

RUBBER PLANT DISEASE DETECTION USING HYBRID FUZZY NEURAL NETWORK **TECHNIQUES**

RIZQI ELMUNA HIDAYAH

SULTAN IDRIS EDUCATION UNIVERSITY

2024

RUBBER PLANT DISEASE DETECTION USING HYBRID FUZZY NEURAL NETWORK **TECHNIQUES**

RIZQI ELMUNA HIDAYAH

THESIS PRESENTED TO QUALIFY FOR A DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTING AND META-TECHNOLOGY SULTAN IDRIS EDUCATION UNIVERSITY

2024

UPSI/IPS-3/BO 32 Pind: 00 m/s: 1/1

Please tick (√)
Project Paper
Masters by Research
Master by Mixed Mode
PhD

INSTITUTE OF GRADUATE STUDIES

DECLARATION OF ORIGINAL WORK

This declaration is made on the 10th day of September 2024.

i. Student's Declaration:

I, Rizqi Elmuna Hidayah, P2016200515, Faculty of Computing and Meta-Technology hereby declare that the work entitled declares that the disertation for titled Rubber Plant Disease Detection Using Hybrid Fuzzy Neural Network Techniques is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

Signature of the student

ii. Supervisor's Declaration:

I, Prof. Madya Dr. Suzani Mohamad Samuri hereby certifies that the work Rubber Plant Disease Detection Using Hybrid Fuzzy Neural Network Techniques was prepared by the above named student, and was submitted to the Institute of Graduate Studies as a *partial/full fulfillment for the conferment of the requirements for Doctor of Philosophy, and the aforementioned work, to the best of my knowledge, is the said student's work.

10 - 09 - 2024

Date

Signature of the Supervisor UPSI/IPS-3/BO 32

UPSI/IPS-3/BO 31 Pind.: 01 m/s:1/1

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / <i>Title</i> :	Rubber plant disease detection using hybrid fuzzy neural network
	techniques
No. Matrik /Matric's No.:	P20162002515
Saya / I:	Rizqi Elmuna Hidayah
	(Nama pelajar / Student's Name)

mengaku membenarkan Tesis/Disertasi/Laporan Kertas Projek (Kedoktoran/Sarjana)* ini disimpan di Universiti Pendidikan Sultan Idris (Perpustakaan Tuanku Bainun) dengan syarat-syarat kegunaan

acknowledged that Universiti Pendidikan Sultan Idris (Tuanku Bainun Library) reserves the right as follows:-

- 1. Tesis/Disertasi/Laporan Kertas Projek ini adalah hak milik UPSI. The thesis is the property of Universiti Pendidikan Sultan Idris
- 2. Perpustakaan Tuanku Bainun dibenarkan membuat salinan untuk tujuan rujukan dan penyelidikan. Tuanku Bainun Library has the right to make copies for the purpose of reference and research.
- 3. Perpustakaan dibenarkan membuat salinan Tesis/Disertasi ini sebagai bahan pertukaran antara Institusi Pengajian Tinggi.

The Library has the right to make copies of the thesis for academic exchange.

Sila tandakan ($\sqrt{\ }$) bagi pilihan katego	ori di bawah / Please tick ($\sqrt{\ }$) for category below:-
SULIT/CONFIDENTIAL	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. I Contains confidential information under the Official Secret Act 1972
TERHADIRESTRICTED	Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan. / Contains restircted information as specified by the organization where research was done.
TIDAK TERHAD I OPEN ACC	Pret. Wadya Ur. Saani Mohamad Samuri Pensyarah
(Tandatangan Pelajar/ Signature)	Fatalli Komputeren den Meta-Teknologi Universili Pendidikan Sultan Idris 35900 Tanjang Malim, Perak

Tarikh: 10 - 09 - 2024

4.

(Tandatangan Penyelia / Signature of Supervisor) & (Nama & Cop Rasmi / Name & Official Stamp)

Catatan: Jika Tesis/Disertasi ini SULIT @ TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai SULIT dan TERHAD.

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

ACKNOWLEDGMENT

Bismillahirrahmanirrahim. Alhamdulillah, infinite gratitude to Allah, the owner of everything in the world and to the Prophet Muhammad SAW who was sent to be an example for mankind. I am also grateful to my supervisor, Prof Madya Suzani Mohamad Samuri, for her guidance and support throughout my research journey. Additionally, I would like to thank Universiti Pendidikan Sultan Idris Malaysia and Universitas Islam Kalimantan Muhammad Arsyad Al Banjari Banjarmasin for their facilities and support. I would like to express my gratitude to my family, friends, and research colleagues for their support and contributions to this research. It is important to note that any subjective evaluations have been clearly marked as such. I also want to thank those who participated in the success of this research. This research would not have been realised without the contributions of all parties. Hopefully the results of this research can provide benefits for the development of science and provide inspiration for further research. May goodness and success always accompany all of us. Amin.

