

DEVELOPMENT AND EFFECTIVENESS OF STEM DISCOVERY LEARNING (STEMDISLEARN) MODULE ON CRITICAL THINKING SKILLS, COLLABORATION SKILLS, AND ACHIEVEMENT IN DIFFERENTIAL EQUATIONS COURSE

RITA PRAMUJIYANTI KHOTIMAH

SULTAN IDRIS EDUCATION UNIVERSITY 2024

DEVELOPMENT AND EFFECTIVENESS OF STEM DISCOVERY LEARNING (STEMDISLEARN) MODULE ON CRITICAL THINKING SKILLS, COLLABORATION SKILLS, AND ACHIEVEMENT IN DIFFERENTIAL EQUATIONS COURSE

RITA PRAMUJIYANTI KHOTIMAH

THESIS PRESENTED TO QUALIFY FOR A DOCTOR OF PHILOSOPHY

FACULTY OF SCIENCE AND MATHEMATICS SULTAN IDRIS EDUCATION UNIVERSITY

2024

Please tick (√) Project Paper Masters by Research Master by Mixed Mode PhD

INSTITUTE OF GRADUATE STUDIES

DECLARATION OF ORIGINAL WORK

	DEGENERAL	or ordered worth	
This declaration is	made on thed	lay of20.24	
i. Student's De	eclaration:		
I, RITA PRAMUJIY	'ANTI KHOTIMAH, P201910008	813, FACULTY OF SCIENCE AND MATHEMATICS	(PLEASE
		NO. AND FACULTY) hereby declare that ss of stem discovery learning (stemdislearn) mod	
ON CRITICAL THINKING SK	ILLS, COLLABORATION SKILLS, A	AND ACHIEVEMENT IN DIFFERENTIAL EQUATIONS COURSE	is my
Signature of the s	nother person.	nt is made explicitly in the text, nor has any Perpustakaan Tuanku Bamun Kampus Sultan Abdul Jalil Shah PustakaTBainu	
I PROF. MADYA.DR. MAZI	LINI ADNAN	(SUPERVISOR'S NAME) hereby cer	rtifies that
the work entitled		/ENESS OF STEM DISCOVERY LEARNING (STEMDISLEARN)	
_	KILLS, COLLABORATION SKILLS,	AND ACHIEVEMENT IN DIFFERENTIAL EQUATIONS COURSE	
submitted to the Ir	nstitute of Graduate Stud	ras prepared by the above named student dies as a * partial/full fulfillment for the c	
THE DEGREE), and	the aforementioned wo	ork, to the best of my knowledge, is the said	ł student's
work.			
10/09/2024		ASSOC, PROF. DR. MAZLINI ADNAN	
Date		Signature of the Superviso	or

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / <i>Title</i> :	DEVELOPMENT AND EF	FECTIVENESS OF STEM DISCOVERY LEARNING (STEMDISLEARN) MODULE
,	ON CRITICAL THINKING SKIL	LLS, COLLABORATION SKILLS, AND ACHIEVEMENT IN DIFFERENTIAL EQUATIONS COURSI
No. Matrik / <i>Matric's No.</i> :	P20191000813	
Saya / I :	RITA PRAMUJIYANTI KH	ОТІМАН
•	(Na	ama pelajar / Student's Name)
di Universiti Pendidikan Sul seperti berikut:-	tan Idris (Perpusta	ran Kertas Projek (Kedoktoran/Sarjana)* ini disimpan kaan Tuanku Bainun) dengan syarat-syarat kegunaan ris (Tuanku Bainun Library) reserves the right as follows:-
Tesis/Disertasi/Lapo The thesis is the prop		ini adalah hak milik UPSI. ndidikan Sultan Idris
penyelidikan.		arkan membuat salinan untuk tujuan rujukan dar
antara Institusi Peng	gajian Tinggi.	salinan Tesis/Disertasi ini sebagai bahan pertukaran
4. Sila tandakan (√) b	agi pilihan kategor	ri di bawah / Please tick ($$) for category below:-
SULIT/CON	FIDENTIAL	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. / Contains confidential information under the Official Secret Act 1972
TERHAD/RE	STRICTED	Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan. / Contains restircted information as specified by the organization where research was done.
TIDAK TERH	AD / OPEN ACCE	ESS
f in	H	ASSOC, PROF. DR. MAZLINI ADNAN
(Tandatangan Pel	ajar/ Signature)	(Tandatangan Penyelia / Signature of Supervisor) & (Nama & Cop Rasmi / Name & Official Stamp)
Tarikh: _ ^{10/09/2024}		Malaysia

Catatan: Jika Tesis/Disertasi ini **SULIT** @ **TERHAD**, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai **SULIT** dan **TERHAD**.

RECOGNITION

Alhamdulillah, thank to Allah SWT, the Lord of the Universe and to our prophet Muhammad SAW, may peace and blessing be upon him, his family and his followers.

This dissertation was prepared with the help of many people. Therefore, the author expresses the most profound gratitude to:

- 1. The Dean of the Faculty of Science and Mathematics (FSM) Sultan Idris Education University (UPSI) Malaysia, who has given the author the opportunity to study at Mathematics Education FSM UPSI.
- 2. The Chancellor of the Universitas Muhammadiyah Surakarta (UMS), who has given the author permission to continue education and fully financed this further study.
- 3. Prof. Madya Dr. Mazlini Adnan as the main supervisor; Prof. Madya Dr. Che Nidzam Che Ahmad, and Prof. Dr. Budi Murtiyasa M.Kom as co-supervisors, who have provided guidance, suggestions, and advices to the author during this doctoral study.
- 4. The expert reviewers of the modules and instruments in this study, who have provided suggestions and improvements, that are very useful in the development of module and instruments.
- 5. The Leaders of the Faculty of Training and Education (FKIP) UMS, and the Leaders of Mathematics Education Study Program FKIP UMS, who have provided support and given permission to the author to conduct the experiment research in Mathematics Education Study Program FKIP UMS, as well as all the UMS' students who have participated in this research.
 - 6. The Leaders of Mathematics Education Study Program Universitas PGRI Semarang (UPGRIS), who have given permission for the location of the pilot study, as well as all UPGRIS's students who have participated in this research.
 - 7. H.S. Komaroen's family, and Al-Muchsisi's family, especially Mother-in-law Ibu Hj. Ismadiyah who always gives her best prayers for her children and grandchildren.
 - 8. My beloved husband, Dr. Masduki, S.Si., M.Si., and our dear children, Muhammad Faqih Khawarizmi, Khairunnisa Radhwa Nazihah, and Almira Raisa Khairina, thank you for being the light of my life. Best wishes for our beloved family.
 - 9. My colleagues in the Mathematics Education Study Program at UMS, who always provide support and motivation. Without forgetting, Mr. Eki, Mr. Suci, Mrs. Christina, Mrs. Rini, and Mrs. Dhini, thank you for everything.

Hopefully, this dissertation will benefit the various parties, the author, researchers, college students, lecturer, institution, and the Indonesian Ministry of Research, Technology, and Higher Education (Ristekdikti).

