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ABSTRACT 

 

This research aimed to study the detection of para-aminobenzoic acid (PABA) by 
calix[4]arene (C4) and calix[6]arene (C6) using the Langmuir technique and density 
functional theory (DFT). The necessity to develop a PABA nanosensor arises from the 
side effects associated with PABA. The Langmuir experiment followed by the 
Langmuir-Schaefer (LS) film deposition was carried out. Field emission scanning 
electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), carbon, 
hydrogen, nitrogen, sulphur elemental analyser (CHNS), ultraviolet-visible 
spectroscopy (UV-Vis), and Fourier transform infrared spectroscopy (FTIR) were used 
to characterise the LS films. DFT as a first-principle computational method was 
implemented to calculate the band gap (Eg) and binding energy (∆E) using Quantum 
ESPRESSO (QE). The Langmuir findings demonstrated the optimum sensing of PABA 
by C4 and C6 existed at the 1:1 host-guest ratio. The FESEM study confirmed the 
successful fabrication of C4, C6, C4-PABA, and C6-PABA LS films. Their 
morphologies, elemental composition, and optical properties denoted the formation of 
novel C4-PABA and C6-PABA complexes with promising reactivity. In congruence 
with the Langmuir study, the identification of N-H bonds within the complexes proved 
PABA binding at the lower rim of C4 and C6. The negative ∆E and the Eg reduction 
further revealed the capability of calixarenes to form stable 1:1 host-guest complexes 
with promising reactivity. Based on the additional UV-Vis and DFT investigations, the 
use of a water-soluble calix[4]arene derivative, 4-sulfocalix[4]arene (SC4) as PABA 
nanosensor is recommended for future studies. In conclusion, the experimental and 
DFT findings confirmed the sensing ability of C4 and C6 towards PABA. The higher 
stability exhibited by the C4-PABA complexes suggests the better sensing capability 
of C4 towards PABA compared to C6. This study implies that PABA detection could 
be implemented and applied in the development of PABA nanosensors for various 
applications, including medicinal and environmental uses. 
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KAJIAN LANGMUIR, LANGMUIR-SCHAEFER DAN PEMODELAN TEORI 

FUNGSI KETUMPATAN KALIKS[N]ARINA DAN KALIKS[N]ARINA-PABA 

UNTUK APLIKASI NANOPENDERIAAN DADAH 

 

ABSTRAK 

 