ABSTRACT

Early disease detection in rubber plants (Hevea brasiliensis) is challenging, requiring expert knowledge and experience to confirm diseases, which is time-consuming and costly. Therefore, this study aims to develop a disease detection and prediction system using image processing techniques and artificial intelligence methods. Four types of diseases were identified: three leaf diseases (Oidium powdery mildew, Corynespora, and Collectotrichum) and one root disease (white root disease) with three stages (light, moderate, and severe). Samples were collected from rubber plantations in Tabalong, South Kalimantan, totaling 450 images. The dataset was modeled based on expert labeling. GLCM was used for texture extraction, with six selected features: contrast, correlation, energy, homogeneity, entropy, and inverse difference moment. The utilization of ANFIS and RBFNN provides a powerful and flexible approach to plant disease detection. These methods learn from training data and adjust their parameters to enhance model performance. The accuracy of detecting leaf diseases was 97.78%, with a precision of 0.98, a recall of 0.98, and an F-measure of 0.98. These results were obtained using an epoch value of 40 and value 2, with the gbell type used for the membership function. Similarly, the accuracy for detecting white root disease was 86.67%, with a precision of 0.87, a recall of 0.87, and an F-measure of 0.86. The results indicate that the choice of image processing technique significantly impacts the detection outcome. The effectiveness of the ANFIS classification technique depends on the parameter values selected, including the number of epochs and the number and type of membership functions. This capacity to generalize from training data to new, unseen data is of significant importance for real-world applications. The developed automated system greatly assists farmers in detecting rubber plant diseases, enabling prompt identification and treatment, which in turn reduces operational costs.

PENGESANAN PENYAKIT POKOK GETAH MENGGUNAKAN TEKNIK RANGKAIAN SARAF TIRUAN HIBRID

ABSTRAK

Pengesanan awal penyakit dalam pokok getah (Hevea brasiliensis) adalah mencabar, memerlukan pengetahuan dan pengalaman pakar untuk mengesahkan penyakit, yang memakan masa dan kos yang tinggi. Oleh itu, menggunakan teknik pemprosesan imej dan kaedah kepintaran buatan, kajian ini bertujuan untuk membangunkan sistem pengesanan dan ramalan penyakit. Empat jenis penyakit telah dikenal pasti dalam penyelidikan ini, termasuk tiga penyakit daun dan satu penyakit akar. Penyakit daun termasuk Powdery oidium, penyakit daun Corynespora dan penyakit daun Collectotrichum. Penyakit akar adalah penyakit akar putih dengan 3 peringkat penyakit iaitu ringan, sederhana dan teruk. Sampel diambil dari ladang pokok getah yang terletak di Tabalong, Kalimantan Selatan. Sebanyak 450 imej telah dikumpul. Set data telah dimodelkan berdasarkan pelabelan pakar. Gray level co-occurrence matrix digunakan untuk pengekstrakan tekstur, dengan 6 ciri dipilih iaitu contrast, correlation, energy, homogeneity, entropy dan inverse difference moment. Penggunaan ANFIS dan RBFNN menyediakan pendekatan yang berkuasa dan fleksibel untuk menangani cabaran dalam pengesanan penyakit. Kaedah ini belajar daripada data latihan dan melaraskan parameternya untuk meningkatkan ketepatan model. Ketepatan untuk mengesan penyakit daun adalah 97.78% dengan precision 0.98, recall 0.98 dan F-measure 0.98 menggunakan epoch 40, membership function ditetapkan kepada 2 dan jenis menggunakan Gbell. Begitu juga, ketepatan untuk mengesan penyakit akar putih ialah 86.67% dengan precision 0.87, recall 0.87 dan F-measure 0.86. Keputusan menunjukkan bahawa pemilihan teknik pemprosesan imej mempunyai kesan yang signifikan terhadap hasil pengesanan. Teknik klasifikasi ANFIS sangat bergantung pada nilai parameter, termasuk epoch, bilangan dan jenis tipe membership function yang dipilih. Jadi ia mempunyai kapasiti untuk membuat generalisasi daripada data latihan kepada data baharu yang tidak kelihatan, yang penting untuk aplikasi dunia sebenar. Sistem automatik yang dibangunkan sangat membantu petani mengesan penyakit pokok getah, supaya ia dapat dikendalikan dan dirawat dengan cepat serta mengurangkan kos operasi.

