

LANGMUIR, LANGMUIR-SCHAEFER AND DENSITY FUNCTIONAL THEORY MODELLING INVESTIGATION OF CALIX[N]ARENE AND CALIX[N]ARENE-PABA FOR DRUG NANOSENSOR **APPLICATION**

WONG YEONG YI

SULTAN IDRIS EDUCATION UNIVERSITY

2024

LANGMUIR, LANGMUIR-SCHAEFER AND DENSITY FUNCTIONAL THEORY MODELLING INVESTIGATION OF CALIX[N] ARENE AND CALIX[N]ARENE-PABA FOR DRUG NANOSENSOR APPLICATION

WONG YEONG YI

THESIS PRESENTED TO QUALIFY FOR A DOCTOR OF PHILOSOPHY

FACULTY OF SCIENCE AND MATHEMATICS SULTAN IDRIS EDUCATION UNIVERSITY

2024

UPSI/IPS-3/BO 32 Pind : 00 m/s: 1/1

Please tick (√) Project Paper Masters by Research Master by Mixed Mode

INSTITUTE OF GRADUATE STUDIES

DECLARATION OF ORIGINAL WORK

This declaration is made on the 15th day of October 20.24.

i. Student's Declaration:

I, WON	NG YEONG YI, P20	221000588,	FACULTY OF SC	IENCE AND MATH	EMATICS	(PI	LEASE
INDICATE	STUDENT'S	NAME, M	ATRIC NO. A	ND FACULTY)	hereby declare th	at the	work
entitled	LANGMUIR, LAN	NGMUIR-SCHA	EFER AND DEN	ISITY FUNCTIONAL	THEORY MODELLING I	NVESTIC	ATION
OF CALIX[N]	ARENE AND CAL	IX[N]ARENE-	PABA FOR DRU	G NANOSENSOR A	PPLICATION	is	my
where due		acknowled			or from any other so n the text, nor has a		
written io	A THE BY AHOUNE	er person.					

I FARIDAH LISA BINTI SUPIAN	(SUPERVISOR'S NAME) hereby certifies that
the work entitled LANGMUIR, LANGMUIR-SCH	AEFER AND DENSITY FUNCTIONAL THEORY MODELLING
INVESTIGATION OF CALIX[N]ARENE AND CALIX[N	JARENE-PABA FOR DRUG NANOSENSOR APPLICATION
(TITLE) v	vas prepared by the above named student, and was
submitted to the Institute of Graduate Stu	idies as a * partial/full fulfillment for the conferment
of DOCTOR OF PHILOSOPHY (PHYSICS)	(PLEASE INDICATE
THE DEGREE), and the aforementioned work.	ork, to the best of my knowledge, is the said student's

15 10 2024

Date

ASSOC, PROF. DR. FARIDAH LISA SUPIAL Department of Physiquature of the Supervisor Faculty of Science and Mathematical University Pendidikan Sultan Mais.

35900 Tanjong Malim, Perak

UPSI/IPS-3/BO 31 Pind.: 01 m/s:1/1

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / Title:	LANGMUIR, LA	NGMUIR-SCHAEFER AND DENSITY FUNCTIONAL
	THEORY MODE	ELLING INVESTIGATION OF CALIX[N]ARENE AND
	CALIX[N]ARENI	E-PABA FOR DRUG NANOSENSOR APPLICATION
No. Matrik /Matric	's No.: P20221000588	
Saya / /:	WONG YEONG	YI
	(Nar	ma pelajar / Student's Name)
di Universiti Pendi seperti berikut:-	dikan Sultan Idris (Per	i/Laporan Kertas Projek (Kedoktoran/Sarjana)* ini disimpan pustakaan Tuanku Bainun) dengan syarat-syarat kegunaan ultan Idris (Tuanku Bainun Library) reserves the right as follows:-
	/Laporan Kertas Proje property of Universiti Pe	ek ini adalah hak milik UPSI. endidikan Sultan Idris
penyelidikan.		enarkan membuat salinan untuk tujuan rujukan dan nake copies for the purpose of reference and research.
antara Institusi	Pengajian Tinggi.	salinan Tesis/Disertasi ini sebagai bahan pertukaran of the thesis for academic exchange.
4. Sila tandakan (√) bagi pilihan kateg	ori di bawah / Please tick (√) for category below:-
SULITIO	CONFIDENTIAL	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. / Contains confidential information under the Official Secret Act 1972
TERHA	DIRESTRICTED	Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan. / Contains restircted information as specified by the organization where research

(Tandatangan Pelajar/ Signature)

TIDAK TERHAD / OPEN ACCESS

Tarikh: 15 | 10 | 20 24

(Tendatangan Penyelia / Signature of Supervisor) & (Nama & Cop Rasmi / Name & Official Stamp)

ASSOC, PROF. DR. FARIDAH LISA - UPIAN

Department of Physics,
Faculty of Science and Mathemetics,
Universiti Pendidikan Sultan Idris,
35900 Tanjong Malim, Perak.

Catatan: Jika Tesis/Disertasi ini SULIT @ TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai SULIT dan TERHAD.

was done.

ACKNOWLEDGEMENT

To commence, I wish to convey my sincere appreciation for the opportunity to have completed my thesis despite encountering numerous obstacles. Regarding the completion of this research, I would like to extend my deepest gratitude and innumerable thanks to my supervisor, Associate Professor Dr Faridah Lisa Supian, for her unwavering support, guidance, and counsel. With her zeal and sagacity, she guided me in mastering the craft of research. Furthermore, I wish to extend my sincere appreciation to my co-supervisor, Dr Afiq Radzwan, for his invaluable guidance in getting my research completed.

It is my pleasure to convey my appreciation to the staff and lecturers from the Institute of Graduate Studies and Faculty of Science and Mathematics, Sultan Idris Education University (UPSI). I am grateful to the Ministry of Higher Education Malaysia for providing financial support through the Fundamental Research Grants Scheme 2020-0256-103-02 (FRGS/1/2020/STG07/UPSI/02/2). I would like to express my gratitude to the laboratory assistants and instrument operators, Mr Mohd Faisal Mohd Yassin, Mr Mohd Zurin Mahmood, Mr Mohd Akmal Farhan Rashid, Madam Radiah Idris, Mr Ahmad Isa Hamizi, and Mr Mohd Hashimi Ma'ani for their support in obtaining research data. Furthermore, I would like to thank Madam Nur Irwany Ahmad from the University of Malaysia Perlis (UniMAP) and Associate Professor Dr Amiruddin Shaari from the University of Technology Malaysia (UTM) for their supercomputer availability to aid in my computational work. Besides, thank you to Associate Professor Dr Abd Khamim Ismail from UTM, Associate Professor Ir. Ts. Dr. Rozana Aina Maulat Osman from UniMAP, and Associate Professor Ts. Dr. Shahrul Kadri Ayop from UPSI for their constructive comments during my viva voce.

Sincere gratitude is extended to my family, Mr Wong Yin Chean, Madam Tan Yoke Mei, Madam Chan Sook Feh, and Madam Wong Shin Yi for consistently providing me with the provision and inspiration I sorely require. Their financial and emotional assistance was of great use in enabling me to surmount the barriers and difficulties that arose throughout conducting this research. Moreover, thank you to my research team members, Madam Nur Farah Nadia Abd Karim and Mr Farish Armani Hamidon for their invaluable mentorship and assistance. Additionally, I would like to thank my roommate, Ms Amrina Rosyada Abdullah for her precious support throughout my postgraduate studies. Likewise, thank you to Madam Khairunnisa Mad Yusof, my executive manager, for permitting and motivating me to finish my thesis writing during working hours, which has significantly accelerated the writing process.