Penyelidikan ini bertujuan untuk mengkaji pengesanan asid para-aminobenzoik 
(PABA) oleh kaliks[4]arina (C4) dan kaliks[6]arina (C6) menggunakan teknik 
Langmuir dan teori fungsi ketumpatan (DFT). Pembinaan nanopenderia PABA 
diperlukan kerana terdapat kesan sampingan yang dibawa oleh PABA. Ujikaji 
Langmuir diikuti dengan pembentukan filem Langmuir-Schaefer (LS) telah dijalankan. 
Mikroskop pengimbasan elektron pancaran medan (FESEM), spektroskopi sinar-X 
penyebaran tenaga (EDX), penganalisis unsur karbon, hidrogen, nitrogen, sulfur 
(CHNS), spektroskopi ultraungu-tampak (UV-Vis), dan spektroskopi inframerah 
transformasi Fourier (FTIR) telah digunakan untuk mencirikan filem LS. DFT sebagai 
kaedah pengiraan prinsip pertama telah dilaksanakan untuk mengira jurang jalur (Eg) 
dan tenaga pengikat (∆E) dengan menggunakan perisian Quantum ESPRESSO (QE). 
Dapatan Langmuir menunjukkan pengesanan optimum PABA oleh C4 dan C6 adalah 
wujud pada nisbah hos-tetamu 1:1. Berdasarkan kajian FESEM, pembentukan filem LS 
C4, C6, C4-PABA, dan C6-PABA adalah berjaya. Morfologi, komposisi unsur, dan 
sifat optik yang didapati telah menunjukkan pembentukan kompleks C4-PABA dan C6-
PABA baharu secara kualitatif dengan kereaktifan yang baik. Pengenalpastian ikatan 
N-H baharu dalam kompleks telah membuktikan pembentukan C4-PABA dan C6-
PABA dengan pengikatan PABA melalui rim bawah yang selaras dengan kajian 
Langmuir. ∆E  yang negatif dan pengurangan Eg  telah menunjukkan kemampuan 
kaliksarina untuk membentuk kompleks hos-tetamu yang stabil pada nisbah 1:1 dengan 
kereaktifan yang baik. Berdasarkan eksperimen UV-Vis dan pengiraan DFT tambahan, 
penggunaan terbitan kaliks[4]arina yang bersifat larut dalam air, 4-sulfokaliks[4]arina 
(SC4) sebagai nanopenderia PABA dicadangkan untuk kajian akan datang. 
Kesimpulannya, dapatan kajian ujikaji dan DFT telah mengesahkan keupayaan C4 dan 
C6 dalam pengesanan PABA. Kestabilan yang lebih tinggi telah ditunjukkan oleh 
kompleks C4-PABA. Hal ini menunjukkan keupayaan pengesanan lebih baik C4 dalam 
pengesanan PABA berbanding dengan C6. Kajian ini memberi implikasi bahawa 
pengesanan PABA boleh diusahakan dan diaplikasikan dalam pembangunan 
nanopenderia PABA untuk pelbagai aplikasi, termasuk kegunaan perubatan dan alam 
sekitar. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

This research is based on the implementation of nanotechnology and the use of 

nanomaterials for drug nanosensor application via thin film fabrication. 

Nanotechnology is a field of the manipulation of individual atoms and molecules with 

the means provided to fabricate particular and sensitive platforms (Munawar et al., 

2019). The utilisation of nanomaterials on the order of 1-100 nm has garnered a growing 

amount of attention over the past decade due to their wide range of applications in 

several fields as illustrated in Figure 1.1, that are employed in commonplace products. 

The use of nanomaterials reforms methods in several sectors, making them easier, safer, 

more affordable, and transportable (Titus, Samuel, & Roopan, 2019). 
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Figure 1.1. The Applications of Nanomaterials. Adapted from “Nanoparticle 
Characterization Techniques, by Titus, Samuel, and Roopan, 2019, Green Synthesis, 
Characterization and Applications of Nanoparticles. Copyright 2019 by Elsevier” 

 

The implementation of nanotechnology in several fields, such as detecting small 

molecules, targeting drugs, and the fabrication and characterisation of nanomaterials 

have received notice in recent years. The distinctive properties of nanomaterials are 

also applied for sensing purposes. The sensitivity of nanosensors can be utilised in a 

variety of contexts, including environmental and industrial applications, as well as 

earlier detection of sickness, and toxins (Munawar et al., 2019).  

 

Nanomaterials are frequently used to develop nanosensors that are flexible, 

specific and sensitive. The uses of nanosensors are screening and measuring any 

changes related to a marker of interest and detecting important molecules. This is 

essential in clinical settings and industrial and environmental research development. 

Nanosensors are devices composed of nanoparticles and are capable of detecting signals 

at the nanoscale, including those generated by mechanical, electrochemical, or 

biological particles. The nanosensor specificity is transmitted by the targeting ligands. 
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A particular marker of interest is attracted, depending on the functionality of the ligand 

(Shah, 2020; Munawar et al., 2019).  

 

Host-guest interaction contributes to the advancement of nanosensor materials. 

In the field of supramolecular interaction, a chemical complex is formed during host-

guest interaction, composed of at least two molecules that are held together in a unique 

structure, acting as a host molecule accommodating a guest molecule. The 

supramolecular complexes formed via host-guest interaction have been utilised in 

numerous applications, including nanosensors and drug delivery systems (Wagner, 

2020; Gontero et al., 2017). 