CONTENTS

			Page	
	DECL	ARATION OF ORIGINAL WORK	ii	
	DECL	ARATION OF THESIS	iii	
	ACKN	OWLEDGMENT	iv	
	ABSTRACT ABSTRAK			
	CONT	ENTS	vii	
	LIST (OF TABLES	xii	
05-450	LIST OF FIGURES 05-4506832 pustaka.upsi.edu.my LIST OF ABBREVIATIONS Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah			
	LIST (OF PUBLICATION	xix	
	APPEN	NDIX	XX	
	CHAP	TER 1 INTRODUCTION		
	1.1	Introduction	1	
	1.2	Background of the Study	2	
	1.3	Problem Statement	6	
	1.4	Research Objective	8	
	1.5	Research Question	9	
	1.6	Importance of The Research	9	
	1.7	Scope of Research	10	
	1.8	Thesis Layout	11	

CHAPTER 2 LITERATURE REVIEW

2	.1	Introduction	13
2	.2	Image Processing Technique for Plant Diseases Detection and Prediction	14
		2.2.1 Image Acquisition	16
		2.2.2 Image Preprocessing	20
		2.2.3 Image Segmentation	28
		2.2.4 Image Feature Extraction	33
		2.2.5 Machine Learning	41
2	.3	Detection and Prediction of Plant Diseases with Identification of Symptoms in plants	44
		2.3.1 Identification of Disease Symptoms on Leaf	44
		2.3.2 Identification of Disease Symptoms on Root	51
05-4506832		 2.3.3 Identification of Disease Symptoms on Fruit 2.3.4 Identification of Disease Symptoms on the Plant Parts Other than the Target Organ 	52 ptbug 55
2	.4	Collection of Data Conducted by Researchers	57
2	.5	Automatic Detection and Prediction of Plant Diseases	60
2	.6	Rubber Tree Diseases	65
		2.6.1 Powdery Mildew Oidium	66
		2.6.2 Colletotrichum Leaf Disease	68
		2.6.3 Corynespora Leaf Fall Disease	69
		2.6.4 White Root Disease	70
2	.7	Research Trend	73
2	.8	Summary	74
СН	AP	TER 3 RESEARCH METHDOLOGY	
3	.1	Introduction	77

3.2	Rese	earch Framework	78
	3.2.1	Population and Sample	81
	3.2.2	Data Collection Method	87
	3.2.3	Data Collection Techniques	90
	3.2.4	Development of a Database on Rubber Related Diseases for the Tabalong State	91
3.3	Prop	osed Method	92
	3.3.1	Process of the Image Acquisition	93
	3.3.2	Image Preprocessing	94
	3.3.3	Segmentation of Image	95
	3.3.4	Feature Extraction of Image	97
05-4506832	3.3.5	Modification of the Model for Detection of Leaf Diseases aka.upsi.edu.my Perpustakaan Tuanku Bainun PustakaTBainun	101 ptbups
05-4500052	3.3.6	A Web-based Automatic Detection System for Rubber Related Disease in Tabalong State	112
3.4	Valid	dation and Evaluation of a Automatic Detection System	114
3.5	Sum	mary	116
CHA	PTER 4	RESULT AND DISCUSSION	
4.1	Intro	duction	118
4.2	Data	base of Rubber Plant Related Disease	119
	4.2.1	Image Collected	120
	4.2.2	Identification of Diseases in Rubber Plants	122
	4.2.3	Database on Powdery Mildew Oidium	123
	4.2.4	Database on Colletotrichum Leaf Fall Disease	128

	4.2.5	Database on Corynespora Leaf Fall Disease	132
	4.2.6	Database on White Root Disease	135
4.3	Auto	matic Detection and Prediction System for Rubber Related Disease	142
	4.3.1	Application of the K-means Clustering Algorithm for the Segmentation of Images.	143
	4.3.2	Application of the Gray Level Co-occurance Matrix Method	147
	4.3.3	Disease Classification	154
	4.3.4	System Implementation	173
4.4	Rubb	per Disease Information System on the Web	188
	4.4.1	Design System	190
	4.4.2	Validation and Evaluation	197
05-4506832 4.5	Disco	ussion edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	206
05-4506832 4.5	Disco Sumi	ussion .edu.my Kampus Sultan Abdul Jalil Shah	206209
4.6	Sumi	ussion .edu.my Kampus Sultan Abdul Jalil Shah	
4.6	Sumi	mary	
4.6 CHAI	Sumi PTER 5	mary CONCLUSION AND RECOMENDATION	209
4.6 CHAI 5.1	Sumi PTER 5	mary CONCLUSION AND RECOMENDATION duction	209210211
4.6 CHAI 5.1	Summ PTER 5 Intro- Achi	mary CONCLUSION AND RECOMENDATION duction evements of the project Comparative Study of Leaf Disease Detection Methods in Rubber	209210211
4.6 CHAI 5.1	Summon Su	mary CONCLUSION AND RECOMENDATION duction evements of the project Comparative Study of Leaf Disease Detection Methods in Rubber Plants and their Application in Automatic Detection System	209210211211