ABSTRACT

This study aims to develop a STEMDISLEARN module; to test the module's effectiveness on the critical thinking (CT) skills, collaboration skills, and achievement in the Differential Equations (DE) Course; and to test the relationships between CT and collaboration skills, the relationship between CT and achievement, and the relationship between achievement and collaboration. The research employs design development research to develop the module. A quasi-experimental design was used to test the module's effectiveness. The research sample involved 123 students who enrolled in the DE course in the Mathematics Education Program at a university in Surakarta; 64 students of the experimental group, and 59 students of the control group. A t-test was conducted to determine the module's effectiveness on the critical thinking (CT) skills, collaboration skills, and achievement. A Pearson correlation analysis was conducted to test the relationship between CT and collaboration, the relationship between CT and achievement, and the relationship between achievement and collaboration. The findings showed that the STEMDISLEARN module was effective in enhancing students' achievement and CT but ineffective in enhancing collaboration; the relationships between CT and collaboration, between achievement and collaboration were not found in both groups; the relationship between achievement and CT was found only in the experimental group. In conclusion, the STEMDISLEARN module was valid, practical, and effective in enhancing CT skills and achievement in the DE course. The study implies that the teaching and learning of DE should integrate STEM-based discovery learning to improve the learning outcomes.

PEMBANGUNAN DAN KEBERKESANAN MODUL STEM DISCOVERY LEARNING (STEMDISLEARN) TERHADAP KEMAHIRAN PEMIKIRAN KRITIKAL, KEMAHIRAN KOLABORASI DAN PENCAPAIAN DALAM KURSUS PERSAMAAN DIFERENSIAL

ABSTRAK

Kajian ini bertujuan untuk membangunkan modul STEMDISLEARN; menguji keberkesanan modul terhadap kemahiran pemikiran kritikal (CT), kemahiran kolaborasi, dan pencapaian dalam kursus Persamaan Diferensial (PD); dan menguji hubungan antara CT dan kolaborasi, hubungan antara CT dan pencapaian, serta hubungan antara pencapaian dan kolaborasi. Kajian ini menggunakan reka bentuk penyelidikan pembangunan untuk membangunkan modul. Reka bentuk kuasi eksperimen digunakan untuk menguji keberkesanan modul. Sampel kajian melibatkan 123 pelajar kolej yang mendaftar dalam kursus PD di sebuah universiti di Surakarta; 64 pelajar kumpulan rawatan dan 59 pelajar kumpulan kawalan. Kajian-t dijalankan untuk menentukan keberkesanan modul terhadap kemahiran pemikiran kritikal (CT), kemahiran kolaborasi, dan pencapaian. Analisis korelasi Pearson dijalankan untuk menguji hubungan antara CT dan kolaborasi, hubungan antara CT dan pencapaian, serta hubungan antara pencapaian dan kolaborasi. Dapatan kajian menunjukkan bahawa modul STEMDISLEARN berkesan dalam meningkatkan pencapaian pelajar dan CT, tetapi tidak berkesan dalam meningkatkan kolaborasi; hubungan antara CT dan kolaborasi, antara pencapaian dan kolaborasi tidak ditemui dalam kedua-dua kumpulan; hubungan antara pencapaian dan CT hanya didapati dalam kumpulan rawatan. Kesimpulannya, modul STEMDISLEARN adalah sah, praktikal, dan berkesan dalam meningkatkan CT dan pencapaian pelajar. Implikasinya, pengajaran dan pembelajaran PD perlu mengintegrasikan STEM-Discovery Learning untuk meningkatkan hasil pembelajaran.

CONTENT

DECLARATION OF ORIGINAL WORK	Page ii
DECLARATION OF THESIS	iii
RECOGNITION	iv
ABSTRACT	V
ABSTRAK	vi
CONTENT	vii
05-45068 LIST OF TABLE si.edu.my Perpustakaan Tuanku Bair Kampus Sultan Abdul Jali	
LIST OF FIGURE	xxiii
LIST OF ABBREVIATION	xxvi
APPENDIX	xxviii
CHAPTER 1 INTRODUCTION	
1.1 Preface	1
1.2 Research Background	4
1.3 Problem Statement	8
1.4 Purpose of the Study	10
1.5 Objective of the Study	10
1.6 Research Question	11
1.7 Research Hypothesis	14

1.8 Conceptual Framework of Research	16
1.9 Operational Definition	18
1.9.1 Conventional Learning	19
1.9.2 Differential Equations	19
1.9.3 Critical Thinking	20
1.9.4 Collaboration Skill	20
1.9.5 Achievement	21
1.10 Limitations of Study	21
1.11 Importance of Research	21
1.11.1 Lecturer	22
05-4506832 pustaka.upsi.edu.my College Students anku Bainun Rampus Sultan Abdul Jalil Shah	22 _{ptbups}
1.11.3 The Institution	23
1.11.4 The Ministry of Education	23
1.12 Summary	23
CHAPTER 2 LITERATURE REVIEW	
2.1 Introduction	25
2.2 Constructivism and Constructionism	25
2.3 Science, Technology, Engineering, and Mathematics (STEM)	29
2.3.1 Science, Technology, Engineering, and Mathematics (STEM) in Global	30
2.3.1 Science, Technology, Engineering, and Mathematics (STEM) Education in Indonesia	40

	2.4.	Discovery Learning	44
		2.4.1 The nature of discovery learning	44
		2.4.2 Previous studies	49
	2.5	Relationship between Constructivist and Constructionist learning theory, STEM, and Discovery Learning in the Study	55
	2.6	Module	60
	2.7	Module Development Models	66
	2.8	Differential Equations	73
	2.9	Critical Thinking	81
		2.9.1 The nature of critical thinking	81
05-4506832	2.10	2.9.2 Previous study Ustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Collaboration Skills	84 ptbup
		2.10.1 Definition of collaboration skills	88
		2.10.2 Previous study	90
	2.11	Achievement	94
		2.11.1 Definition of achievement	94
		2.11.2 Previous study	96
	2.12	The Relationship between Critical Thinking Skills, Collaboration Skills, and achievement	101
		2.12.1 The relationship between critical thinking skills and collaboration skills.	101
		2.12. 2 The relationship between critical thinking skills and achievement	103

2.12. 3 The relationship between achievement and
collaboration skills

107

2.13 Summary

109

CHAPTER 3 METHODOLOGY

	3.1	Introduction	112
	3.2	Research Design	113
	3.3	Population and Sample	116
	3.4	Instruments	116
		3.4.1 The need analysis questionnaire	117
		3.4.2 The students' characteristics questionnaire	118
05-4506832	pu pu	staka.upsi.3.4.3 y The interview guideline ainun PustakaTBainun	119
		3.4.4 The module content validity questionnaire	120
		3.4.5 The module practicality questionnaire	122
		3.4.6 Critical thinking test	123
		3.4.7 Collaboration (teamwork) skill questionnaire	124
		3.4.8 Differential equations achievement test	126
	3.5	Validity and Reliability of Instruments	128
		3.5.1 Validity of instruments	129
		3.5.1.1 Validity of need analysis questionnaire	131
		3.5.1.2 Validity of student characteristic questionnaire	134
		3.5.1.3. Validity of interview guideline	136