A last word of appreciation is sent to everyone who assisted and provided recommendations in completing my research, whether directly or indirectly. It is desirable that this research serve as a useful resource for the coming research conducted by future generations.

ABSTRACT

This research aimed to study the detection of para-aminobenzoic acid (PABA) by calix[4]arene (C4) and calix[6]arene (C6) using the Langmuir technique and density functional theory (DFT). The necessity to develop a PABA nanosensor arises from the side effects associated with PABA. The Langmuir experiment followed by the Langmuir-Schaefer (LS) film deposition was carried out. Field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), carbon, sulphur elemental analyser (CHNS), ultraviolet-visible hydrogen, nitrogen, spectroscopy (UV-Vis), and Fourier transform infrared spectroscopy (FTIR) were used to characterise the LS films. DFT as a first-principle computational method was implemented to calculate the band gap (E_{φ}) and binding energy (ΔE) using Quantum ESPRESSO (QE). The Langmuir findings demonstrated the optimum sensing of PABA by C4 and C6 existed at the 1:1 host-guest ratio. The FESEM study confirmed the successful fabrication of C4, C6, C4-PABA, and C6-PABA LS films. Their morphologies, elemental composition, and optical properties denoted the formation of novel C4-PABA and C6-PABA complexes with promising reactivity. In congruence with the Langmuir study, the identification of N-H bonds within the complexes proved PABA binding at the lower rim of C4 and C6. The negative ΔE and the E_g reduction further revealed the capability of calixarenes to form stable 1:1 host-guest complexes with promising reactivity. Based on the additional UV-Vis and DFT investigations, the use of a water-soluble calix[4] arene derivative, 4-sulfocalix[4] arene (SC4) as PABA nanosensor is recommended for future studies. In conclusion, the experimental and DFT findings confirmed the sensing ability of C4 and C6 towards PABA. The higher stability exhibited by the C4-PABA complexes suggests the better sensing capability of C4 towards PABA compared to C6. This study implies that PABA detection could be implemented and applied in the development of PABA nanosensors for various applications, including medicinal and environmental uses.

KAJIAN LANGMUIR, LANGMUIR-SCHAEFER DAN PEMODELAN TEORI FUNGSI KETUMPATAN KALIKS[N]ARINA DAN KALIKS[N]ARINA-PABA UNTUK APLIKASI NANOPENDERIAAN DADAH

ABSTRAK

Penyelidikan ini bertujuan untuk mengkaji pengesanan asid para-aminobenzoik (PABA) oleh kaliks[4]arina (C4) dan kaliks[6]arina (C6) menggunakan teknik Langmuir dan teori fungsi ketumpatan (DFT). Pembinaan nanopenderia PABA diperlukan kerana terdapat kesan sampingan yang dibawa oleh PABA. Ujikaji Langmuir diikuti dengan pembentukan filem Langmuir-Schaefer (LS) telah dijalankan. Mikroskop pengimbasan elektron pancaran medan (FESEM), spektroskopi sinar-X penyebaran tenaga (EDX), penganalisis unsur karbon, hidrogen, nitrogen, sulfur (CHNS), spektroskopi ultraungu-tampak (UV-Vis), dan spektroskopi inframerah transformasi Fourier (FTIR) telah digunakan untuk mencirikan filem LS. DFT sebagai kaedah pengiraan prinsip pertama telah dilaksanakan untuk mengira jurang jalur (E_{σ}) dan tenaga pengikat (ΔE) dengan menggunakan perisian Quantum ESPRESSO (QE). Dapatan Langmuir menunjukkan pengesanan optimum PABA oleh C4 dan C6 adalah wujud pada nisbah hos-tetamu 1:1. Berdasarkan kajian FESEM, pembentukan filem LS C4, C6, C4-PABA, dan C6-PABA adalah berjaya. Morfologi, komposisi unsur, dan sifat optik yang didapati telah menunjukkan pembentukan kompleks C4-PABA dan C6-PABA baharu secara kualitatif dengan kereaktifan yang baik. Pengenalpastian ikatan N-H baharu dalam kompleks telah membuktikan pembentukan C4-PABA dan C6-PABA dengan pengikatan PABA melalui rim bawah yang selaras dengan kajian Langmuir. ΔE yang negatif dan pengurangan E_g telah menunjukkan kemampuan kaliksarina untuk membentuk kompleks hos-tetamu yang stabil pada nisbah 1:1 dengan kereaktifan yang baik. Berdasarkan eksperimen UV-Vis dan pengiraan DFT tambahan, penggunaan terbitan kaliks[4]arina yang bersifat larut dalam air, 4-sulfokaliks[4]arina (SC4) sebagai nanopenderia PABA dicadangkan untuk kajian akan datang. Kesimpulannya, dapatan kajian ujikaji dan DFT telah mengesahkan keupayaan C4 dan C6 dalam pengesanan PABA. Kestabilan yang lebih tinggi telah ditunjukkan oleh kompleks C4-PABA. Hal ini menunjukkan keupayaan pengesanan lebih baik C4 dalam pengesanan PABA berbanding dengan C6. Kajian ini memberi implikasi bahawa pengesanan PABA boleh diusahakan dan diaplikasikan dalam pembangunan nanopenderia PABA untuk pelbagai aplikasi, termasuk kegunaan perubatan dan alam sekitar.

CONTENTS

	Page
DECLARATION OF ORIGINAL WORK	ii
DECLARATION OF THESIS	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
CONTENTS	vii
LIST OF TABLES	xii
05-450683 LIST OF FIGURES 1.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	PustakaTBainur XiV ptbups
LIST OF ABBREVIATIONS	xxii
LIST OF SYMBOLS	xxv
APPENDIX LIST	xxviii
CHAPTER 1 INTRODUCTION	
1.1 Research Background	1
1.2 Research Motivation	5
1.3 Problem Statement	7
1.4 Research Objectives	10
1.5 Research Questions	11
1.6 Research Scope and Limitation	12
1.7 Research Significance	14

1.8	Thesis Organisation		15	
СНАРТЕК	R 2 LITERATURE REVIEW			
2.1	Introdu	ection	17	
2.2	Calixar	Calixarenes		
	2.2.1	History of Calixarenes	18	
	2.2.2	Structural Properties of Calixarenes	20	
	2.2.3	Applications of Calixarenes as Nanosensor	23	
	2.2.4	Sensing Mechanism of Calixarenes	33	
2.3	Para-A	aminobenzoic Acid (PABA)	35	
	2.3.1	Structural Properties of PABA	35	
	2.3.2	History of PABA	36	
	2.3.3	Applications of PABA	38	
05-4506832 pus	2.3.4	Recent Investigations of PABA Detection PustakaTBain	un 40 ptbup	
2.4	Types	of Thin Film and the Fabrication Techniques	42	
2.5	Langm	uir Film	44	
	2.5.1	Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) Techniques	47	
	2.5.2	The Significances of Langmuir Film	49	
	2.5.3	Types of Multilayer Structure	50	
2.6	Surface	e Pressure-Area (Π-A) Isotherm	53	
2.7	Surface	e Potential (ΔV) and Effective Dipole Moment (μ_{\perp})	58	
2.8	Field E	mission Scanning Electron Microscope (FESEM)	61	
	2.8.1	Applications of Field Emission Scanning Electron Microscope (FESEM)	63	
2.9	Energy	Dispersive X-Ray Spectroscopy (EDX)	64	