5.3	Research Summary	218
5.4	Research Implications	221
5.5	Future Research	223
5.6	Contribution	224
5.7	Novelty	225
REFERENCES		226
APPEN	NDIX	244

LIST OF TABLES

	Table No.	' age	
	2.1 Step in the Image Processing Technique for the Detection of Plant Diseases	15	
	2.2 Image Acquisition Technique for the Detection of Plant Diseases	19	
	2.3 Image Segmentation Technique for the Detection of Plant Diseases	30	
	2.4 Image Feature Extraction Technique for Plant Disease Detection	33	
	3.1 Research Design Phase	78	
	3.2 The Parties Involved in this Study	88	
	4.1 GLCM Feature Extraction Results of Leaf Disease Training Data	149	
05-4506	4.2 Value Ranges of GLCM Texture Features for Leaf Disease	153	
9 10 1000	4.3 Value Ranges of GLCM Texture Features for Root Disease Data	153	
	4.4 Results of Training Data Using K-means Segmentation (K=1)	156	
	4.5 Results of Training Data Using K-means Segmentation (K=2)	158	
	4.6 Results of Training Data Using K-means Segmentation (K=3)	159	
	4.7 Accuracy Results of Training Data on Leaf Disease Using the ANFIS Method	161	
	4.8 Accuracy Results of Training Data on Root Disease Using the ANFIS Method	162	
	4.9 Accuracy Results of Testing Data on Leaf Disease Using the ANFIS Method	164	
	4.10 Accuracy Results of Testing Data on Root Disease Using the ANFIS Method	165	
	4.11 Accuracy and Performance Results of RBFNN Leaf Disease Training Data	168	
	4.12 Accuracy and Performance Results of RBFNN Root Disease Training Data	169	
	4.13 Accuracy and Performance Results of RBFNN Leaf Disease Testing Data	171	
	4.14 Accuracy and Performance Results of RBFNN Root Disease Testing Data	172	
	4.15 Display of Training Data Detection Process Output	176	

4.16 The Results of the Training and Testing System	198
4.17 The Results of the Validation System	199
4.18 Results of the Leaf Disease Prediction on Basis of White Root Disease	204

LIST OF FIGURES

Figure No.	ige
2.1. Results of image pre-processing on diseases of the rice leaf. Adapted from Gayathri Devi & Neelamegam, 2019	22
2.2. Application of the k-means clustering technique to images of tomato leaves. Adapted from Harakannanavar et al., 2022	29
2.3. Sample images of leaf diseases on apples a) apple scab, b) apple black rot, c) apple cedar and d) healthy apple. Adapted from Al-bayati & Üstündağ, 2020	46
2.4. Processing of the wheat images to characterise the images for disease. Adapted from Al-windi et al., 2023	48
2.5. Different types of diseases that affect citrus fruit. Adopted from Palei et al.,2023	53
2.6. Prediction results using web application for fresh cotton leaves. Adapted from Islam et al., 2023	62
2.7. Results of the prediction using the web application of the diseased leaf. Adapted from Islam et al., 2023	62
2.8. Automated tool for disease detection and assessment for cacao Black Pod Rot (BPR) (a)The original photo of the image; (b)Detected infections by AuToDiDAC; (c) Infected labels annotated by the plant pathologies.	63
Adapted from Tan et al., 2018.	
2.9. Automatic wheat disease diagnosis using mobile capture devices (a)The leaf photo taken by the farmer is shown (b)The output result from the algorithm is visualized. Adapted from Johannes et al., 2017.	64
2.10. Image of Powdery Mildew (Oidium Hevea). Adapted from Cattlin, 2015	67
2.11. Image of Colletotrichum leaf disease. Adapted from Rokhmah, 2017	68
2.12. Image of Corynespora leaf fall disease	70
2.13. Image of White Root Disease. Adapted from Mayerni et al., 2017	71
2.14. Foliage symptoms of infected white root disease. Adapted from Yulia et al.,2017	72