		3.5.1.4 Validity of module practicality questionnaire	137
		3.5.1.5 Validity of critical thinking skill test	139
		3.5.1.6 Validity of collaboration skill questionnaire	141
		3.5.1.7 Validity of achievement test	142
		3.5.2 Reliability of instruments	145
	3.6	Internal and external validity threats	146
	3.7	Pilot Study	149
		3.7.1 Validity and Reliability of Critical Thinking Skill Test	150
		3.7.2 Validity and Reliability of Collaboration Skill Questionnaire	151
	3.8	3.7.3 Validity and Reliability of Achievement Test Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Research Procedures	153 ptbups 156
	3.9	Analyzing Data	158
	3.10	Summary	160
СНА	APTER	4 MODULE DEVELOPMENT	
	4.1	Introduction	162
	4.2	Analysis Phase	162
		4.2.1 Need Analysis	163
		4.2.1.1 Result of Student Needs Analysis	163
		4.2.1.2 Result of Lecturer Needs Analysis	170
		4.2.2 Analysis of Learners Characteristic	176

4.2.3 Analysis of Content	185
4.3 Design Phase	194
4.3.1 Choosing Topic	194
4.3.2 Identifying Instructional/Pedagogical Strategic	196
4.3.3 Creating Course Contents/Material	198
4.3.4 Designing Learning Activities	199
4.4 Development Phase	206
4.4.1 Creating All Contents and Components	206
4.4.2 Conducting formative evaluation	209
4.4.2.1 Expert review	209
05-4506832 pustaka.upsi.edu.my.4.4.2.2 One to One Evaluation Kampus Sultan Abdul Jalil Shah	224 _{tbup}
4.4.2.3 Small group	241
4.4.2.4 Pilot Study	253
4.5 Implementation Phase	263
4.5.1 Implementation of STEMDISLEARN Module in the First Week	265
4.5.2 Implementation of STEMDISLEARN Module in the Second Week	268
4.5.3 Implementation of STEMDISLEARN Module in the Third Week	270
4.5.4 Implementation of STEMDISLEARN Module in the Fourth Week	273
4.5.5 Implementation of STEMDISLEARN Module in the	275

Fifth Week	
4.5.6 Implementation of STEMDISLEARN Module in the Sixth Week	278
4.5.7 Implementation of STEMDISLEARN Module in the Seventh Week	281
4.6 Evaluation Phase	285
4.7 Summary	285
CHAPTER 5 RESEARCH RESULT	
5.1 Introduction	288
5.2 Research Data Description	291
5.2.1 Data before Treatment Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 5.2.2 Data after Treatment	292 ptbup 296
5.3 Normality and Homogeneity of Variances	298
5.3.1 Normality Test Result	298
5.3.1.1 Result of Critical Thinking Skill Normality Test	299
5.3.1.2 Result of Collaboration Skill Normality Test	302
5.3.1.3 Result of Achievement Normality Test	305
5.3.2 Result of Homogeneity of Variance Test	308
5.3.2.1 Result of Critical Thinking Skill Homogeneity of Variances Test	308
5.3.2.2 Result of Collaboration Skill Homogeneity of Variance Test	309

5.3.2.3	Result of Achievement Homogeneity of Variances Test	310
5.4 Inferential Statistics		312
	Effectiveness of STEMDISLEARN Module on ollege Students' Critical Thinking Skill	312
5.4.1.1	College Students' Critical Thinking Skill between the Experimental and Control Groups before the Treatment	312
5.4.1.2	College Students' Critical Thinking Skill between the Experimental and Control Group after Treatment	313
5.4.1.3 05-4506832 pustaka.upsi.edu.my	College Students' Critical Thinking Skill in the Experimental Group before and after the treatment	315
5.4.1.4	College Students' Critical Thinking Skill in the Control Group before and after Treatment	316
	ffectiveness of STEMDISLEARN Module on ollege Students' Collaboration Skills	317
5.4.2.1	College Students' Collaboration Skill between the Experimental and Control Group before Treatment	317
5.4.2.2	College Students' Collaboration Skill between the Experimental and Control Group after Treatment	319
5.4.2.3	College Students' Collaboration Skill in the Experimental Group before and after the Treatment	320

321
322
323
324
325
327
328
339
331
332
334
NS
339
340

6.3 Discussion	343
6.3.1 Validity and Practicality of STEMDISLEARN Module	344
6.3.2 The Effectiveness of STEMDISLEARN Module in Improving College Students' Critical Thinking Skills	348
6.3.3 The Effectiveness of STEMDISLEARN Module in Improving College Students' Collaboration Skills	351
6.3.4 The Effectiveness of STEMDISLEARN Module in Improving College Students' Achievement	357
6.3.5 The Relationship between College Students' Achievement, Critical Thinking Skills, and Collaboration Skills in Differential Equation Topic	362
6.3.5.1 The relationships between college students' critical thinking and collaboration skills	362
05-4506832 pustaka.upsi.edu.my Rerpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 6.3.5.2 The relationships between college students' critical thinking skills and achievement	364
6.3.5.3 The relationships between college students' collaboration skills and achievement	366
6.4 Conclussions	369
6.5 Implications	370
6.5.1 Theoretical implications	371
6.5.1 Practical implications	371
6.6 Recommendations	372
REFERENCE	374

LIST OF TABLE

	Table No		
	2.1	The Steps of Discovery Learning	47
	3. 1	Non-Equivalent Group Pre-Test and Post-Test Design	115
	3. 2	Dimension and Number of Items in Indicators of the needs analysis questionnaire	118
	3. 3	Indicators of the students' characteristics questionnaire	118
05-45068	3.4	Dimension and Number of Items in Indicators of the interview guideline	119 ptbu
	3.5	Dimension and Number of Items in Indicators of Module Content Validity Questionnaire	121
	3.6	Dimension and Number of Items in Indicators of Module Practicality Questionnaire	122
	3.7	The Specification of the Critical Thinking Test	124
	3.8	Specification of Teamwork Skill Instrument.	125
	3.9	The Specification of the DE Achievement Test	127
	3.10	The Number of Experts	130
	3.11	Non-Test Instrument Evaluation Item Code	131
	3.12	Item Content Validity Index in Needs Analysis Questionnaire	133
	3.13	Item Content Validity Index in Student Characteristic Questionnaire	134

3.14	item Content validity index in interview Guideline	130
3.15	Item Content Validity Index in Module Practicality Questionnaire	138
3.16	Item Content Validity Index in Critical Thinking Skill Test	139
3.17	Item Content Validity Index in Collaboration Skill Questionnaire	141
3.18	Test Instrument Evaluation Code	143
3.19	Item Content Validity Index in Achievement Test	144
3.20	Interpretation of Alpha Coefficient	146
3.21	Types of Internal Validity Threats.	147
3.22	The Types of Threats to External Validity	149
3.23	Validity Testing Result of Critical Thinking Skill Test	150
3.24	Reliability Testing Result of Critical Thinking Skill Test	151
3.25	Validity Testing Result of Collaboration Skill Questionnaire	152 ptbur
3.26	Reliability Testing Result of Collaboration Skill Questionnaire	153
3.27	Validity Testing Result of Achievement Test	153
3.28	The Specification of the DE Achievement Test	155
3.29	Reliability Testing Result of Achievement Test	156
3.30	Interpretation of Practicality	159
4.1	Demographics of Respondents	164
4.2	Learning Approach in DE Course	165
4.3	The Need of the Development of the Differential Equations Topics	169
4.4	The Module Contents	170
4.5	Demographics of Respondents	170
4.6	Learning Approach	172

