early age.

In Indonesia, a similar framework is provided by MERDEKA PAUD, which sets national standards for the education of children under the age of the four years. Educational centres that provide services to children under the age of four are known as PAUD (Pendidikan Anak Usia Dini). The purpose of the programme is to provide good and equitable education for children in this age group. They are particularly vulnerable to environmental influences and require special attention in their development.

The two countries have a structured and clear approach to the support of early childhood development through a standardised national curriculum. The focus on the education of children aged four and under highlights the importance of this period in the development of cognitive skills. As such, the effort to provide good quality, standardised educational services at an early age are a very important step in the development of education in both countries.

Developed by the National Child Development Research Centre (NCDRC) at the Universiti Pendidikan Sultan Idris (UPSI) in Malaysia, the National Child Data Centre (NCDC) plays an important part in providing integrated data on children's education. Offering a holistic picture of child development in Malaysia, the NCDC has a varied and comprehensive set of data. As a result, the NCDC is a very important resource for stakeholders to obtain detailed insights into the development of children and to be able to make more informed and better-informed decisions.

The PAUD programme in Indonesia is playing a key role in helping to build a strong foundation for children to develop from a very young age. Focusing on the importance of quality education, individual attention, a developmental approach and collaboration with parents and communities, the programme aims to create a supportive

environment for the optimal growth and learning of Indonesia's children.

In this regard, the development of Game-based Learning Analytics (GBLAP) for children aged 3-4 at TASKA PERMATA UPSI, NCDRC in Malaysia and Manhajul Husna Early Childhood Education (PAUD) in South Kalimantan, Indonesia serves to illustrate the significance of integrating technology in early childhood education. This research demonstrates the potential of GBLAP to foster creativity and logical thinking in children at this age. Creativity development through GBLAP is designed to stimulate and develop children's creativity from the age of three years old. The decision to focus on the 3-4 age group for research on game-based learning analytics platforms is based on a number of well-founded considerations related to the developmental stage of children at this age. This phase of development is of great consequence for the establishment of the fundamentals of cognitive, social, emotional and creative skills.

By focusing research on this age group, it is hoped that the positive impact of gamebased learning platforms will be maximised, developmental barriers will be detected and addressed at an early stage, and valuable insights will be provided for educators and parents in supporting children's holistic growth.

Games can serve as an engaging tool for children to engage in creative thinking, imagination, and self-expression (Hui et al., 2014; Malaeb et al., 2015; Neumann, 2018a; Siddoo et al., 2016). In addition to fostering creativity, activities in specially designed games also aim to stimulate children's logic skills. These games can include activities that require problem solving, critical thinking, and abstract thinking skills in an age-appropriate setting (Fraassen, 2011). By developing creativity and logic skills through GBLAP, new opportunities may be created to support the building of these

05-4506 important foundations at an early stage of development.

1.3 **Research Problem**

Early childhood education faces significant challenges in measuring and developing children's creativity and logic. At 3-4 years old, children are at a critical stage of development when their brains are highly receptive to new information. Often referred to as the sensitive period, this is an ideal time to introduce educational technologies that can support their cognitive development (Hinostroza et al., 2013). This period of development is characterised by an increased capacity to absorb a wide variety of information, including technological information (Mertala, 2019). It is often the conclusion of researchers that traditional assessment methods are ineffective in

providing deep insights into individual progress (Quansah, 2018). This presents a challenge for educators attempting to provide timely and appropriate interventions. In light of these challenges, it is imperative to explore novel approaches to assessment and teaching methodologies. Consequently, it is imperative to implement effective assessment strategies to enhance the accuracy of assessment and facilitate a more personalised and engaging learning experience.

The Game-based Learning Analytics Platform offers a potential solution by utilising game interaction data to gather deep insights into children's learning. The subsequent question then becomes how learning analytics can be effectively integrated with game elements in order to provide useful insights for curriculum development and learning methods. As Learning Analytics and Games (Morata et al., 2019) demonstrate, the utilisation of these two fields offers advantages in the acquisition of data from children's engagement with games. This is achieved through the provision of real-time information, which facilitates more effective assessment by educators. Such in-game assessments provide evidence-based data on children's knowledge, as cited by Cariaga and Feria (2016) and Tlili, Essalmi, Jemni, and Kinshuk (2017). The Games-based Learning Analytics methodology enables more effective assessment of early childhood development by utilising data generated from interactions with educational games. The data generated from educational games can provide valuable insights into various aspects of children's development, including cognitive, motor and social skills. The application of game-based learning analytics can optimise the utilisation of educational games in the classroom. This has the potential to alleviate the burden on teachers (Emerson et al., 2020). This approach enables the use of game-based learning analytics

to overcome challenges in childhood developmental assessment, and provides data that can be used to improve teaching methods and learning outcomes.