	2.15. Foliage symptoms of infected white root disease. Adapted from Yulia et al.,2017	72
	3.1. Automatic disease detection plants	80
	3.2. Plantation area in plantation cultivation by district/city in the province of South Kalimantan (ha), 2020 and 2021. Adopted from Direktorat Jenderal Perkebunan, 2019	82
	3.3. Production of rubber plantations by county/city (ton), 2020 and 2021. Adopted from Direktorat Jenderal Perkebunan, 2019.	83
	3.4. Total area by the district in Tabalong state (square km)	84
	3.5. Planted area of estate crops by district and kind of crop in Tabalong state (hectare) 2016. Adapted from Badan Pusat Statistik Kabupaten Tabalong, 2016b	85
	3.6. Plants Area And Production Estate of Rubber Plants, 2016. Adapted from Badan Pusat Statistik Kabupaten Tabalong, 2016b	86
	3.7. Design Develop database	92
	3.8. Image Processing Step	93
05-4506	R3.9. ANFIS Ilustration u.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Pustaka TBainun	103 toups
	3.10. Schema of RBFNN	109
	3.11. Design Web-Based System Automatic Detection	113
	4.1 Leaf diseases according to type a) Colletotrichum, b) Corynespora,c) Powdery	121
	4.2. The severity of the white root disease can be divided into three categories: a) light, b) moderate, c) severe	121
	4.3. Rubber trees that are infected with the white root disease.	136
	4.4. Rubber plant leaves a) Original Image, b) Image Preprocessing, and c) Binary Image	143
	4.5. Application view of the Kmeans segmentation with k values: a) $k = 1$, b) $k = 2$ and c) $k = 3$.	146
	4.6. RBFNN training performance graph with leaf disease image	167
	4.7. RBFNN training performance graph with root disease image	170
	4.8. Home view	174

4.9. Display of the training data input process	175
4.10. Display the results of the training data process	176
4.11. The first display of the testing process	182
4.12. Home display program testing 1	183
4.13. The input program testing	184
4.14. The result program testing 1	184
4.15. Home display program testing 2	185
4.16. Figure The input program testing 2	185
4.17. The result program testing 2	186
4. 18. Home screen programme test 3	186
4.19. The input program testing 3	187
4.20. The result program testing 3	187
4.21. Flowchart system	188
05-45068 4.22. Flowchart user edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	189
4.23. Diagram context	190
4.24. Website start page design	191
4.25. Rubber plant page design	192
4.26. Disease page design on rubber plants	193
4.27. Page design how to prevent rubber disease	194
4.28. Page design how to treat disease	194
4.29. Rubber disease detection page design	195
4.30. Leaf disease detection input page design	195
4.31. Leaf disease detection output page design	195
4.32. Root disease input detection page design	196
4.33. Root disease detection output page design	196
4.34. Contact and question page design	197

LIST OF ABBREVIATIONS

ANN Artificial Neural Network

ANFIS Adaptive Neuro Fuzzy Inference System

Analysis of variance **ANOVA**

ASM Angular Second Moment

Automated Tool for Disease Detection and Assessment for AuToDiDAC

Cacao Black Pod Rot

BPR Black Pod Rot

ECT

CLA Carnation Leaf Agar

DIC **Digital Image Correlation**

Electrical Capacitance

EIS Electrochemical Impedance Spectroscopy

FIS **Fuzzy Inference Systems**

FP **False Positives**

FN False Negatives

Gbell mf Generalised bell-shaped membershipfuncton

GDP Gross Domestic Product

GLCM Gray Level Co-Occurrence Matrix

GUI Graphical User Interfaces

HSV Hue, Saturation, Value

IDM Inverse Difference Moment

IDR Indonesia Rupiah

IONP Iron Oxide Nanoparticles

MATLAB Matrix Laboratory

Membership Functions MFs

MySQL Structured Query Language

NIR Near Infrared

PCU Prototype Console Unit

PDA Potato Dextrose Agar

PHP Hypertext Pre-processor

PCap Phytophthora Capsici

RBFNN Radial Basis Function Neural Network

RGB Red, Green, Blue

Ribonucleic Acid **RNA**

RMSE Root Mean Squared Error

RRIM Rubber Research Institute Malaysia

SPSS Statistical Package for the Social Sciences

SVM Support Vector Machine

TL Transfer Learning

TN True Negatives

TF True Positives

UV-Vis Ultraviolet-Visible Spectroscopy

WRD White Root Disease

LIST OF PUBLICATION

- 1. Review article on plant disease detection methods: open challenges, and pathways for future research, International Journal of Advanced Research in Technology and Innovation, pp 21-28, Vol. 1, No. 3, e-ISSN: 2682-8324, 2019. https://myjms.mohe.gov.my/index.php/ijarti/article/view/8172
- 2. Detection of rubber (Hevea brasialiensis) leaf disease using image processing techniques, Transactions on Science and Technology, pp 48-53, Vol. 1, No. 2, e-ISSN 2289-8786, 2023. https://tost.unise.org/pdfs/vol10/no2/ToST-10x2x48-53xOA.html