	4.7	The Need of the Development of the Differential Equations Topics	175
	4.8	The Module Contents	176
	4.9	Social Status of Students Target	178
	4.10	Interest in Learning Mathematics	179
	4.11	Initial Ability of Target Students	180
	4.12	Target Students Motivation	182
	4.13	Emotional Development	183
	4.14	The Target Students' Social Development	185
	4.15	Program Learning Outcome (PLO)	185
	4.16	Course Learning Outcome (CLO)	185
	4.17	Indicator and Learning Objective	187
05-450683	4.18	Module Material pustaka.upsi.edu.my Perpustakaan Tuanku Bainun PustakaTBainun	191 ptbupsi
05-45000	4.19	Students' Activity Sheets Design	200
	4.20	Appraisal Expert	210
	4.21	Module Assessment Items Code	211
	4.22	Item Content Validity Index in 'Learning Objective' dimension	214
	4.23	Item Content Validity Index in 'Module Content' dimension	214
	4.24	Item Content Validity Index in 'Module Implementation' dimension	215
	4.25	Item Content Validity Index in 'Flexibility' dimension	216
	4.26	Item Content Validity Index in 'Module Performance' dimension	216
	4.27	Item Content Validity Index in 'Assessment' dimension	216
	4.28	Item Content Validity Index in 'Overall Satisfaction' dimension	217
	4.29	Comments and suggestions in expert review	218

4.30	Interview Result with S1	226
4.31	Interview Result with S2.	229
4.32	Interview Result with S3.	231
4.33	Writing Color of Link Revision	238
4.34	Mathematical Symbols Revision	239
4.35	Mathematical Symbol Sizes Revision	240
4.36	Sentences Writing Revision	241
4.37	Module Practicality Assessment Item Code	243
4.38	Interpretation of Practicality	246
4.39	Assessment Result of Ease of Use of the Module	246
4.40	The pleasure of the module appearance	247
4.41	The pleasure of the module benefits	248
4.42	Comments and suggestions in small group PustakaTBainun	249 ptoup
4.43	Assessment Result of Ease of Use of the Module	254
4.44	The pleasure of the module appearance	256
4.45	The pleasure of the module benefits	258
4.46	Respondents' Responses in Pilot Study	260
5.1	The Description of Research Data before Treatment in the Experimental Group	293
5.2	The Description of Research Data before Treatment in the Control Group	294
5.3	The Description of Research Data after Treatment in the Experimental Group	295
5.4	The Description of Research Data after Treatment in the Control Group	297
5.5	Normality of Critical Thinking Skill in the Experimental Group	299

	5.6	Normality of Critical Thinking in the Control Group	300
	5.7	Normality of Collaboration Skill in the Experimental Group	302
	5.8	Normality of Collaboration Skill in the Control Group	304
	5.9	Normality of Achievement in the Experimental Group	305
	5.10	Normality of Achievement in the Control Group	307
	5.11	Homogeneity of Variances Test of Critical Thinking Skill	309
	5.12	Homogeneity of Variances Test of Collaboration Skill	310
	5.13	Homogeneity of Variances Test of Achievement	311
	5.14	College Students' Critical Thinking Skill before the Treatment	313
	5.15	College Students' Critical Thinking Skill after the Treatment	314
	5.16	College Students' Critical Thinking Skill in the Experimental Group	315
05-450683	5.17	College Students' Critical Thinking Skill in the Control Group	317
05-45068	5.18	College Students' Collaboration Skill before Treatment	318
	5.19	College Students' Collaboration Skill after Treatment	319
	5.20	College Students' Collaboration Skill in the Experimental Group	320
	5.21	College Students' Collaboration Skill in the Control Group	322
	5.22	College Students' Achievement before Treatment	323
	5.23	College Students' Achievement after Treatment	324
	5.24	College Students' Achievement in the Experimental Group	326
	5.25	College Students' Achievement in the Control Group	327
	5.26	Correlations Test Results in the Experimental Group	329
	5.27	Correlations Test Results in the Control Group	331
	5.28	Correlations Test Results in composite of experimental and control groups	332

5.29	The Module Effectiveness on the Critical Thinking Skills, Collaboration Skills, and Achievement	334
5.30	Relationships between CT and Collaboration Skills; CT and Achievement; and Achievement and Collaboration	337

LIST OF FIGURES

	No Figure		Page	
	1. 1	Conceptual Framework of Research	18	
	2.1	Silo Approach in STEM Education	33	
	2.2	Embedded Approach in STEM Education	33	
	2.3	Integrated Approach in STEM Education	34	
05-45068	2. 4	Relationship between Constructivist and Constructionist learning theory, STEM, and Discovery Learning in the STEMDISLEARN Module	56 ptbup	
	2.5	The Dick-Carey model	67	
	2.6	ASSURE Model	68	
	2.7	The Kemp design model	69	
	2.8	Smith and Ragan Model	70	
	2.9	Components of ADDIE Model	71	
	2.10	Summary of activities in the various phases of ADDIE model	72	
	2.11	Concept Map of DE Topic	74	
	3.1	Research Instrument	117	
	3.2	Research Procedure	158	
	4.1	T&L Process in DE Course	167	
	4.2	The Need of STEM-Discovery Learning Module Development	168	

4.3	T&L Process in DE Course	174
4.4	The Need of STEM-Discovery Learning Module.	175
4.5	Target Students Learning Style	182
4.6	Concept Map of Materials	195
4.7	The First Topic Design	195
4.8	The Second Topic Design	196
4.9	The Third Topic Design	196
4.10	The Weekly Lesson Plan Design	198
4.11	Material Presentation: Introduction	199
4.12	SAS 02 Design	200
4.13	Stimulation and Problem Oriented Activities Design	202
4.14	Data Collecting Activity Design	203
4.15	Data Processing Activity Design Tuanku Bainun Pustaka TBainun	203 ptbup
4.16	Verification Activity Design	204
4.17	Generalization Activity Design	204
4.18	Exercise/Assignment Design in Second Meeting	205
4.19	Exercise/Assignment Answer Key in Second Meeting	205
4.20	Feedback and Follow-Up Design	206
	Total and Total Well Books	
4.21	STEM Concept Created in Discovery I.	207
	1 6	207208
4.21	STEM Concept Created in Discovery I.	
4.21 4.22	STEM Concept Created in Discovery I. STEM Concept Created in Discovery II	208
4.21 4.22 4.23	STEM Concept Created in Discovery I. STEM Concept Created in Discovery II STEM Concept Created in Discovery II	208 208

	4.27	Equation size before revision (a) and after revision (b)	222
	4.28	Practice using Maple	222
	4.29	Critical Thinking Problem	223
	4.30	Assessment Instrument	223
	4.31	Interview in one-to-one evaluation	225
	4.32	Data Collecting Before Revision (a) and After Revision (b).	235
	4.33	Cover Module Before Revision (a) and After Revision (b).	252
	4.34	Video Appearance Before Revision (a) and After Revision (b)	252
	4.35	STEM Concept on Discovery II Before Revision (a) and After Revision (b).	253
	4.36	Preparation for Lecture	264
	4.37	Preparation for Students	264
05-45068	4.38	Preliminary Learning by Google Meet Perpustakaan Tuanku Bainun Pustaka TBainun Pustaka TBainun	283 ptbups
05-45068	4.39	Group Discussion Forum in Open Learning	284
	4.40	Presentation of Group Discussion Result by Google Meet	284