 

Calixarenes are known as the frequently studied host system and are used as 

nanosensors (Shah, 2020). Calixarenes are cavity-shaped cyclic molecules made up of 

phenol units linked via alkylidene groups with a micellar interior, internal nanopore and 

nanocage. Recently, calixarenes and their derivatives have received much attention. 

This is due to the outstanding characteristics of calixarenes which are able to interact 

with ions and neutral species (Cera, Arduini, Secchi, Credi, & Silvi, 2021; Fan & Guo, 

2021; Farzin, Shamsipur, Sheibani, Samandari, & Hatami, 2019; Sanabria Español, & 

Maldonado, 2019). 

 

The simplicity of calixarenes' synthesis is an additional benefit. Calixarenes are 

consistently defined as macrocycles that possess remarkable potential owing to their 

exceptional characteristics, which encompass adaptability and practicality as host 

molecules. The ability to change the initial molecular structure of calixarenes enables 

the development of novel functionalities (Wagner, 2020; Baroncini, Silvi, & Credi, 
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2019; Iki & Miyano, 2001). In this context, calixarenes are easily functionalised at 

various sites on the upper and lower rims to construct vast modified three-dimensional 

structures. Furthermore, by modulating with appropriate groups, calixarenes are 

capable of self-assembly and may even assemble guest molecules into a variety of 

nanostructures. Moreover, calixarenes can form composite nanomaterials with both 

metals and non-metals. Multiple loading sites are provided by the calixarene-based 

associates for drugs (Fan & Guo, 2021). 

 

Thus, through encapsulation and host-guest reactions, calixarene-based 

structures can be utilised to load drugs. Furthermore, calixarenes are a class of 

macrocyclic compounds that possess advantageous characteristics as drug carriers, such 

as low cytotoxicity and absence of hemolytic activity, which are crucial for safety 

purposes (Fan & Guo, 2021). 

 

The guest molecule in this research, 4-aminobenzoic acid known as para-

aminobenzoic acid (PABA) is a vitamin. PABA is an organic molecule with two 

functional groups, which are amine and carboxyl. It is involved in the production of 

folic acid in bacteria, which is essential in drug synthesis (Sowinska, 2019; Drozd, 

Arkhipov, Boldyreva, & Perlovich, 2018). Furthermore, PABA is found as a structure 

in drugs that have numerous uses, including antibacterial functions and therapeutic uses 

(Chan et al., 2020; Sawalha, 2018). As an essential nutrient for many human pathogens, 

research has been conducted due to its biological and pharmaceutical properties (Krátký 

et al., 2020). Besides, PABA is an ultraviolet light-blocking agent used in sunscreen 

creams due to its chemical structure (Ozcan, 2019). However, evidence is provided at 

the molecular level regarding the harmful effect of PABA if used as a sunscreen 
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ingredient. In simpler words, PABA causes DNA damage (Chan et al., 2020). Moreover, 

PABA has caused environmental pollution due to the constant release of PABA from 

personal care products into the aquatic environment (Khan et al., 2020; Tsoumachidou, 

Velegraki, & Poulios, 2016). 

 

Since calixarenes are macrocyclic substances with excellent drug carrier 

properties, the use of calixarenes as a sensor to detect PABA is the focus of this research. 

The necessity of developing a PABA nanosensor is presented in the following section. 

The Langmuir behaviour, characterisation properties, and density functional theory 

(DFT) modelling of calixarenes and calixarene-PABA complexes were investigated in 

this study.  

 

 

1.2 Research Motivation 

 

Nanosensors must be easy to handle in different environmental situations, affordable, 

and sensitive. Therefore, many attractive prospects have remained to be exploited in 

this area (Munawar et al., 2019). Furthermore, the developments of calixarenes in 

several areas are already known, including sensors, molecular machines, transport 

agents and molecular reactors. This shows that the developments of calixarenes could 

be considerable optimism in the future (Buttress et al., 2016; Baklouti, 2007). 