APPENDIX

- RESULT OF LITERATURE REVIEW Α
- LIST OF EXPERT В
- TYPE OF LEAF DISEASE ON THE BASIS OF VISUAL \mathbf{C} **OBSERVATION BY AN EXPERT**
- LETTERS OF REQUEST FOR RESEARCH PERMISSION AND D **EXPERT JUDGEMENT**
- E APPROVAL LETTER FROM THE AGRICULTURE DEPARTMENT FOR RESEARCH PERMIT AND EXPERT JUDGEMENT

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter presents a clear problem statement, research objectives and research questions, and outlines the research themes and background studies. The importance and contribution of this research are also discussed. Section 1.2 presents a background summary of the research component. While Section 1.3 identifies and recognises the problem statement on which the research direction is based. Section 1.4 presents a description of the research objectives. Section 1.6 describes the significance of the research. the importance of the research. Section 1.7 discusses the research contributions. Finally, section 1.8 summarizes this chapter.

1.2 Background of the Study

Plant diseases are a challenge as long as crops are grown, especially in the plantation sector. Economic losses resulting from uncontrolled disease damage make this an increasingly pressing issue. It is important to recognise that disease emergence is a natural process in the development of crops. However, human intervention must be taken into account.

The plantation sub-sector contributes the most to the Agriculture, Livestock, Hunting and Agricultural Services sector's Gross Domestic Product, accounting for 35%. It also helps balance the national trade of agricultural commodities, provides food and industrial raw materials, generates foreign exchange through exports, creates employment opportunities, and increases state revenue from customs duties, export taxes, and export duties (Direktorat Jenderal Perkebunan, 2019). The plantation sector proved to be relatively resilient during the economic crisis. It became a strong contributor to the country's economic recovery (Sub Direktorat Statistik Tanaman Perkebunan, 2016). One of these is the rubber plantation, which plays a role in building the national economy with high incomes and is the second of the ten commodities that individual farmers are cultivating in their work. (Badan Pusat Statistik, 2023).

In the last 3-5 years, major plantation crops have experienced an average yield loss of 1.25 million hectares due to pest attacks. According to the 2014 calculation data, the estimated yield loss is around IDR 4.84 trillion (Direktorat Jenderal Perkebunan, 2016). The productivity of Indonesian rubber in 2018 remained unchanged at 1,205 kg/ha per year. However, estimates for 2019 and 2020 indicate a decrease in

productivity due to pest attacks and rubber leaf fall. This occurred because pest control measures were not comprehensive enough to address the extent of the attack. Additionally, the need to recover diseased plants for normal production and the lack of implementation of the latest technological innovations in post-harvest management have contributed to the issue (Direktorat Jenderal Perkebunan, 2019). Improved cultivation techniques are needed to achieve optimum productivity and quality in rubber plantations. Plant diseases are a major challenge in the cultivation of rubber plants, often hampering the cultivation effort more than any other problem (D. L. Zhai & Xu, 2023). This will lead to a reduction in the production of latex and can even lead to the death of the plant (Tarigan, Ramadhan, & Kustini, 2021).

Diseases are caused by fungal, pest and animal pathogens (Hendrawan, Haris, Rasywir, & Pratama, 2020). Fungal pathogens are the most common (Yulia, Istifadah, Widiantini, & Utami, 2017). During the last decade, there have been significant problems associated with rubber diseases in smallholder rubber farming (Imelda, Mulyo, Suryantini, & Masyhuri, 2023). Plant disease and pest control in plant cultivation is an activity that has to be conducted when the plant has been positively tested for disease. When the plant has been infected by a disease, it will be difficult to control it.

The area of plantations in Indonesia in 2018 was approximately 3,671,387 hectares, while the area of smallholder plantations managed by farmers was approximately 3,235,761 hectares. The area of smallholder plantations experienced a significant increase of 1.36% compared to the previous five years. South Kalimantan is among the ten largest regions with a plant population of 88.81% of all plantings

(Direktorat Jenderal Perkebunan, 2019). Rubber plants are susceptible to various diseases, such as root fungi, tapping field diseases, upas fungi, and leaf fall diseases. These diseases have resulted in significant economic losses, not only due to production losses resulting from plant damage, but also due to high control costs. This problem is one of the growing issues today. Rubber plants that are attacked by disease will be the cause of economic losses for farmers (Mayerni, Rezki, & Heriza, 2017).