05-450683 CVI

LIST OF ABBREVIATIONS

ADDIE Analysis, Design, Development, Implementation,

Evaluation

CTCritical Thinking Skill

CLO Course Learning Outcome

CDP Calculus Differential Point

CIP Calculus Integral Point

Coronavirus Disease 2019 COVID-19

DE **Differential Equations**

DIY Daerah Istimewa Yogyakarta

Enhancing Learning by Improving Process Skills In STEM **ELIPSS**

Content Validity Index

Focus, Reason, Inference, Situation, Clarity, and Overview FRISCO

GPA Grade Point Academic

HOTS Higher Order Thinking Skills

I-CVI Item - Content Validity Index

IP-21CSS Indonesian Partnership for 21 Century Skill Standards

KU Keterampilan Umum

KK Keterampilan Khusus

Kemristekdikti Kementerian Riset dan Teknologi Pendidikan Tinggi

PustakaTBainun

National Educational Technology Standards **NETS**

PLO Program Learning Outcome

Pc Probability of Chance

PP Penguasaan pengetahuan

Science, Technology, Engineering, and Mathematics **STEM**

STEMDISLEARN STEM Discovery Learning

SSikap

SAS Students' Activity Sheets

S-CVI Scale - Content Validity Index

SPSS Statistical Packages For The Social Science

TLTeaching and Learning

UMS Universitas Muhammadiyah Surakarta

05-450683 UNICEF pustaka upsiled united Nations International Children Emergency Fund property

APPENDIX

	A	Permits of Using Instrument
	В	Validator's Letter
	C	STEMDISLEARN Module
	D	Back Translation Process
	E1	Achievement Test
	E2	Critical Thinking Test
05-4506832	E3 pustaka	Teamwork Skill Questionnaire Bainun PustakaTBainun ptbups
	E4	Interview Guideline
	E5	Module Practicality Questionnaire
	F1	Validation Results of Module
	F2	Validation Results of Achievement Test
	F3	Validation Results of Critical Thinking Test
	F4	Validation Results of Teamwork Skills Questionnaire
	F5	Validation Results of Interview Guideline
	F6	Validation Results of Module Practicality Questionnaire
	G	Approval By The Human Research Ethics Committee
	H1	Data Descriptive of Achievement
	H2	Data Descriptive of Critical Thinking Skills

- H3 Data Descriptive of Collaboration Skills
- I **Data Normality Results**
- J Homogeneity of Varian Results
- K **Independent Samples Test Results**
- L Paired Samples Test Results
- M **Correlation Test Results**

CHAPTER 1

INTRODUCTION

1.1 Preface

The Industrial Revolution 4.0 (IR4.0) era in the 21st century caused many things to happen without limits. This era can make disruption in many fields, including science, technology, and higher education. Schwab (2019) stated that in addition to new opportunities, globalization and the Fourth Industrial Revolution have also caused disruption and polarization within and between economies and communities. Thus, various skills are needed to face the challenges of the 21st century to have global competitiveness. To face the 21st century successfully, Barry (2012) have formulated the top ten skills: critical thinking, communication, leadership, collaboration, adaptability, productivity and accountability, innovation, global citizenship, the ability and spirit of entrepreneurship, as well as the ability to access, analyze, and synthesize

information. ZivkoviŁ (2016) mentioned that with the advent of global competition, the emphasis is on the necessity of preparing students to be communicative, cooperative, innovative, and creative, to think logically and critically, and to be able to successfully handle real-world problems.

The Assessment and Teaching of 21st Century Skills (ATC21S) developed the framework of 21st-century skills in the four categories: 1) the ways of thinking, consisting of creativity and innovations, critical thinking, problem solving, decision making, learning to learn and metacognition, 2) the ways of working, involving communication and collaboration (teamwork), 3) tools for working, consisting of information literacy which includes research on sources, evidence, biases, etc. and ICT literacy, and 4) living in the world that consists of citizenship, life and carrier, and personal & social responsibility (Griffin & Care, 2015).

The education in the disruption era must be able to equip students with the necessary of the 21st-century skills. The World Economic Forum (WEF) has formulated 16 important skills for lifelong learning in the 21st century. The three main skills are foundational literacies, competencies, and character qualities. Foundational literacies concern how students employ essence skills to an everyday task. These literacies include literacy, numeracy, ICT literacy, scientific literacy, financial literacy, cultural, and civic literacy. Competencies concern how students face complex challenges so that

creativity, communication, and collaboration. Character qualities to how students approach their changing environment by using six skills: curiosity, persistence/grit, adaptability, leadership, social and cultural awareness (WEF, 2016).

they need to develop four skills, including critical thinking or problem solving,

The US-based Partnership for 21st Century Skills (P21-CS) formulate various kinds of competencies and skills for learning and innovation skills to face up the 21st century, known as "The 4Cs", which consist of communication, collaboration, critical thinking, and creativity (Battelle for Kids, 2019). Indonesia has also formulated the 21st-century conceptual framework in accordance with the demands of education in Indonesia, known as the Indonesian Partnership for 21st Century Skill Standard (IP-21CSS). It consists of 1) 4CS: creativity thinking and innovation, critical thinking and problem solving, communication and collaboration; 2) ICTs: information, media, and technology skills; and 3) character building and spiritual values: life and career skills (Ariyana et al., 2018).

In the organization of education in the Industrial Revolution (IR) 4.0., the Indonesian government has currently implemented a road map Making Indonesia 4.0. It is one of the visions to make Indonesia in 2030 rank in the top ten countries with the strongest economy in the world. There are ten priority programs in Making Indonesia 4.0. One of the programs is improving Human Resources quality. In improving the quality, Indonesia plans to adapt the education curriculum to the interests of the industry in the future (Hartanto, 2018).

The higher education curriculum in Indonesia is formulated by referring to Presidential Regulation Number 8/2012 concerning the Indonesian National Qualification Framework (KKNI). Article 1 explained that KKNI is a competency qualification framework that can juxtapose, equalize, and integrate education, job training, and working experience to recognize work competence through an operational structure in various sectors (Presiden RI, 2012a). Besides that, it refers to the Higher

Education National Standard for each Study Program that includes the development of intellectual intelligence, noble character, and skills (Presiden RI, 2012b).

1.2 Research Background

In the previous section, Indonesia has formulated the Indonesian Partnership for 21st Century Skill Standard as the 21st-century conceptual framework appropriate to the demands of education. Science, technology, engineering, and mathematics (STEM) education is one of teaching and learning approach that has been currently regarded to be very suitable for developing the 21st-century learning skills (Peters-burton & Stehle, 2019; Sen et al., 2018). The use of STEM in education has a number of benefits, os-4506 including fostering teamwork and active communication, incorporating knowledge into real-world contexts, enhancing critical thinking and problem-solving abilities, boosting self-confidence as a link between learning and career planning, and empowering students to create technological innovations in the real world (Morze et al., 2018). In the context of Indonesia, the implementation of STEM in Indonesia was carried out in teaching and learning process, and there was very limited STEM implementation in higher education level (Khotimah et al., 2021a).

Torlakson (2014) revealed that Science, Technology, Engineering, and Mathematics (STEM) includes four disciplines: a) science, representing knowledge and concepts, b) technology, a skill or a system used for managing society, organization, knowledge or designing, and using artificial tools for facilitating work, c) engineering, the knowledge to operate or design a procedure to solve a problem, and d) mathematics,

a science that connects quantities, numbers, and spaces that only require logical arguments accompanied by empirical evidence or not. All of these aspects can make knowledge more meaningful if they are integrated into a learning process.