 

This research is motivated to study the Langmuir behaviour and DFT modelling 

of calixarenes in detecting PABA because of the unique properties of both calixarenes 

and PABA. Furthermore, the structural developments in calixarenes are acknowledged 
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(Sanabria Español & Maldonado, 2019). Previous research showed that calixarenes are 

attractive sensor materials for small molecule recognition. At the same time, an 

immense majority of calixarenes are investigated as sensing agents (Eddaif, Shaban, & 

Telegdi, 2019).  

 

On the other hand, PABA, its unique properties, including pharmaceutical and 

biological properties, caused numerous scientific investigations to have been conducted 

for PABA as a drug (Drozd et al., 2018; Perillo & Atia, 2017). PABA is one of the main 

chemical ingredients contained in sunscreen products because of its potential power to 

absorb ultraviolet B (Singh, Čížková, Bišová, & Vítová, 2021). However, the sunscreen 

agent has become the common causative substance of photoallergic contact dermatitis 

(Snyder, Turrentine, & Cruz, 2019). The discovery of side effects caused by PABA is 

supported by various previous research, including photoallergic contact dermatitis, 

allergic contact dermatitis, and skin cancer (Nguyen & Yiannias, 2019; DeLeo, 2018; 

Gardner, 2014). 

 

In the application of nanosensors, the information including the surface packing 

density, molecular orientation and stability is important to be determined. Concerning 

the use of the Langmuir technique, the way of interaction between molecules in the air-

water interface could be studied. This technique is unique since the thin film fabrication 

of one molecule thickness can be done and their behaviour at the air-water interface can 

be investigated. The measurement of surface pressure (Π), mean molecular area (𝐴0) 

and surface potential (∆𝑉) can be studied to investigate the stability and conformation 

of the thin film (Paudyal et al., 2020). 
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Moreover, DFT is used to study the structural and electronic properties of atoms, 

molecules and solids based on their electron density (Margraf & Reuter, 2021; Ranjan, 

Kumar, Chakraborty, Sharma, & Sharma, 2020). The extraordinary discovery regarding 

DFT won Walter Kohn the Nobel Prize in 1998 (Kohn, 1999). Recently, the structure 

and properties of molecules have been studied by some researchers using DFT. For 

instance, the electrochemical property and total interaction energy of calix[4]arene 

derivatives with guest molecules were studied for different purposes (Sharma, Sharma, 

Worthington, Shah, & Shrivastav, 2020; Ortolan et al., 2018). 

 

Since calixarenes are macrocyclic substances with good drug carrier properties, 

the use of calixarenes as a nanosensor to detect the drug, which is PABA in a low 

concentration, is motivated. The Langmuir behaviour and DFT modelling of 

calixarenes in detecting PABA were focused on. Besides, several characterisation 

techniques were also utilised to investigate the structure and composition of the 

calixarene-PABA host-guest complex. This research is believed to be headed in future 

to a drug nanosensor as an application, which is crucial for safety purposes, and 

beneficial in various fields. 

 

 

1.3 Problem Statement 

 

Developing chemical and biological species using sensors is a fundamental issue in 

contemporary research. The difficulties entail a variety of complexities, including the 

synthesis to thin layer deposition, surface analysis technologies, and the use of 

computer-based data and signal processing, as well as their corresponding graphical 
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representations (Bansal, Kumar, Karimi, Singh, & Kumar, 2020; Halay et al., 2019; 

McKervey, 1996). These are associated with the study conducted here.  