1.4 Research Objective

The research's main objective is to develop a game-based learning analysis (GBLAP) that focuses on the development of creativity and logic in children between the ages of 3-4 years old. A number of objectives have been identified in order to achieve the main objective, which are as follows:

- 1. To investigate the factors that 'Do Not Achieve' the development of creativity and logic in children 3-4 years old.

 OS-4506832
 - To identify the elements and attributes used in educational games and the process
 of evaluation of the development of creativity and logic on the basis of objective
 1.
 - 3. To develop a Game-Based Learning Analytics Platform (GBLAP) with a focus on creativity and logic development based on objectives 1 and 2.
 - 4. To conduct a usability study of the Game-Based Learning Analytics Platform (GBLAP) through using the System Usability Scale (SUS).
 - To validate and evaluate the Game Based Learning Analytics Platform (GBLAP),
 which has been constructed for creativity and logic development.

1.5 **Research Question**

The questions to be asked in objective research are the following:

- What are the factors that are 'Do Not Achieve' the development of creativity and logic in children aged 3-4 years?
- What elements and attributes are always used in the evaluation process of creativity and logic development, especially in educational games?
- How to develop a Game-Based Learning Analytics Platform (GBLAP) with a focus on creativity and logic development?
- How to evaluate the usability study of Game-Based Learning Analytics Platform (GBLAP) using System Usability Scale (SUS)?
- How to validate and evaluate the Game Based Learning Analytics Platform

(GBLAP)?a.upsi.edu.my

1.6 Research Scope

This study focuses on the development of game-based learning analytics to develop and improve educational methods that focus on the use of educational games and children's interaction data to improve the teaching of creativity and logic development. The children in this study are between the ages of 3 and 4. It is important to select children at the age of 3 to 4 years because this is their early developmental period, which is a critical period in the formation of the foundations of child development (Hinostroza et al., 2013).

Children in this age group have a high level of information intake from different types of information, including technology (Lehto et al., 2012). The development of creativity and logic in children between the ages of 3 and 4 years is a significant process in the formation of developmental foundations (Fraassen, 2011; Mumford & Gustafson, 1988). An environment that pays attention to the development of creativity and logic in children at this age can contribute significantly to the optimisation of skill development and help them become more flexible and creative learners in the future (C. H. Yoon, 2017). The limitations of this study, therefore, are the development of a game-based learning analytics platform for the assessment of the development of creativity and logic in children between the ages of 3 and 4 years.

The platform provides a powerful tool for teachers, parents and the children of skills and provide the required support for skills and provide the required support for children who need extra help in their learning process. This framework provides a strong foundation for the various people involved in the learning process of 3-4yearolds. It also gives clear direction and enables early years professionals and others to support children's development at a critical stage.

1.7 **Research Organization**

The research is divided into five sections. which are briefly summarised in the following section:

CHAPTER 1 INTRODUCTION

This chapter provides an overview of the background to the study, the research questions, the research objectives and the scope of the study.

CHAPTER 2 LITERATURE REVIEW

This chapter discusses the development of creativity and logic in children between the ages of 3 and 4. It also reviews the literature on game-based learning analysis. A brief description is also given of the PERMATA curriculum and the MERDEKA PAUD curriculum, which are used as a basis for learning for 3-4year-olds.

CHAPTER 3 RESEARCH METHODOLOGY

This chapter provides a comprehensive explanation of the research methodology, buyst which consists of several stages: preliminary study, identification, development, and validation and evaluation. Each stage has one or more research objectives and is in response to one or more research questions.

CHAPTER 4 RESULT AND DISCUSSION

This chapter presents the results and discussion of the research conducted using the proposed method for the development of a game-based learning analytics platform. The chapter is divided into eight sections for discussion.

CHAPTER 5 DISCUSSION AND FUTURE RESEARCH

Finally, in this chapter, the conclusions and the contributions of the study are presented. Suggestions for future research areas are also provided.

1.8 **Chapter Summary**

This chapter presents the background to the development of a game-based learning analytics platform for the assessment of the development of creativity and logic in children between the ages of 3 and 4 years. The statement of the problem, the objectives of the research, the scope and the limitations of the research are presented. The final part of this chapter provides an overview of the other chapters of this thesis.