Kemristekdikti (2019) stated that the learning material in higher education can be presented in various forms such as textbooks, modules, practical instructions, reference books, monographs, and other forms of equivalent learning resources. Teacher or lecturers must be creative by developing and modifying teaching or instructional materials into various forms such as a learning module. In a learning module, the teaching materials were arranged systematically so that they can learn on their own (independently) with minimal help or guidance from teacher or lecture (Prastowo, 2015). Sidek and Jamaludin (2017) explained that by using a learning 05-45068 module, the student can master the learning unit easily and accurately by themselves. ptbupsi

The learning module materials can be presented in many various learning models, one of them is discovery learning (Julita et al., 2019; Wahyudi et al., 2019; Yuliani & Saragih, 2015). Thibaut et al. (2018) revealed that discovery learning is one of instructional practices referring to the use of inquiry in integrated STEM. Bruner (1960) stated that in the discovery learning, the learners construct the new knowledge developed from prior knowledge and active experience. By using a discovery learning, the students can construct their knowledge and become more active in class (Siregar, Rosli, & Maat, 2019). Discovery learning is one of learning model that highly recommended in a learning process to strengthen the scientific, thematic, and holistic learning (Permendikbud, 2016). In discovery learning model, the learning materials were not presented in the final form, students are encouraged to organize their own

material in the learning process through activities given during the discovery learning (Kemendikbud, 2013).

Differential Equations is an important subject in various majors at most universities (Kwon, 2020). Differential Equations is an essential subject because of its wide application not only in mathematics but also in other fields such as physics, engineering, biology, chemistry, ecology, economics (Agarwal et al., 2021; Boyce et al., 2021; Grimshaw, 2017; Simmons, 2017). Vajravelu (2018) stated that it becomes a central part of bachelor's degree programs in the science and engineering. This course introduces students to science, engineering, and mathematics.

Universitas Muhammadiyah Surakarta (UMS) is a private university in Surakarta, Indonesia which has a large number of students. Like in other universities, at UMS, differential equations becomes a compulsory course in mathematics education and engineering majors. According to Act Number 20, 2003, concerning the National Education System, the curriculum is developed by a university according to the national education standards for each study program. The material depth and breadth, the semester credit unit, and the placement of this course depend on the policies of each university.

Aisha et al. (2017) argued that the differential equations is closely related with science, social science, and technology. This subject is used to create models and find solutions to a range of problems in daily life. In line with Aisha et al.(2017), Zeynivandnezhad et al. (2013) stated that differential equations involves the knowledge of modeling, problem solving, and interpreting the solution to real life problem. To

formulate the model, it needs to analyze the problem that is understanding the information to determine meaning. Furthermore, to solve and interpret the formulated model, it needs to evaluate and synthesize the information that is determining the relevance and reliable information and connecting or integrating the information to support an argument or reach a conclusion. These abilities are a critical thinking dimension as stated by Reynders et al. (2020). This is in line with Vajravelu (2018) who stated that the differential equations is very close to developing critical thinking skills.

Critical thinking skill development could be promoted by the students' collaboration skills (Dinh & Salas, 2017; Loes & Pascarella, 2017). Lai et al. (2017) mentioned that collaboration skill is a common set of skills and knowledge as an important learning outcome. Collaboration skills might contribute to an individual's success in the workplace, teams will perform better if members have more knowledge of collaboration and team-building skills. Rodríguez-Sabiote et al (2022) revealed that the greater the collaboration skills is ascociated with, the better the critical thinking skills will be.

There was a positive and significant relationship between students' critical thinking skills and achievement (Akpur, 2020). Critical thinking skills positively and significantly contributes to academic achievement in higher education (Ghanizadeh, 2017). Students who have better critical thinking skills perform better in solving the problems and achievement better (Pu et al., 2019). The other research result show that students with good learning achievement can demonstrate good reasoning and critical thinking skills in the problem-solving (Ramnarain, 2015).

1.3 **Problem Statement**

Differential equations are widely used in many other subjects besides mathematics, including physics, engineering, biology, chemistry, ecology, and economics. Hence, differential equations become a crucial subject for most collegiate majors (Agarwal et al., 2021; Boyce et al., 2021; Grimshaw, 2017; Simmons, 2017). A strong critical thinking skills is needed by the students in solving the issues or problems (Živkovik, 2016). However, students still encounter challenges when attempting to solve the differential equation problems (Faradiba et al., 2018), most of the students' mathematical thinking in the Differential Equations Course was in the low category (Zeynivandnezhad et al., 2013). Students in the low category could not fulfill all aspects of critical thinking skills in solving the problems (Nurrahmah et al., 2021).

Many research on Science, Technology, Engineering, and Mathematics (STEM) module stated that STEM-based learning modules can promote students' critical thinking skills (Retnowati et al., 2020; Savran Gencer & Dogan, 2020; Yaki, 2022). Furthermore, according to several earlier studies (Julita et al., 2019; Wahyudi et al., 2019; Yuliani & Saragih, 2015), learning modules utilizing the discovery learning model might enhance students' critical thinking abilities. Thibaut et al. (2018) and Ah-Namand and Osman (2018) mentioned that the learning theory underlies STEM education is constructivism. Constructivism was also used as a learning theory used in the discovery learning model (Affandi et al., 2022; Großmann & Wilde, 2019). Hence, it is possible to integrate STEM and discovery learning learning in a learning module to promote students' critical thinking skills in Differential Equations Course. However,

there is no module that has been developed based on STEM-discovery learning in the differential equations topic (Khotimah et al., 2021b).

Nieveen (1999), in Plomp (2013) argued that a high-quality intervention should meet the validity, practicality, and effectiveness requirements. If the intervention is not practical, there is no need to conduct any effectiveness test. There are many research that have been conducted to test the validity, practicality, and effectiveness of the module (Ahyan et al., 2014; Rahmatsyah & Dwiningsih, 2021; Rahmi et al., 2018; Retnowati et al., 2020; Savran Gencer & Dogan, 2020). However, none of them was a STEM-Discovery Learning Module in differential equations. Hence, it is needed to test the validity, practicality, and effectiveness of the STEM-Discovery Learning Module.

05-4506832 There is a relationship between students' collaboration and critical thinking bupsi skills. The students' collaboration can promote critical thinking skill development (Dinh & Salas, 2017; Fung et al., 2016; Loes & Pascarella, 2017; Rodríguez-Sabiote et al., 2022). However, the study on the relationship between students' collaboration and critical thinking skills has not been found in Differential Equations Course.

> There is also a relationship between students' critical thinking skills and achievement, encouraging critical thinking skills could raise the students' achievement (Ghanizadeh, 2017; Vierra, 2014; Wicaksana et al., 2020). On other hand, students with a good learning achievement can demonstrate good reasoning and critical thinking skills in the problem solving (Pu et al., 2019; Ramnarain, 2015). Meanwhile, Kanbay et al. (2017), Mohammadi et al. (2016) and Tafazzoli et al. (2015) found no relationship between students' achievement and critical thinking skills. The relationship between

students' critical thinking skills and achievement in the Differential Equations Course has also not been found.