Losses are not only in the form of yield loss due to plant damage but also in the form of costs to overcome the disease (Junita, Lubis, Pinem, & Dalimunthe, 2017; Sharif et al., 2018). The total maintenance cost per hectare of rubber plantation was \$1,331.81, which included disease control, fertiliser application and pruning (Ansong, Acheampong, Echeruo, Afful, & Ahimah, 2021). Therefore, it is essential to implement leaves of rubber plants, to reduce losses and increase good rubber productivity while maintaining quality, as the characteristics of plants affected by diseases.

Farmer participation has an important role in the development of rubber cultivation, without farmer participation, rubber plant cultivation will not be implemented (Badan Pusat Statistik Kabupaten Tabalong, 2017b). Chemical pesticides are still used to control various disease attacks on rubber plants, in addition to being relatively expensive, control using this material can cause damage to the ecosystem, and farmers who cultivate rubber plants still have a low level of education, this results in the control and handling of pests and diseases still lacking in terms of expertise to determine the type of disease (Direktorat Jenderal Perkebunan, 2016).

There are many methods in artificial intelligence that can be implemented and developed to build automatic detection systems with short time and accurate disease results such as citrus disease detection referring to Greening, Anthracnose, and Downy Mildew (Ali, Lali, Nawaz, Sharif, & Saleem, 2017). Nowadays, there are a number of rapidly growing technologies, one of which is the use of websites that offer a variety of services. One of them is the development of detection cases such as pest and disease detection in web-based plants. In artificial intelligence, many methods can be implemented to develop automated detection systems accurately. One of the technologies that gain most attention recently is the use of websites with various services provided, including a web-based for plant disease detection.

The early detection and management of diseases affecting rubber plants is os 450% crucial for maintaining the productivity and quality of rubber plantations. Conventional methods relying on visual inspection by experts are often inefficient, expensive and prone to human error. Consequently, the development of an effective and efficient approach to identifying and managing diseases affecting rubber plants is required. Digital image processing technology has demonstrated considerable potential in various agricultural applications, including plant disease detection.

> The application of advanced image processing algorithms and artificial intelligence has enabled the development of automated and highly accurate techniques for the analysis and detection of disease symptoms in plants. One promising approach is the use of the Adaptive Neuro-Fuzzy Inference System (ANFIS), which combines the advantages of artificial neural networks and fuzzy logic to address uncertainty and non-linearity in image data. Fuzzy ANFIS exhibits high adaptability and is capable of

processing image data to recognise complex patterns. The integration of ANFIS techniques into image processing enables the system to be trained to detect disease symptoms on leaves, stems, and other parts of rubber plants with high accuracy. This approach not only accelerates the disease detection process but also enhances the reliability of the diagnosis, which in turn facilitates the formulation of more efficacious orchard management decisions. The objective of this research is to develop a novel image processing technique that employs fuzzy ANFIS for the detection of diseases in rubber plants. The primary objective of this research is to develop a model that is capable of accurately identifying various types of rubber plant diseases from leaf images. This approach is expected to provide practical and economical solutions for farmers and rubber plantation managers in maintaining plant health and increasing rubber plantation productivity.

1.3 Problem Statement

Plants are recognised as being important because they are the most common source of energy for the people of the world. The rubber-growing season commences with land preparation, nursery, planting, maintenance, tapping, and the productive period, concluding with replanting (Arsi et al., 2022). The agricultural sector has been experiencing difficulties due to leaf diseases, which can lead to significant reduction in the quality and quantity of agricultural products (Rastogi, Arora, & Sharma, 2015; Zeng et al., 2022). The value of plantation exports in 2023 was 32.68 billion USD, representing a significant decline when compared to 2022, when the figure was 40.58 billion USD. This is due to a decrease in the value of exports of rubber, which represents

the leading commodity in foreign exchange. One contributing factor is disease, which has caused a 30.10% decrease in the volume of rubber exported (Perkebunan, 2023).

The application of image processing techniques to the detection of rubber plant disease represents a promising approach. However, several issues must be addressed in order to achieve effective and accurate results (Islam et al., 2023). The most significant challenge associated with image processing techniques is the impact of changing lighting conditions. Leaf images captured in the field frequently exhibit fluctuations in lighting, which can compromise image quality and impede the detection of disease symptoms (Afifi, Alhumam, & Abdelwahab, 2021).

The colour and texture variations of healthy and diseased leaves are often subtle, making them difficult to distinguish without precise analysis (Kaur, Randhawa, & Malhi, 2021). It is common for leaf images to be affected by environmental factors such as shadows, dirt, and other forms of physical damage, which can interfere with the detection process (Hasan, Jahan, & Islam, 2022). Classic image processing algorithms, such as basic colour segmentation and simple texture analysis, are often insufficiently accurate for the detection of complex and diverse disease symptoms (S Ramesh & Vydeki, 2020).