	2.9.1	Applications of Energy Dispersive X-Ray Spectroscopy (EDX)	65
2.10		a, Hydrogen, Nitrogen, Sulphur Elemental er (CHNS)	67
	2.10.1	Applications of Carbon, Hydrogen, Nitrogen, Sulphur Elemental Analyser (CHNS)	69
2.11	Ultravi	olet-Visible Spectroscopy (UV-Vis)	70
	2.11.1	The Electron Transition within the Aromatic Structure	73
	2.11.2	Band Gap (E_g) Study Based on Tauc Method	76
	2.11.3	Applications of Ultraviolet-Visible Spectroscopy (UV-Vis)	79
2.12	Fourier	Transform Infrared Spectroscopy (FTIR)	80
	2.12.1	Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy (ATR-FTIR)	84
05-4506832 P	2.12.2	Applications of Fourier Transform Infrared Spectroscopy (FTIR)	n 86 ptbur
2.13	Density	y Functional Theory (DFT)	87
	2.13.1	Band Gap (E_g) Study	91
	2.13.2	Binding Energy (ΔE) Study	92
2.14	Summa	nry	94
CHAPTE	R 3 MET	THODOLOGY	
3.1	Introdu	action	97
3.2	Materia	als	99
	3.2.1	Calixarenes	99
	3.2.2	Para-Aminobenzoic Acid (PABA)	101
3.3	Solutio	on Preparation	102
3.4	Format	ion of Langmuir Film	105

	X

	3.4.1	Surface	Pressure-Area (Π - A) Isotherm	112
	3.4.2		Potential-Area (ΔV - A) Isotherm and re Dipole Moment (μ_{\perp}) Calculation	114
3.5	Substra	ates Prepa	aration	116
3.6	Deposi	tion of Tl	nin Film and the Characterisation Process	121
	3.6.1	-	ion of Thin Film by Langmuir-Schaefer chnique	121
	3.6.2	Charact	erisation of Samples	128
		3.6.2.1	Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-Ray Spectroscopy (EDX)	128
		3.6.2.2	Carbon, Hydrogen, Nitrogen, Sulphur Elemental Analyser (CHNS)	130
		3.6.2.3	Ultraviolet-Visible Spectroscopy (UV-Vis)	131
) 05-4506832		3.6.2.4	Fourier Transform Infrared Spectroscopy (FTIR)	r137 ptbup
3.7	Density	y Function	nal Theory (DFT) Calculation	139
3.8	Summa	ary		149
СНАРТЕ	R 4 FINI	DINGS A	AND DISCUSSION	
4.1	Introdu	ection		152
4.2	Langm	uir Film S	Studies	153
	4.2.1	Surface	Pressure-Area (Π-A) Isotherm	153
	4.2.2		Potential-Area (ΔV - A) Isotherm and re Dipole Moment (μ_{\perp})	168
4.3	Langm	uir-Schae	efer (LS) Film Studies	178
	4.3.1	Morpho	ological Analysis	179
	4.3.2	Elemen	tal Analysis	183

	4.3.3	Optical Properties	186
		4.3.3.1 Absorbance Spectra	186
		4.3.3.2 Band Gap (E_g)	197
	4.3.4	Formation of Chemical Bonds	201
		4.3.4.1 Host-Guest Interaction between Calix[n]arene (n=4,6) and PABA	209
4.4	Densit	y Functional Theory (DFT) Calculation	214
	4.4.1	Binding Energy (ΔE) Study	214
	4.4.2	Band Gap (E_g) Study	223
		4.4.2.1 Density of State (DOS)	224
4.5	Compa	arison of Experimental and Computational Studie	es 231
	4.5.1	Stability of Calix[n]arene-PABA Complexes	231
05-4506832 Pu	4.5.2 Istaka.upsi	Reactivity between Calix[n]arene and PABA	233 ptbups
4.6	Summ		236
СНАРТЕ	R 5 CO	NCLUSIONS AND RECOMMENDATIONS	
5.1	Concl	usions	238
5.2	Recon	nmendations	243
REFERE	NCE		247
APPEND	IX		.283
LIST OF	PUBLIC	CATIONS	288

LIST OF TABLES

1 a D	ne No.		Page
2	2.1	The Substrate Surface and the Dipping Direction of X-Type, Y-Type, and Z-Type Thin Film	52
2	2.2	Types of Electrons and Their Respective Bonding and Excitation Energy	74
2	2.3	Types of Electronic Transitions and Their Description	75
2	2.4	The Description of FTIR Transmittance Spectra	83
2	2.5	The Wavelength and Wavenumber Correspond to the IR Regions	85
05-4506832	3.1 pustak	IUPAC Nomenclature, Empirical Formula, and Molecular Weight of Calixarenes	100 ptbu
3	3.2	The Concentrations of Sample Preparation for Langmuir and LS Fillms Studies	125
3	3.3	Concentration Ratio of C4-PABA, C6-PABA, and SC4-PABA Used as Sample Solution for UV-Vis Characterisation	135
3	3.4	The Concentration of C4, C6, and SC4 Used as Sample Solution for the Study of Beer-Lambert Law	136
2	4.1	The A_0 of C4 and C6 with Different Volumes Based on the Π - A Isotherm	158
2	4.2	The A_0 of C4-PABA and C6-PABA with Different PABA Concentrations	160
2	4.3	The Deposition Π , Collapse Π , and Compressibility Modulus of Langmuir Films	166
2	4.4	The ΔV_{max} and $\mu_{\perp_{max}}$ of C4, C6, C4-PABA, and C6-PABA Langmuir Films	173

4.5	Mass percentage (%) of C4-PABA and C6-PABA Multilayer	186
4.6	The Positions of Absorbance Peak	196
4.7	E_g of C4, C6, SC4, PABA, and Their Respective Complexes	199
4.8	Classification of UV	200
4.9	The Chemical Bonds Present in PABA Molecule	202
4.10	The Chemical Bonds Identified for the Monolayer	206
4.11	The Chemical Bonds Identified for the Multilayer	207
4.12	E_g and ΔE Correspond to PABA, C4, and C4-PABA	216
4.13	E_g and ΔE Correspond to PABA, C6, and C6-PABA	217
4.14	E_g and ΔE Correspond to PABA, SC4, and SC4-PABA for the Host-Guest Interaction at Upper Rim	218
4.15 pustal	E_g and ΔE Correspond to PABA, SC4, and SC4-PABA for the Host-Guest Interaction at Lower Rim	219 ptbups
4.16	ΔE of 1:2 Host-Guest Complexes	222
4.17	DFT E_g of C4, C6, SC4, PABA, and Their Respective Complexes	223
4.18	Contributions of Orbitals	230
4.19	Collapse Π , ΔV_{max} , and ΔE of the Host-Guest Complexes	232
4.20	Experimental and Computational E_g	234

LIST OF FIGURES

Figure No.		Page
1.1	The Applications of Nanomaterials	2
1.2	The Complexation Process of Calix[6]arene Macrocycle with PABA Molecule	8
2.1	The Structure of a Typical Calix[4]arene	18
2.2	The Production of Resinous Tar by the Reactions of Phenols with Formaldehyde	19
2.3	The Production of Colourless with High Melting Point Solids by the Reactions of Phenols with Formaldehyde	19
2.4 05-4506832 pustaka.uj	Space Filling Molecular Model of a Cyclic Tetramer and a Calix Crater Remove Sultan Abdul Jalil Shah	20 ptbups
2.5	Molecular Structure of Calixarenes	21
2.6	Chemical Structure of (a) Calix[4]arene, (b) Calix[6]arene, and (c) Calix[8]arene	22
2.7	The Chemical Structure of SC4	23
2.8	The Optimised Structures of the Calix[4]arene Derivatives' Complexes with the C, F, H, N, O, and S Atoms Represented by the Grey, Turquoise, White, Blue, Red, and Yellow Balls, Respectively	26
2.9	The Chemical Structure of the (a) <i>p-tert</i> -Butylcalix[4]arene, (b) Basic Calix[4]arene, (c) Calix[4]arene Derivative with Aldehyde Groups, and (d) 4-Sulfocalix[4]arene	27
2.10	The Possible Host-Guest Complexation of the Oxaliplatin with <i>P</i> -Sulfocalix[n]arenes (n=4,6) via Upper or Lower Rims	28
2.11	The Chemical Structure of (a) 4-Sulfocalix[4]arene and (b) Nedaplatin	29