In addition, there is a strong relationship between students' collaboration skills and achievement. Teamwork or collaboration can encourage students to reach significantly better achievement (De Prada et al., 2022; Lozano-Rodríguez et al., 2020; Park et al., 2015; Sanyal & Hisam, 2018). Meanwhile, Beigi and Shirmohammadi (2012) argue that there was no relationship between the teamwork and achievement. The relationship between students' collaboration skills and achievement in the Differential Equations Course has also not been found.

05-450681:4 Purpose of the Study Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

The purpose of the study is to develop a valid and practical STEM-Discovery Learning (STEMDISLEARN) module; to test the effectiveness of STEMDISLEARN module on the college students' critical thinking skills, collaboration skills, and achievement in the topic of Differential Equations; and to test the relationships between critical thinking skills, collaboration skills, and achievement in the topic of Differential Equations.

1.5 **Objective of the Study**

Specifically, the objectives of the study are described as follows.

- 1.5.1 To develop a valid and practical STEMDISLEARN module in the topic of Differential Equations.
- 1.5.2 To test the effectiveness of STEMDISLEARN module on the college students' critical thinking skills.
- 1.5.3 To test the effectiveness of STEMDISLEARN module on the college students' collaboration skills.
- To test the effectiveness of STEMDISLEARN module on the college students' achievement.
- To identify the relationship between college students' critical thinking skills and collaboration skills in the topic of differential equations.
- To identify the relationship between college students' critical thinking skills and 1.5.6 achievement in the topic of differential equations.
- 1.5.7 To identify the relationship between college students' achievement and collaboration skills in the topic of differential equations.

1.6 **Research Question**

Based on the objectives of the study, the research questions are described as follows:

- Is the STEMDISLEARN module valid and practical?
- 1.6.2 Is the STEMDISLEARN module effective in enhancing college students' critical thinking skills?

- 1.6.2.1 Is there any significant difference in the mean scores of college students' critical thinking skills between the experimental group and the control group before treatment?
- 1.6.2.2 Is there any significant difference in the mean scores of college students' critical thinking skills between the experimental group and the control group after treatment?
- 1.6.2.3 Is there any significant difference in the mean scores of college students' critical thinking skills in the experimental group before and after treatment?
- 1.6.2.4 Is there any significant difference in the mean scores of college students' critical thinking skills in the control group before and after treatment?

- Is the STEMDISLEARN module effective in enhancing college students' collaboration skills?
 - 1.6.3.1 Is there any significant difference in the mean scores of college students' collaboration skills between the experimental group and the control group before treatment?
 - 1.6.3.2 Is there any significant difference in the mean scores of college students' collaboration skills between the experimental group and the control group after treatment?
 - 1.6.3.3 Is there any significant difference in the mean scores of college students' collaboration skills in the experimental group before and after treatment?

- 1.6.3.4 Is there any significant difference in the mean scores of college students' collaboration skills in the control group before and after treatment?
- 1.6.4 Is the STEMDISLEARN module effective in enhancing college students' achievement?
 - 1.6.4.1 Is there any significant difference in the mean scores of college students' achievement between the experimental group and the control group before treatment?
 - 1.6.4.2 Is there any significant difference in the mean scores of college students' achievement between the experimental group and the control group after treatment?
 - 1.6.4.3 Is there any significant difference in the mean scores of college students' achievement in the experimental group before and after treatment?
 - 1.6.4.4 Is there any significant difference in the mean scores of college students' achievement in the control group before and after treatment?
- Is there a relationship between college students' critical thinking skills and collaboration skills in the topic of differential equations?
- Is there a relationship between college students' critical thinking skills and achievement in the topic of differential equations?

Is there a relationship between college students' achievement and collaboration skills in the topic of differential equations?

1.7 **Research Hypothesis**

Based on the research question, the hypotheses in this research are formulated.

In the second question, the null hypotheses formula are as follows:

H₀₁: There is no significant difference in the mean scores of college students' critical thinking skills between the experimental group and the control group before treatment.

H₀₂: There is no significant difference in the mean scores of college students' critical thinking skills between the experimental group and the control

group after treatment.

H₀₃: There is no significant difference in the mean scores of college students' critical thinking skills in the experimental group before and after treatment.

H₀₄: There is no significant difference in the mean scores of college students' critical thinking skills in the control group before and after treatment.

In the third question, the null hypotheses formula are as follows:

H₀₁: There is no significant difference in the mean scores of college students' collaboration skills between the experimental group and the control group before treatment.

H₀₂: There is no significant difference in the mean scores of college students' collaboration skills between the experimental group and the control group after treatment.

H₀₃: There is no significant difference in the mean scores of college students' collaboration skills in the experimental group before and after treatment.

H₀₄: There is no significant difference in the mean scores of college students' collaboration skills in the control group before and after treatment.

In the fourth question, the null hypotheses formula are as follows:

H₀₁: There is no significant difference in the mean scores of college students' achievement between the experimental group and the control group before treatment.

H₀₂: There is no significant difference in the mean scores of college students' achievement between the experimental group and the control group after treatment.

H₀₃: There is no significant difference in the mean scores of college students' achievement in the experimental group before and after treatment.

H₀₄: There is no significant difference in the mean scores of college students' achievement in the control group before and after treatment.

In the fifth question, the null hypotheses formula are as follows:

H₀₅: There is no a relationship between college students' critical thinking skills and collaboration skills in the topic of differential equations.

In the sixth question, the null hypothesis formula is as follows:

H₀₆: There is no a relationship between college students' critical thinking skills and achievement in the topic of differential equations.

In the seventh question, the null hypothesis formula is as follows:

H₀₇: There is no a relationship between college students' achievement and collaboration skills in the topic of differential equations.

1.8 **Conceptual Framework of Research**

The study aims to develop a valid and practical STEMDISLEARN module; to test the effectiveness of STEMDISLEARN module on college students' achievement, critical 05-4506 thinking skills, and collaboration skills in Differential Equations; and to test the relationships between students' achievement, critical thinking skills, and collaboration skills in Differential Equations Course.

The STEMDISLEARN module in this study was developed by using ADDIE (Analysis, Design, Development, Implementation, and Evaluation) model. Moradmand et al., (2014) stated that he systematic instructional design paradigm known as the ADDIE serves as a dynamic and adaptable design for creating powerful teaching and learning resources. The development of the STEMDISLEARN module involves the fundamental constructivism and constructionism theories in learning since these are very related with the disciples of STEM and discovery learning model (Ah-Namand & Osman, 2018; Ariyana et al., 2018; Torlakson, 2014). The four disciplines of STEM include: 1) science, represent knowledge and concepts, 2) technology, a skill or a

system used for managing society, organization, knowledge or designing and using in artificial tool that can facilitate work, 3) engineering, the knowledge to operate or design a procedure to solve a problem, and 4) mathematics, the science that connects quantities, numbers, and spaces that only require logical arguments without or accompanied by empirical evidence (Torlakson, 2014). The STEM approach will be carried out by using the discovery learning model (Ariyana et al., 2018) in the differential equations topic which consists of stimulation, problem oriented, data collecting, data processing, verification, and generalization. In this development phase, the valid and practical STEMDISLEARN module also will be tested.