It has been observed that many image processing techniques require significant manual intervention, which has the effect of reducing both the efficiency with which the techniques can be applied, and the degree of consistency that can be achieved (Islam et al., 2023). Furthermore, the symptoms exhibited by certain diseases may be similar in some cases, or may overlap with those exhibited by other diseases, which makes

identification of specific diseases challenging (Arshad et al., 2023). The manifestation of symptoms associated with disease can vary over time, exhibiting a range of forms, from small, discrete lesions to more extensive necrotic areas. This presents an ongoing challenge for the development of effective detection techniques that are capable of responding adaptively and dynamically to the changing landscape of disease symptoms (Sujatha, Moy, Jhanjhi, & Nawaz, 2021).

The most critical gap in the current landscape of training data is the availability of quality data (Br.Kaban, Allwine, Alamsyah, Sianturi, & Tambunan, 2022). The development of an effective ANFIS model necessitates the availability of high-quality leaf image datasets that can be utilised for the training of the model in the context of a range of disease and environmental conditions. It is essential that the training data is symptoms in an appropriate manner (S. Zhang, Zhu, You, & Wu, 2017). It is essential to test and validate ANFIS models under a range of field conditions to ensure their generalisation and reliability (Kaushik et al., 2017). Models require adjustments to achieve optimal performance in real conditions (Wulansari & Chulkamdi, 2021).

1.4 Research Objective

Research objectives are:

- 1) To develop a database of leaf diseases in rubber plants in Tabalong State.
- 2) To develop new image processing techniques for the early detection of diseases.

- 3) To develop the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for the purpose of automating the detection and prediction of rubber leaf diseases.
- 4) To evaluate and validate the developed automatic disease detection system in performing accurate detection.

1.5 Research Question

The research question of the research are:

- 1) What are the steps to develop a database of leaf diseases on rubber plants in **Tabalong State?**
- 2) What are the steps involved in the application of new image processing techniques for the purpose of disease detection?
- 3) What are the steps of ANFIS technique for automatic detection and prediction system of rubber leaf diseases?
- 4) How to evaluate and validate the developed automatic disease detection system in accurate identification?

1.6 Importance of The Research

The important of research are:

1) The GLCM effectively reduces the impact of lighting variation and improves the reliability of disease symptom detection, given the available features.

- 2) This technology reduces the reliance on time-consuming and error-prone manual visual inspections.
- 3) Assist rubber farmers and extension workers in early detection and treatment of rubber plant diseases quickly and precisely, so as to reduce economic losses and increase the productivity of rubber plantations.
- 4) The ANFIS algorithm learns and adapts to new data over time, thus improving the system's performance.
- 5) Provide solutions for the detection of rubber plant disease through image processing techniques to the local government, which will inform the formulation of policies for the development of smallholder rubber plantations in Tabalong state.

The scope of this research includes:

- 1) The use of a camera phone to take images of leaf samples under a variety of lighting conditions is employed in order to ensure the representation of a range of variations.
- 2) The leaf images were subjected to preprocessing in order to enhance their quality and reduce noise. This involved the application of colour normalisation, contrast enhancement, and shadow removal techniques.
- 3) A method for extracting texture features from leaf images utilising GLCM is presented. The extracted features include contrast, correlation, energy, homogeneity, entropy and IDMN.

- 4) Design and develop a software-based disease detection system that integrates GLCM and ANFIS techniques.
- 5) A dataset comprising images of diseased leaves was collected in the plantation area of Tanjung, Tabalong state, South Kalimantan, Indonesia.

1.8 Thesis Layout

There are three chapters in this thesis. The summary of these chapters is as follows:

Chapter 1 presents the research background and problem statement. The research objectives and contributions are presented.

Chapter 2 presents a literature review on plant disease detection and prediction. This is followed by an overview of available plant disease databases and the methods used. An overview of the off-line and on-line forms of detection of the disease is also presented.. In addition, this chapter also provides an overview of the diseases that affect the cultivation of rubber plants. Finally, there will be an analysis of the research problem and suggestions for the solution of the problem.

Chapter 3 presents a description of the research methodology. Each step is in accordance with the research objectives to be achieved. A detailed description of the methods to be used in disease detection and prediction as well as evaluation and validation are presented.

Chapter 4 presents the research findings from this study in response to the existing research questions. The findings have been obtained through the implementation of the research methodology for the interpretation of the results data. Results will be presented through narrative, figures and tables.

Chapter 5 presents the discussion and conclusion of the research. In the discussion, the results of the study are discussed in relation to the previous research and the theory in the literature review. The conclusions are critical. They are in line with the research questions. Suggestions for future research are also presented along with the implications and significance of the research.