2.12	The Aggregate Complex of Sulfonated Calix[4]resorcinol and Lanthanum-Based Metallosurfactant for the Cisplatin Encapsulation	30			
2.13	The Structure of the Host-Guest Complex Formed by Phosphonated Calixarene with Paclitaxel and Carboplatin				
2.14	The Side View and Top View of the Most Stable Host-Guest Complex Formed by (a) Calix[6]arene and (b) Calix[8]arene Derivatives with the C, H, N, O, and S Atoms Represented by the Grey, White, Blue, Red, and Yellow Balls, Respectively	31			
2.15	The Trapping of Different Pesticides Represented by X				
2.16	Chemical Structure of PABA				
2.17	Reduction of 4-Nitrobenzoic Acid to Synthesis PABA				
2.18	The Photographs Taken before (a) the Drop of Oil and (b) the Thin Oil Film Discovered by Benjamin Franklin.	45			
2.19 pustaka.u	Schematic Diagram of Calixarenes' Langmuir Film at the Air-Water Interface with Their Hydrophobic and Hydrophilic Parts Direct toward the Air and Water, Respectively	46 ptbu			
2.20	Schematic Diagram of (a) a Monolayer on the Air-Water Interface after Being Compressed to the Desired Surface Pressure, (b) the LB Deposition Technique, and (c) the LS Deposition Technique	47			
2.21	Schematic Diagram of X-Type, Y-Type, and Z-Type Multilayer Structure Formed by the Head (Open Circles) and Tail (Lines) Amphiphilic Molecules with Hydrophobic and Hydrophilic Substrates Represented by the Open and Filled Rectangles, Respectively	51			
2.22	Schematic Representation of Contact Angle between Filter Paper and Subphase	55			
2.23	Molecular Organisation in the Different Phases Showed by Π - A Isotherm Measured when Compressing Langmuir Film	56			
2.24	The Schematic Diagram of the Working Principle of	58			

SPOT

2.25	Schematic Diagram of FESEM		
2.26	Schematic Diagram of (a) Working of EDX and (b) X-ray Emission in a Magnified View of One Atom		
2.27	Schematic Diagram of CHNS	68	
2.28	Brief Diagram of the UV-Vis Spectrophotometer		
2.29	Schematic Diagram of the Promotion of Electron from Ground State to Excited State with the Absorption of Photon Energy		
2.30	Schematic Diagram of Electronic Transitions	74	
2.31	Schematic Diagram of FTIR Spectrometer		
2.32	Schematic Diagram of ATR-FTIR with the Sample Placed Directly on the ATR Crystal		
2.33	Spectral Range of the NIR, MIR Followed by FIR with the Increasing Wavelength from Left to Right	86	
2.34	The Steps of SCF to Solve the Kohn–Sham Equation	90	
3.1	Flow Chart of Methodology Applied	98	
3.2	The (a) C4, (b) C6, and (c) SC4 Powder Purchased from Sigma-Aldrich, and (d) the Weighted Powder Used in Experiments	99	
3.3	Chemical Structures of (a) C4, (b) C6, and (c) SC4	100	
3.4	Structures and Numbering of (a) C4, and (b) C6	101	
3.5	The (a) PABA Powder Purchased from Bendosen, (b) Weighted PABA Powder, and (c) Its Chemical Structure	101	
3.6	Shimadzu AX200 Electronic Balance	102	
3.7	Temperature and Humidity Meter in the Laboratory	103	
3.8	(a) C4, (b) C6, and (c) SC4 in Solution Form	103	
3.9	Millipore Direct-Q 3 UV Water Purification System	104	
3.10	Various Forms of PABA in Aqueous Solution	104	

3.11	Langmuir Apparatus KSV 2000 System 2 (KSV2000-2) with LB Trough and Barriers		
3.12	Cone Conformation of the Amphiphilic (a) C4 and (b) C6 Molecules	106	
3.13	Cone Conformation of a Water-Soluble SC4 Molecule	106	
3.14	Schematic Diagram of the LB Trough	107	
3.15	1K Cleanroom (ISO 6) Used for Performing Experiment	108	
3.16	The Setup for Isotherms Studies	109	
3.17	The Schematic Diagram of (a) Amphiphilic Molecule and (b) Amphiphile Monolayer Remained at the Interface	110	
3.18	Schematic Diagram of Monolayer Formation at the Air-Water Interface	111	
3.19	A_0 and Deposition Π Deduced from the Π - A Graph	113	
3.20	The Determination of ΔV_{max} and $\mu_{\perp max}$	116	
3.21 ustaka.	Substrates Preparation Procedures Shah	117 ptbup	
3.22	Silicon Wafer	118	
3.23	Quartz Slide	118	
3.24	Ultrasonic Cleaner	119	
3.25	The Use of (a) Coplin Jar in the (b) Ultrasonic Cleaner	120	
3.26	HMDS Solution	120	
3.27	Schematic Diagram of the LS Film Deposition	123	
3.28	LS Films Preparation for Each Characterisation	127	
3.29	The (a) Hitachi SU8020 UHR FESEM and (b) Horiba X-max EDX	129	
3.30	Flash EA 1112 Series CHNS	130	
3.31	The Sample Powder Placed in Different Vials	131	
3.32	The (a) Jasco V-570 UV-Vis, (b) Substrate Sample Holder, and (c) Solution Sample Holder	133	

3.33	The Quartz Cuvettes Used to Hold the Reference and Sample Solution	134
3.34	The (a) Perkin Elmer Spectra 3 FTIR and (b) ATR Accessory	138
3.35	The DFT Computational Steps Using QE	140
3.36	The Interactive Chemical Structure Model of PABA in Three Different Dimensions from the Views of (a) Top, (b) Front, and (c) Side	141
3.37	The Interactive Chemical Structure Model of C4 in Three Different Dimensions from the Views of (a) Top, (b) Front, and (c) Side	141
3.38	The Interactive Chemical Structure Model of C6 in Three Different Dimensions from the Views of (a) Top, (b) Front, and (c) Side	142
3.39	The Interactive Chemical Structure Model of SC4 in Three Different Dimensions from the Views of (a) Top, (b) Front, and (c) Side	142
3.40	The Interactive Chemical Structure Model of C4-PABA in Three Different Dimensions from the Views of (a) Top, (b) Front, and (c) Side	145
3.41	The Interactive Chemical Structure Model of C6-PABA in Three Different Dimensions from the Views of (a) Top, (b) Front, and (c) Side	145
3.42	The Interactive Chemical Structure Model of SC4-PABA with the PABA Binding at the Upper Rim and Lower Rim in Three Different Dimensions from the Views of (a) Top, (b) Front, and (c) Side	146
3.43	The Structure of C4-PABA Constructed Using a 1:2 Host-Guest Ratio in Three Different Dimensions from the Views of (a) Top, (b) Front, and (c) Side	148
3.44	The Structure of C6-PABA Constructed Using a 1:2 Host-Guest Ratio in Three Different Dimensions from the Views of (a) Top, (b) Front, and (c) Side	148