The effectiveness of the STEMDISLEARN modules, which were valid and practical, will be tested in the evaluation phase through a quasi-experimental research design. There are two variables in this study, the independent variable, and the dependent variables. The independent variables include teaching and learning based on the STEMDISLEARN module and the conventional teaching approach, and the dependent ones are achievement (Anderson & Krathwohl, 2001; Kemristekdikti, 2019), critical thinking skills (Reynders et al., 2020) and collaboration skills (Britton et al., 2017). The teaching and learning in the experimental group will be carried out using STEMDISLEARN Module, while in the conventional group will be carried out using explanation, questions and answers, and exercises (Djamarah & Zain, 2013). The effectiveness of the module will be seen on the college student achievement, critical thinking skills and collaboration skills. Furthermore, the relationships between achievement and critical thinking skills, critical thinking skills and collaboration skills, and achievement and collaboration skills will also be found in this study.

Figure 1.1. shows the conceptual framework of the research.

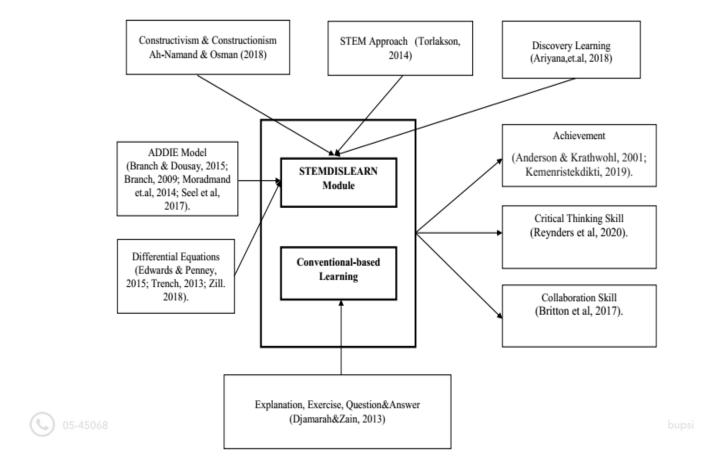


Figure 1. 1. Conceptual Framework of Research

1.9 **Operational Definition**

The operational definitions in this study include the development of STEMDISLEARN module, conventional learning, differential equations, achievement, critical thinking skills, and collaboration skills.

1.9.1 **Conventional Learning**

Conventional learning is a learning traditionally, since a long ago this method was used as a means of oral communication between teachers and students in teaching and learning process. The implementation of conventional learning is usually dominated by teachers, meanwhile the students only accept and take notes material presented by the teacher. It is characterized by giving an explanation, distribution of tasks, and exercises (Djamarah & Zain, 2013). In the present study, conventional learning includes explanation, question and answer, and exercises.

1.9.2 **Differential Equations**

A Differential Equation (DE) is an equation involving one or more dependent variable and their derivatives with respect to one or more independent variables (Simmons, 2017; Zill, 2018). In this study, the DE refers to the topics: a) introduction of DE, involving definition, classification, and solution of DE; b) first order DE, which consists of separable DE, initial value problem of DE, homogeneous DE, and DE with linear function coefficients (non homogeneous DE); as well as c) first order linier DE including integrating factor method, Lagrange method, and Bernoulli DE (Edwards & Penney, 2015; Simmons, 2017; Zill, 2018).

1.9.3 **Critical Thinking**

Critical thinking (CT) skills is analyzing, evaluating, synthesizing relevant information to form an argument or reach a conclusion supported with evidence (Reynders et al., 2020). In this study, CT skill was measured from the scores of DE CT skills test given to the students in the control and experimental groups, before and after teaching and learning. The CT skills test was built based on the indicators of CT as suggested by Reynders et al. (2020), which are analyzing, evaluating, synthesizing relevant information to form an argument or reach a conclusion supported with evidence. Analyzing is interpreting the information to determine meaning and to extract relevant evidence. Evaluating is determining the relevance and reliability of the information that might be used to support a conclusion or argument. Synthesizing is connecting or os-4506 integrating the information to support an argument or reach a conclusion

1.9.4 **Collaboration Skill**

Collaboration or teamwork is a working process of two or more students for common goals through individuals' accountability and interdependent behavior (Riebe et al., 2017). In this study, collaboration or teamwork skills were measured from the scores of a teamwork skills questionnaire given to the students in the control and experimental groups, before and after the teaching and learning of DE. The teamwork skills questionnaire was built based on to these indicators: contributing to team, facilitating contributions of others, planning and management, fostering a team climate, and managing conflict (Britton et al., 2017).

1.9.5 Achievement

Achievement is the abilities that students had after receiving the learning experience. In this study, achievement involves the college students' cognitive process dimension scores in remembering, understanding, applying, analyzing, evaluating, and creating (Anderson & Krathwohl, 2001; Kemenristekdikti, 2019). It was measured from the scores of DE achievement test given to the students in the control and experimental groups, before and after teaching and learning. The achievement test was built based on the six cognitive levels.

1.10 **Limitations of Study**

This study has several limitations. First, the topics of DE used in this research were three of five topics, which are introduction of DE, first order DE, and first order linear DE. The module was developed, and an experiment was carried out to determine its effectiveness on these three topics. Second, the research used a quasi-experimental research design. Third, the variables in this study were limited to achievement, critical thinking skills, and collaboration skills.

1.11 **Importance of Research**

Theoretically, the results of the study are expected to contribute to the knowledge of STEMDISLEARN module-based learning that can produce generations of 21st-century

learning skills, especially the critical thinking skill and collaboration skills. Besides, it can be used to enhance the college students'achievement in differential equations. Practically, the results of the study are beneficial for the lecturers, college students, institutions, and government.

1.11.1 Lecturer

The results of this study can help lecturers provide guidelines for learning activities in the differential equations course. They can improve college students' achievement, critical thinking skills, and collaborative skills and provide opportunities for lecturers to develop the STEMDISLEARN module further on other learning topics or learning

modules by using different methods and approaches.

1.11.2 College Students

By using the STEMDISLEARN module, college students can have a more meaningful learning experience because it provides opportunities for students to integrate the learning material in science, technology, engineering, and mathematics. The learning activities carried out by the college students with the module can improve the achievement, critical thinking, and collaborative thinking skills as learning skills of the 21st century.

1.11.3 The Institution

The results of this study are useful for institutions to improve the learning quality in higher education through the integration of science, technology, engineering, and mathematics in teaching and learning mathematics in higher education, and to support 21st-century learning skills.

1.11.4 The Ministry of Education

The development of the STEMDISLEARN module is based on the needs of teaching and learning skills in the 21st century. For the Ministry of Education and Culture, the result of this study can be useful for developing higher education curricula by integrating science, technology, engineering, and mathematics to face up the challenge of the 21st century.

1.12 **Summary**

The chapter has discussed the introduction, research background, problem statement, purpose of the study, objective of the study, research question, research hypothesis, conceptual framework, operational definition, limitations of the study, and importance of the research. It is needed to develop a valid and practical module based on STEM-Discovery Learning model (STEMDISLEARN Module); to test the effectiveness of STEMDISLEARN module on the college students' achievement, critical thinking

skills, and collaboration skills in the topic of differential equations; and to test the relationships between college students' critical thinking and collaboration skills; between college students' critical thinking skills and achievement; and between college students' collaboration and achievement. The next chapter will discuss the literature review needed in developing the STEMDISLEARN Module and testing the module effectiveness on the students' critical thinking skills, collaboration skills, and achievement.