 

Calixarenes have generated considerable attention, particularly in relation to the 

host-guest phenomenon, on account of their non-covalent capacity to ensnare guest 

molecules, such as ions and neutral molecules, as illustrated by the interactive structures 

adapted from Cambridge Crystallographic Data Centre (CCDC) in Figure 1.2 (Español 

& Villamil, 2019). Despite numerous previous research regarding macrocyclic 

calixarene, the sensing application of calixarenes is still a novel concept. On the other 

hand, the necessity of developing a PABA nanosensor is due to its role as a drug and 

its detrimental effect if used as a sunscreen ingredient (Chan et al., 2020; Sawalha, 

2018). Besides, the development of a PABA nanosensor contribute to solving the 

environmental pollution caused by PABA in future. This development can be 

approached by studying the construction of novel calixarenes-PABA complexes.  

 

 

Figure 1.2. The Complexation Process of Calix[6]arene Macrocycle with PABA 
Molecule 

 

Calix[6]arene as 
a Host Molecule PABA as a 

Guest Molecule Host-Guest Complex 
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The encapsulation of PABA by macrocyclic substances has been explored in 

previous research. For instance, the complexation phenomena of PABA with 

cyclodextrin had been investigated by Kossay (2013). Besides, the optical property and 

Langmuir behaviour of calix[4]arene and its PABA host-guest complex were studied 

(Abd Karim, Supian, Wong, & Musa, 2023; Abd Karim et al., 2023). 

 

Despite previous research regarding the interaction between PABA and 

macrocyclic substances, there is a lack of investigation of the host-guest interaction in 

the formation of calixarene-PABA complexes. The studies of the host-guest interaction 

including the morphology, elemental composition, and the formation of bonding are 

essential. This is because the structural studies of calixarenes are important (Coletta et 

al., 2020). In addition, there is great potential to be obtained beyond the molecule 

consideration (Asfari et al., 2004). Furthermore, there are neither Langmuir 

investigation, morphological, elemental, optical, nor binding studies of PABA trapped 

by calix[6]arene. Therefore, further research regarding the host-guest phenomena of 

calixarene and PABA as host and guest molecules, respectively, in the aspects stated 

above would contribute to the application of calixarenes. 

 

Furthermore, the reactivity and binding are significant in host-guest interaction 

(Petroselli, Chen, Rebek, & Yu, 2021). The reactivity and stability of complexes are 

indicated by band gap (Eg) and binding energy (∆E) respectively. These studies can be 

carried out precisely by applying DFT as a computational study (Shi, Han, Chen, & Du, 

2019; Shahabi & Raissi, 2018). DFT, in contrast to the experimental method, is a cost-

effective and efficient computational method for investigating diverse materials, 

including computing the Eg and ∆E (Lucatto, Assali, Pela, Marques, & Teles, 2017; 
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Wasim, Mahmood, & Ayub, 2016). Nevertheless, there is no Eg  nor ∆E studies of 

calixarenes and PABA in detail, despite the fact that there are some previous studies on 

the calixarenes derivatives, as discussed in the coming chapter. This research was 

distinguished by its integration of laboratory and computational works, as opposed to 

the previously conducted studies in the ways of solitary laboratory or computation. 

 

In this research, PABA was aimed to be detected since developing a PABA 

nanosensor is necessary. The most widely studied calixarenes, calix[4]arene (C4) and 

calix[6]arene (C6) were chosen as the sensing material because of their structural 

features, which made them ideal precursors for assembling with guest molecules 

(Ukhatskaya, Kurkov, Matthews, & Loftsson, 2013; Baklouti, 2007). Besides, 4-

sulfocalix[4]arene (SC4) was tested as well as a sensing material since its water-soluble 

property makes it an excellent host molecule for drug encapsulation (Fahmy et al., 

2020). This research is believed to head towards a drug nanosensor development by 

using calixarenes to contribute to medicine and environmental benefits.  

 

 

1.4 Research Objectives 

 

This research was carried out with the following objectives. 