	3.45	The Structure of SC4-PABA Constructed Using a 1:2 Host-Guest Ratio with the PABA Binding at the Upper Rim and the Lower Rim in Three Different Dimensions from the Views of (a) Top, (b) Front, and (c) Side	149
	4.1	Π - A Isotherm of (a) C4 and (b) C6 with Different Spreading Volumes	154
	4.2	Π -A Isotherm of (a) C4 and (b) C6 with 2100 μ l	157
	4.3	Comparison of Π-A Isotherm for (a) C4 with C4-PABA and (b) C6 with C6-PABA	161
	4.4	Π-A Isotherm of (a) C4 followed by C4-PABA and (b) C6 Followed by C6-PABA at Several PABA Concentrations	164
	4.5	Comparison of Π - A Isotherm for (a) C4, (b) C6, and Their Respective PABA Complexes with the Smaller A_0	165
	4.6	П-A Isotherm of (a) C4-PABA and (b) C6-PABA at the Optimum PABA Concentration	167
05-4506832	4.7	ΔV -A and μ_{\perp} -A Isotherms of (a) C4 and (b) C6	170
0	4.8	ΔV - A and μ_{\perp} - A Isotherms of (a) C4-PABA and (b) C6-PABA	172
	4.9	Graph of ΔV_{max} and $\mu_{\perp_{max}}$ against PABA Concentration for C4-PABA	174
	4.10	Graph of ΔV_{max} and $\mu_{\perp_{max}}$ against PABA Concentration for C6-PABA	175
	4.11	LS Films Deposited on (a) Quartz and (b) Silicon Substrates	178
	4.12	Monolayer FESEM Images of (a) C4, (b) C4-PABA at the Magnification of 20k, and (c) C4, (d) C4-PABA at the Magnification of 50k	179
	4.13	Monolayer FESEM Images of (a) C6, (b) C6-PABA at the Magnification of 20k, and (c) C6, (d) C6-PABA at the Magnification of 50k	180
	4.14	Multilayer FESEM Images of (a) C4, (b) C4-PABA at the Magnification of 20k, and (c) C4, (d) C4-PABA at the Magnification of 50k	181

4.15	Multilayer FESEM Images of (a) C6, (b) C6-PABA at the Magnification of 20k, and (c) C6, (d) C6-PABA at the Magnification of 50k		
4.16	EDX Elemental Analysis of (a) C4, (b) C6, (c) C4-PABA, and (d) C6-PABA Monolayer	184	
4.17	EDX Elemental Analysis of (a) C4, (b) C6, (c) C4-PABA, and (d) C6-PABA Multilayer	184	
4.18	Absorbance Spectra of (a) Monolayer and (b) Multilayer for C4 and C4-PABA		
4.19	Absorbance Spectra of (a) Monolayer and (b) Multilayer for C6 and C6-PABA		
4.20	Absorbance Spectra of (a) C4, (b) C6, and (c) SC4 Solution		
4.21	Maximum Absorbance of (a) C4, (b) C6, and (c) SC4 versus Concentration		
4.22	Absorbance Spectra of (a) C4, (b) C6, (c) SC4, and Their Respective Complexes Solution Perpustakaan Tuanku Bainun PustakaTBainun	194	
4.23	Absorbance Spectra of Standard PABA Solution	196	
4.24	Determination of E_g for (a) C4, (b) C6, (c) SC4, and Their Respective Complexes	198	
4.25	Determination of E_g for PABA	200	
4.26	FTIR Transmittance Spectra of PABA	201	
4.27	FTIR Transmittance Spectra of (a) C4, (b) C6, and Their Respective Complexes in the Form of Monolayer		
4.28	FTIR Transmittance Spectra of (a) C4, (b) C6, and Their Respective Complexes in the Form of Multilayer	205	
4.29	Formation of (a) C4-PABA and (b) C6-PABA via Electrostatic Interaction	210	
4.30	Formation of (a) C4-PABA and (b) C6-PABA via Ion- Dipole Interaction	212	
4.31	Formation of (a) C4-PABA and (b) C6-PABA via Hydrogen Bonding	213	

4.32	DOS of C4	225
4.33	DOS of C6	225
4.34	DOS of SC4	226
4.35	DOS of PABA	226
4.36	DOS of C4-PABA	227
4.37	DOS of C6-PABA	227
4.38	DOS of SC4-PABA with the PABA Binding at the Upper Rim	228
4.39	DOS of SC4-PABA with the PABA Binding at the Lower Rim	228
4.40	Fermi Energy and E_g of Insulator Compared to Conductor and Semiconductor	235

LIST OF ABBREVIATIONS

ATR-FTIR Attenuated Total Reflection Fourier Transform Infrared

Spectroscopy

 \mathbf{C} Carbon

C4 Calix[4]arene

C4-PABA Calix[4]arene-PABA

C6 Calix[6]arene

C6-PABA Calix[4]arene-PABA

CCDC Cambridge Crystallographic Data Centre

05-45068 CHNS | Carbon, Hydrogen, Nitrogen, Sulphur Elemental Analyser

CIF Crystallographic Information File

DFT Density Functional Theory

DI Deionised

DOS Density of State

EDX Energy Dispersive X-Ray Spectroscopy

F Fluorine

FESEM Field Emission Scanning Electron Microscope

FIR Far-Infrared

FTIR Fourier Transform Infrared Spectroscopy

GGA Generalised Gradient Approximation

Η Hydrogen

IR Infrared

KSV2000-2 Langmuir apparatus KSV 2000 System 2

LDA Local Density Approximation

OH Hydroxyl

HMDS 1,1,1,3,3,3-Hexamethyldisilazane

IUPAC International Union of Pure and Applied Chemistry

LB Langmuir-Blodgett

LS Langmuir-Schaefer

MD Molecular Dynamics

MIR Mid-Infrared

N Nitrogen

NA Not Applicable

pustaka up Not Detectable Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 05-450683ND

NIR Near-Infrared

O Oxygen

PABA Para-Aminobenzoic Acid or 4-Aminobenzoic Acid

PBE Perdew-Berke-Erzndof

QΕ Quantum ESPRESSO

RO Research Objective

SCF Self-Consistent Field

S Sulphur

SC4 4-Sulfocalix[4]arene

SC4-PABA 4-Sulfocalix[4]arene-PABA

SPOT Surface Potential Sensor

Two-Dimensional 2-D

UV Ultraviolet

Ultraviolet-Visible Spectroscopy UV-Vis

LIST OF SYMBOLS

Absorbance A

ΑU **Absorbance Units**

α **Absorption Coefficient**

Å Angstrom

 E_{g} Band Gap

 ΔE Binding Energy

CHCl₃ Chloroform

Concentration

Dipole Moment ampus Sultan Abdul Jalil Shah

Effective Dipole Moment μ_{\perp}

 μ_{\perp} -A Effective Dipole Moment-Area

 $v_{eff}(r)$ **Effective Potential Functional**

 $\rho(r)$ **Electron Density**

 \mathcal{E}_i Energy of the System of Non-Interacting Electrons

Ground State Density ρ_0

 E_{Guest} Ground State Energy of Guest

 E_{Host} Ground State Energy of Host

Ground State Energy of Host-Guest Complex $E_{Complex}$

Mass of Electron m_e

Maximum Effective Dipole Moment $\mu_{\perp_{max}}$

N_{max}	Maximum Surface Potential
l_0	Mean Molecular Area
1	Molecular Area
М	Molar
	Molar Absorption Coefficient
	Monolayer Permittivity
	Path Length
Z	Photon's Energy
,	Photon's Frequency
ı	Plank's Constant
	Radius
ı	Reduced Planck Constant
pustaka.up	Speed of Light Kampus Sultan Abdul Jalil Shah PustakaTBainun ptbupsi
ΛV	Surface Potential
NV-A	Surface Potential-Area
I	Surface Pressure
I-A	Surface Pressure-Area
•	Surface Tension of Pure Subphase
0	Surface Tension of the Subphase Covered with a Monolayer
V	Total Number of Electron
	Transmittance
0	Vacuum Permittivity
$b_i(r)$	Wavefunction
	O pustaka.up V V-A (-A