 

i. To investigate the surface pressure-area (Π-𝐴) isotherm, surface potential-area 

(∆𝑉 -𝐴 ) isotherm, and effective dipole moment (𝜇⊥ ) of calix[n]arene and 

calix[n]arene-PABA (n=4,6) using Langmuir technique.  
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ii. To fabricate the calix[n]arene and calix[n]arene-PABA (n=4,6) Langmuir-

Schaefer (LS) thin films. 

iii. To characterise the morphologies, elemental compositions, optical properties, 

and chemical bonding of calix[n]arene-PABA LS films and compare them to 

calix[n]arene (n=4,6) using field emission scanning electron microscope 

(FESEM), energy dispersive X-ray spectroscopy (EDX), carbon, hydrogen, 

nitrogen, sulphur elemental analyser (CHNS), ultraviolet-visible spectroscopy 

(UV-Vis), and Fourier transform infrared spectroscopy (FTIR). 

iv. To determine the band gap (Eg) and binding energy (∆E) of calix[n]arene and 

calix[n]arene-PABA (n=4,6) using density functional theory (DFT). 

v. To test the usability of a water-soluble calix[4]arene derivative, 4-

sulfocalix[4]arene (SC4) as PABA sensing material by studying their Eg and 

∆E. 

 

 

1.5 Research Questions 

 

i. What is the behaviour pattern of calix[n]arene and calix[n]arene-PABA (n=4,6) 

in Π-𝐴 isotherm, ∆𝑉-𝐴 isotherm, and 𝜇⊥ using the Langmuir technique?  

ii. How do the calix[n]arene and calix[n]arene-PABA (n=4,6) LS films be 

fabricated? 

iii. How are the morphologies, elemental compositions, optical properties, and 

chemical bonding of calix[n]arene and calix[n]arene-PABA (n=4,6) LS films 

using FESEM, EDX, CHNS, UV-Vis, and FTIR? 
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iv. What are the significances of the Eg  and complexes’ ∆E  of calix[n]arene 

(n=4,6) and calix[n]arene-PABA (n=4,6)?  

v. Is the 4-sulfocalix[4]arene suitable to be used as PABA sensing material? 

 

 

1.6 Research Scope and Limitation 

 

In this research consisting of experimental and computational parts, three types of 

calixarenes, calix[4]arene (C4), calix[6]arene (C6), and 4-sulfocalix[4]arene (SC4) 

were used. C4 and C6 were used primarily in the experimental and computational 

studies, whereas SC4 was used as an addition sensing material in UV-Vis and DFT 

studies. 

 

In the experimental part, C4 and C6 were studied based on the Langmuir 

investigation. Based on previous studies, the stability and unique three-dimensional 

structure of C4 make it a particular interest in research (Lo & Wong, 2008). This was 

supported by Halay et al. (2019) regarding the numerous applications of C4 found in 

various fields including drug carriers. Furthermore, C4 is the most stable calixarene in 

its macrocyclic family (Lins et al., 2021). However, C6 with two extra aryl moieties is 

more flexible than C4 because of the enlargement of the structure (Becher & 

Schaumburg, 2013). By the way, the C6 was chosen as well to provide a larger cavity 

for the framework (Gutsche, 2007). SC4 was not used in the formation of Langmuir 

film due to its water-soluble properties. Unlike the amphiphilic C4 and C6, SC4 was 

unable to form Langmuir film at the air-water interface. Thus, the Langmuir technique 

is not suitable to be used for SC4 in the formation of a thin film. This is because the 
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amphiphilic property is essential for the application of the Langmuir technique (Ariga, 

2020).  

 

First, Langmuir techniques were applied to analyse Π -𝐴  isotherm, ∆𝑉 -𝐴 

isotherm and 𝜇⊥ calculation before the C4 and C6 were deposited onto the substrate 

using the LS technique. Then, the spreading volume of C4 and C6, and the 

concentration of PABA, were determined. After the deposition of LS film, the studies 

of morphology and elemental analysis of the deposited C4, C6, C4-PABA, and C6-

PABA thin film samples were carried out by using characterisation techniques 

including FESEM, EDX, CHNS, UV-Vis, and FTIR. In addition, the characterisation 

of C4, C6, C4-PABA, and C6-PABA solutions was carried out using UV-Vis to study 

their host-guest interaction as well as Eg. The same UV-Vis study was carried out for 

SC4 and SC4-PABA solutions in order to compare the experimental results with the 

computational outcomes. 