λ

Wavelength

 λ_{max}

Wavelength of Maximum Absorbance

APPENDIX LIST

- A The Π -A Isotherm and ΔV -A Isotherm of SC4
- В The Window Displayed of Information Setup in KSV2000-2 Software for Calixarene Langmuir Film with the Subphase of (a) DI Water and (b) **PABA Solution**
- \mathbf{C} The Setting of (a) Parameters for Spectrum Measurement and (b) Baseline Correction in Spectra Manager Software
- D The (a) Window Displayed and (b) Scanning of Background in Perkin Elmer Spectrum IR Software
- E The Window Displayed in QE Software When Performing DFT Calculations for SC4-PABA Structure

CHAPTER 1

INTRODUCTION

This research is based on the implementation of nanotechnology and the use of nanomaterials for drug nanosensor application via thin film fabrication. Nanotechnology is a field of the manipulation of individual atoms and molecules with the means provided to fabricate particular and sensitive platforms (Munawar et al., 2019). The utilisation of nanomaterials on the order of 1-100 nm has garnered a growing amount of attention over the past decade due to their wide range of applications in several fields as illustrated in Figure 1.1, that are employed in commonplace products. The use of nanomaterials reforms methods in several sectors, making them easier, safer, more affordable, and transportable (Titus, Samuel, & Roopan, 2019).

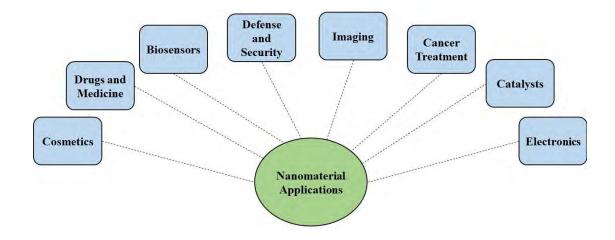


Figure 1.1. The Applications of Nanomaterials. Adapted from "Nanoparticle Characterization Techniques, by Titus, Samuel, and Roopan, 2019, Green Synthesis, Characterization and Applications of Nanoparticles. Copyright 2019 by Elsevier"

molecules, targeting drugs, and the fabrication and characterisation of nanomaterials have received notice in recent years. The distinctive properties of nanomaterials are also applied for sensing purposes. The sensitivity of nanosensors can be utilised in a variety of contexts, including environmental and industrial applications, as well as earlier detection of sickness, and toxins (Munawar et al., 2019).

The implementation of nanotechnology in several fields, such as detecting small

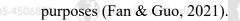
Nanomaterials are frequently used to develop nanosensors that are flexible, specific and sensitive. The uses of nanosensors are screening and measuring any changes related to a marker of interest and detecting important molecules. This is essential in clinical settings and industrial and environmental research development. Nanosensors are devices composed of nanoparticles and are capable of detecting signals at the nanoscale, including those generated by mechanical, electrochemical, or biological particles. The nanosensor specificity is transmitted by the targeting ligands.

A particular marker of interest is attracted, depending on the functionality of the ligand (Shah, 2020; Munawar et al., 2019).

Host-guest interaction contributes to the advancement of nanosensor materials. In the field of supramolecular interaction, a chemical complex is formed during hostguest interaction, composed of at least two molecules that are held together in a unique structure, acting as a host molecule accommodating a guest molecule. The supramolecular complexes formed via host-guest interaction have been utilised in numerous applications, including nanosensors and drug delivery systems (Wagner, 2020; Gontero et al., 2017).

Calixarenes are known as the frequently studied host system and are used as nanosensors (Shah, 2020). Calixarenes are cavity-shaped cyclic molecules made up of phenol units linked via alkylidene groups with a micellar interior, internal nanopore and nanocage. Recently, calixarenes and their derivatives have received much attention. This is due to the outstanding characteristics of calixarenes which are able to interact with ions and neutral species (Cera, Arduini, Secchi, Credi, & Silvi, 2021; Fan & Guo, 2021; Farzin, Shamsipur, Sheibani, Samandari, & Hatami, 2019; Sanabria Español, & Maldonado, 2019).

The simplicity of calixarenes' synthesis is an additional benefit. Calixarenes are consistently defined as macrocycles that possess remarkable potential owing to their exceptional characteristics, which encompass adaptability and practicality as host molecules. The ability to change the initial molecular structure of calixarenes enables the development of novel functionalities (Wagner, 2020; Baroncini, Silvi, & Credi,



2019; Iki & Miyano, 2001). In this context, calixarenes are easily functionalised at various sites on the upper and lower rims to construct vast modified three-dimensional structures. Furthermore, by modulating with appropriate groups, calixarenes are capable of self-assembly and may even assemble guest molecules into a variety of nanostructures. Moreover, calixarenes can form composite nanomaterials with both metals and non-metals. Multiple loading sites are provided by the calixarene-based associates for drugs (Fan & Guo, 2021).

Thus, through encapsulation and host-guest reactions, calixarene-based structures can be utilised to load drugs. Furthermore, calixarenes are a class of macrocyclic compounds that possess advantageous characteristics as drug carriers, such as low cytotoxicity and absence of hemolytic activity, which are crucial for safety

The guest molecule in this research, 4-aminobenzoic acid known as paraaminobenzoic acid (PABA) is a vitamin. PABA is an organic molecule with two functional groups, which are amine and carboxyl. It is involved in the production of folic acid in bacteria, which is essential in drug synthesis (Sowinska, 2019; Drozd, Arkhipov, Boldyreva, & Perlovich, 2018). Furthermore, PABA is found as a structure in drugs that have numerous uses, including antibacterial functions and therapeutic uses (Chan et al., 2020; Sawalha, 2018). As an essential nutrient for many human pathogens, research has been conducted due to its biological and pharmaceutical properties (Krátký et al., 2020). Besides, PABA is an ultraviolet light-blocking agent used in sunscreen creams due to its chemical structure (Ozcan, 2019). However, evidence is provided at the molecular level regarding the harmful effect of PABA if used as a sunscreen

ingredient. In simpler words, PABA causes DNA damage (Chan et al., 2020). Moreover, PABA has caused environmental pollution due to the constant release of PABA from personal care products into the aquatic environment (Khan et al., 2020; Tsoumachidou, Velegraki, & Poulios, 2016).

Since calixarenes are macrocyclic substances with excellent drug carrier properties, the use of calixarenes as a sensor to detect PABA is the focus of this research. The necessity of developing a PABA nanosensor is presented in the following section. The Langmuir behaviour, characterisation properties, and density functional theory (DFT) modelling of calixarenes and calixarene-PABA complexes were investigated in this study.

1.2 Research Motivation

Nanosensors must be easy to handle in different environmental situations, affordable, and sensitive. Therefore, many attractive prospects have remained to be exploited in this area (Munawar et al., 2019). Furthermore, the developments of calixarenes in several areas are already known, including sensors, molecular machines, transport agents and molecular reactors. This shows that the developments of calixarenes could be considerable optimism in the future (Buttress et al., 2016; Baklouti, 2007).

This research is motivated to study the Langmuir behaviour and DFT modelling of calixarenes in detecting PABA because of the unique properties of both calixarenes and PABA. Furthermore, the structural developments in calixarenes are acknowledged

(Sanabria Español & Maldonado, 2019). Previous research showed that calixarenes are attractive sensor materials for small molecule recognition. At the same time, an immense majority of calixarenes are investigated as sensing agents (Eddaif, Shaban, & Telegdi, 2019).

On the other hand, PABA, its unique properties, including pharmaceutical and biological properties, caused numerous scientific investigations to have been conducted for PABA as a drug (Drozd et al., 2018; Perillo & Atia, 2017). PABA is one of the main chemical ingredients contained in sunscreen products because of its potential power to absorb ultraviolet B (Singh, Čížková, Bišová, & Vítová, 2021). However, the sunscreen agent has become the common causative substance of photoallergic contact dermatitis (Snyder, Turrentine, & Cruz, 2019). The discovery of side effects caused by PABA is supported by various previous research, including photoallergic contact dermatitis, allergic contact dermatitis, and skin cancer (Nguyen & Yiannias, 2019; DeLeo, 2018; Gardner, 2014).

In the application of nanosensors, the information including the surface packing density, molecular orientation and stability is important to be determined. Concerning the use of the Langmuir technique, the way of interaction between molecules in the airwater interface could be studied. This technique is unique since the thin film fabrication of one molecule thickness can be done and their behaviour at the air-water interface can be investigated. The measurement of surface pressure (Π), mean molecular area (A_0) and surface potential (ΔV) can be studied to investigate the stability and conformation of the thin film (Paudyal et al., 2020).

Moreover, DFT is used to study the structural and electronic properties of atoms, molecules and solids based on their electron density (Margraf & Reuter, 2021; Ranjan, Kumar, Chakraborty, Sharma, & Sharma, 2020). The extraordinary discovery regarding DFT won Walter Kohn the Nobel Prize in 1998 (Kohn, 1999). Recently, the structure and properties of molecules have been studied by some researchers using DFT. For instance, the electrochemical property and total interaction energy of calix[4] arene derivatives with guest molecules were studied for different purposes (Sharma, Sharma, Worthington, Shah, & Shrivastav, 2020; Ortolan et al., 2018).

Since calixarenes are macrocyclic substances with good drug carrier properties, the use of calixarenes as a nanosensor to detect the drug, which is PABA in a low concentration, is motivated. The Langmuir behaviour and DFT modelling of calixarenes in detecting PABA were focused on. Besides, several characterisation techniques were also utilised to investigate the structure and composition of the calixarene-PABA host-guest complex. This research is believed to be headed in future to a drug nanosensor as an application, which is crucial for safety purposes, and beneficial in various fields.

1.3 Problem Statement

Developing chemical and biological species using sensors is a fundamental issue in contemporary research. The difficulties entail a variety of complexities, including the synthesis to thin layer deposition, surface analysis technologies, and the use of computer-based data and signal processing, as well as their corresponding graphical

representations (Bansal, Kumar, Karimi, Singh, & Kumar, 2020; Halay et al., 2019; McKervey, 1996). These are associated with the study conducted here.

Calixarenes have generated considerable attention, particularly in relation to the host-guest phenomenon, on account of their non-covalent capacity to ensnare guest molecules, such as ions and neutral molecules, as illustrated by the interactive structures adapted from Cambridge Crystallographic Data Centre (CCDC) in Figure 1.2 (Español & Villamil, 2019). Despite numerous previous research regarding macrocyclic calixarene, the sensing application of calixarenes is still a novel concept. On the other hand, the necessity of developing a PABA nanosensor is due to its role as a drug and its detrimental effect if used as a sunscreen ingredient (Chan et al., 2020; Sawalha, 2018). Besides, the development of a PABA nanosensor contribute to solving the 05-45068 environmental pollution caused by PABA in future. This development can be bupsi approached by studying the construction of novel calixarenes-PABA complexes.

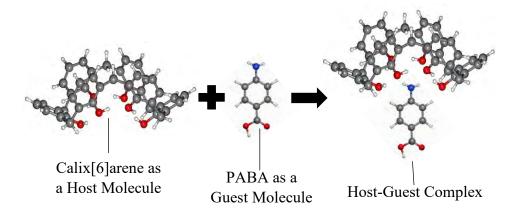


Figure 1.2. The Complexation Process of Calix[6]arene Macrocycle with PABA Molecule

The encapsulation of PABA by macrocyclic substances has been explored in previous research. For instance, the complexation phenomena of PABA with cyclodextrin had been investigated by Kossay (2013). Besides, the optical property and Langmuir behaviour of calix[4] arene and its PABA host-guest complex were studied (Abd Karim, Supian, Wong, & Musa, 2023; Abd Karim et al., 2023).

Despite previous research regarding the interaction between PABA and macrocyclic substances, there is a lack of investigation of the host-guest interaction in the formation of calixarene-PABA complexes. The studies of the host-guest interaction including the morphology, elemental composition, and the formation of bonding are essential. This is because the structural studies of calixarenes are important (Coletta et al., 2020). In addition, there is great potential to be obtained beyond the molecule 05-45068 consideration (Asfari et al., 2004). Furthermore, there are neither Langmuir bupsi investigation, morphological, elemental, optical, nor binding studies of PABA trapped by calix[6]arene. Therefore, further research regarding the host-guest phenomena of calixarene and PABA as host and guest molecules, respectively, in the aspects stated above would contribute to the application of calixarenes.

Furthermore, the reactivity and binding are significant in host-guest interaction (Petroselli, Chen, Rebek, & Yu, 2021). The reactivity and stability of complexes are indicated by band gap (E_g) and binding energy (ΔE) respectively. These studies can be carried out precisely by applying DFT as a computational study (Shi, Han, Chen, & Du, 2019; Shahabi & Raissi, 2018). DFT, in contrast to the experimental method, is a costeffective and efficient computational method for investigating diverse materials, including computing the E_g and ΔE (Lucatto, Assali, Pela, Marques, & Teles, 2017;

Wasim, Mahmood, & Ayub, 2016). Nevertheless, there is no E_g nor ΔE studies of calixarenes and PABA in detail, despite the fact that there are some previous studies on the calixarenes derivatives, as discussed in the coming chapter. This research was distinguished by its integration of laboratory and computational works, as opposed to the previously conducted studies in the ways of solitary laboratory or computation.

In this research, PABA was aimed to be detected since developing a PABA nanosensor is necessary. The most widely studied calixarenes, calix[4]arene (C4) and calix[6]arene (C6) were chosen as the sensing material because of their structural features, which made them ideal precursors for assembling with guest molecules (Ukhatskaya, Kurkov, Matthews, & Loftsson, 2013; Baklouti, 2007). Besides, 4sulfocalix[4] arene (SC4) was tested as well as a sensing material since its water-soluble property makes it an excellent host molecule for drug encapsulation (Fahmy et al., thupsi 2020). This research is believed to head towards a drug nanosensor development by using calixarenes to contribute to medicine and environmental benefits.

1.4 Research Objectives

This research was carried out with the following objectives.

To investigate the surface pressure-area $(\Pi - A)$ isotherm, surface potential-area $(\Delta V - A)$ isotherm, and effective dipole moment (μ_{\perp}) of calix[n]arene and calix[n]arene-PABA (n=4,6) using Langmuir technique.

- To fabricate the calix[n]arene and calix[n]arene-PABA (n=4,6) Langmuirii. Schaefer (LS) thin films.
- To characterise the morphologies, elemental compositions, optical properties, and chemical bonding of calix[n]arene-PABA LS films and compare them to calix[n]arene (n=4,6) using field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), carbon, hydrogen, nitrogen, sulphur elemental analyser (CHNS), ultraviolet-visible spectroscopy (UV-Vis), and Fourier transform infrared spectroscopy (FTIR).
- To determine the band gap (E_g) and binding energy (ΔE) of calix[n]arene and calix[n]arene-PABA (n=4,6) using density functional theory (DFT).
- To test the usability of a water-soluble calix[4] arene derivative, 4sulfocalix[4]arene (SC4) as PABA sensing material by studying their $\boldsymbol{E_g}$ and

1.5 Research Questions

- i. What is the behaviour pattern of calix[n] arene and calix[n] arene-PABA (n=4,6) in Π -A isotherm, ΔV -A isotherm, and μ_{\perp} using the Langmuir technique?
- How do the calix[n]arene and calix[n]arene-PABA (n=4,6) LS films be fabricated?
- How are the morphologies, elemental compositions, optical properties, and chemical bonding of calix[n]arene and calix[n]arene-PABA (n=4,6) LS films using FESEM, EDX, CHNS, UV-Vis, and FTIR?

- What are the significances of the E_g and complexes' ΔE of calix[n]arene (n=4,6) and calix[n]arene-PABA (n=4,6)?
- Is the 4-sulfocalix[4]arene suitable to be used as PABA sensing material?

1.6 Research Scope and Limitation

In this research consisting of experimental and computational parts, three types of calixarenes, calix[4]arene (C4), calix[6]arene (C6), and 4-sulfocalix[4]arene (SC4) were used. C4 and C6 were used primarily in the experimental and computational studies, whereas SC4 was used as an addition sensing material in UV-Vis and DFT studies.

In the experimental part, C4 and C6 were studied based on the Langmuir investigation. Based on previous studies, the stability and unique three-dimensional structure of C4 make it a particular interest in research (Lo & Wong, 2008). This was supported by Halay et al. (2019) regarding the numerous applications of C4 found in various fields including drug carriers. Furthermore, C4 is the most stable calixarene in its macrocyclic family (Lins et al., 2021). However, C6 with two extra aryl moieties is more flexible than C4 because of the enlargement of the structure (Becher & Schaumburg, 2013). By the way, the C6 was chosen as well to provide a larger cavity for the framework (Gutsche, 2007). SC4 was not used in the formation of Langmuir film due to its water-soluble properties. Unlike the amphiphilic C4 and C6, SC4 was unable to form Langmuir film at the air-water interface. Thus, the Langmuir technique is not suitable to be used for SC4 in the formation of a thin film. This is because the

amphiphilic property is essential for the application of the Langmuir technique (Ariga, 2020).

First, Langmuir techniques were applied to analyse Π -A isotherm, ΔV -A isotherm and μ_{\perp} calculation before the C4 and C6 were deposited onto the substrate using the LS technique. Then, the spreading volume of C4 and C6, and the concentration of PABA, were determined. After the deposition of LS film, the studies of morphology and elemental analysis of the deposited C4, C6, C4-PABA, and C6-PABA thin film samples were carried out by using characterisation techniques including FESEM, EDX, CHNS, UV-Vis, and FTIR. In addition, the characterisation of C4, C6, C4-PABA, and C6-PABA solutions was carried out using UV-Vis to study their host-guest interaction as well as E_g . The same UV-Vis study was carried out for SC4 and SC4-PABA solutions in order to compare the experimental results with the computational outcomes.

In the computational part, DFT calculation was carried out by inputting a crystallographic information file (CIF) obtained mainly from the Cambridge Crystallographic Data Centre (CCDC). Besides C4 and C6, the water-soluble SC4 was selected as the host molecule in the computational study as well due to its suitability as a drug carrier (Yuksel & Fellah, 2021). All of these calixarene members acted as sensing materials in this work, whereas the tested drug was PABA. The E_g of PABA, C4, C6, and SC4 was investigated. Furthermore, the ΔE of the novel C4-PABA, C6-PABA, and SC4-PABA complexes was also studied. The computational E_g was then compared to the experimental value.

1.7 Research Significance

This research is heading towards drug nanosensor development, using calixarenes for medicine and environmental benefits. There is excellent potential for developing calixarenes in sensing technology applications (Mei & Ahmad, 2021). Current research has been able to get closer to the development of sensors for the detection of drugs (Sosa-Hernández et al., 2018). Significant interest has been gained by the development of the detection of drugs. Therefore, the improvement of sensors should be carried out. This is not only for the development but also to ensure the safe use for the detection, especially those that are harmful. Furthermore, research in sensing systems for drugs brings numerous advantages and values in different fields (Lima et al., 2018). Thus, developing a sensor to detect drugs such as PABA even at a very low concentration is necessary. The development of PABA nanosensors is crucial since PABA is found as a structure in drugs that have numerous uses. At the same time, it brings detrimental effects if used as a sunscreen ingredient (Chan et al., 2020; Sawalha, 2018).

Langmuir method was applied in this research as it fabricated monolayer thin films of amphiphilic molecules at the air-water interface (Begletsova et al., 2020). Besides, the application of DFT as a new form of quantum mechanical consideration in this research to investigate the aspect of the electronic structure of molecules enhanced the findings of this research (Yu, Li, & Truhlar, 2016).

Despite the sensing of calixarenes' family having been studied by numerous researchers, the utility of calixarenes as a drug nanosensor is still considered a relatively novel concept. At the same time, the significance of developing a PABA sensor is

necessary as discussed above. Thus, the experimental and computational research of host-guest interaction between calixarenes' members and PABA is worth studying. The positive results of this research would be a good reference for future research regarding drug sensing development. Furthermore, the hybrid approaches with the combination of experimental and computational studies in this research would give new insight into PABA sensing development in the future. This is believed to head towards a drug nanosensor development by using calixarenes for contributing to medicine and environmental applications.

1.8 Thesis Organisation

Five chapters were presented in the thesis after completing the research. First, Chapter 1 introduced the nanotechnology and nanosensors related to calixarenes. Then, the roles of calixarenes and PABA as host molecules and drugs, respectively, were explained in the context of host-guest interaction. Overall, this chapter consisted of the background, motivation, problem statement, objectives, scope, limitation, and significance of this research.

Then, Chapter 2 presented the background of the calixarenes, PABA, Langmuir film, LS technique, and DFT related to this research in detail as the literature review. The working principle of each characterisation technique was discussed as well. All the information was based on previous research and studies. The information and knowledge referred to were studied and applied in this research.

Chapter 3 described the materials and methodology applied in carrying out this research. The methods were based on the previous experiments mentioned in the literature review according to the suitable experimental conditions. The details regarding the Langmuir investigation, experiment characterisation, and DFT study were stated. Each of the steps involved in the experiments and computation calculations was mentioned. The parameters were decided as well. Both the experimental and computational studies were related and discussed in Chapter 4.

Next, Chapter 4 presented the result and discussion after collecting the data. Π A isotherm, ΔV -A isotherm and μ_{\perp} calculation of C4, C6, C4-PABA, and C6-PABA
Langmuir films were presented and discussed. After the deposition of materials onto
the substrates using the LS technique, the morphology, elemental analysis, optical
property, and bonding formation of the deposited thin film sample carried out using
FESEM, EDX, CHNS, UV-Vis, and FTIR were investigated and presented.
Furthermore, the results of UV-Vis solution characterisation and DFT studies for C4,
C6, SC4, C4-PABA, C6-PABA, and SC4-PABA based on DFT were displayed. All of
the data was presented in the form of tables and graphs. The discussion for each finding
was explained holistically in Chapter 4.

Last but not least, Chapter 5 discussed the conclusion and recommendation of this research according to the results obtained from the experiment and computation works. This chapter concluded the whole research and discussed the recommendations for research related to the host-guest complexion of C4, C6, SC4, and PABA that might be carried out in future.