 

In the computational part, DFT calculation was carried out by inputting a 

crystallographic information file (CIF) obtained mainly from the Cambridge 

Crystallographic Data Centre (CCDC). Besides C4 and C6, the water-soluble SC4 was 

selected as the host molecule in the computational study as well due to its suitability as 

a drug carrier (Yuksel & Fellah, 2021). All of these calixarene members acted as 

sensing materials in this work, whereas the tested drug was PABA. The Eg of PABA, 

C4, C6, and SC4 was investigated. Furthermore, the ∆E of the novel C4-PABA, C6-

PABA, and SC4-PABA complexes was also studied. The computational Eg was then 

compared to the experimental value.  
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1.7 Research Significance 

 

This research is heading towards drug nanosensor development, using calixarenes for 

medicine and environmental benefits. There is excellent potential for developing 

calixarenes in sensing technology applications (Mei & Ahmad, 2021). Current research 

has been able to get closer to the development of sensors for the detection of drugs 

(Sosa-Hernández et al., 2018). Significant interest has been gained by the development 

of the detection of drugs. Therefore, the improvement of sensors should be carried out. 

This is not only for the development but also to ensure the safe use for the detection, 

especially those that are harmful. Furthermore, research in sensing systems for drugs 

brings numerous advantages and values in different fields (Lima et al., 2018). Thus, 

developing a sensor to detect drugs such as PABA even at a very low concentration is 

necessary. The development of PABA nanosensors is crucial since PABA is found as 

a structure in drugs that have numerous uses. At the same time, it brings detrimental 

effects if used as a sunscreen ingredient (Chan et al., 2020; Sawalha, 2018).  

 

Langmuir method was applied in this research as it fabricated monolayer thin 

films of amphiphilic molecules at the air-water interface (Begletsova et al., 2020). 

Besides, the application of DFT as a new form of quantum mechanical consideration in 

this research to investigate the aspect of the electronic structure of molecules enhanced 

the findings of this research (Yu, Li, & Truhlar, 2016).  

 

Despite the sensing of calixarenes’ family having been studied by numerous 

researchers, the utility of calixarenes as a drug nanosensor is still considered a relatively 

novel concept. At the same time, the significance of developing a PABA sensor is 
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necessary as discussed above. Thus, the experimental and computational research of 

host-guest interaction between calixarenes’ members and PABA is worth studying. The 

positive results of this research would be a good reference for future research regarding 

drug sensing development. Furthermore, the hybrid approaches with the combination 

of experimental and computational studies in this research would give new insight into 

PABA sensing development in the future. This is believed to head towards a drug 

nanosensor development by using calixarenes for contributing to medicine and 

environmental applications.  

 

 

1.8 Thesis Organisation 

 

Five chapters were presented in the thesis after completing the research. First, Chapter 

1 introduced the nanotechnology and nanosensors related to calixarenes. Then, the roles 

of calixarenes and PABA as host molecules and drugs, respectively, were explained in 

the context of host-guest interaction. Overall, this chapter consisted of the background, 

motivation, problem statement, objectives, scope, limitation, and significance of this 

research.   

 

Then, Chapter 2 presented the background of the calixarenes, PABA, Langmuir 

film, LS technique, and DFT related to this research in detail as the literature review. 

The working principle of each characterisation technique was discussed as well. All the 

information was based on previous research and studies. The information and 

knowledge referred to were studied and applied in this research.  
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Chapter 3 described the materials and methodology applied in carrying out this 

research. The methods were based on the previous experiments mentioned in the 

literature review according to the suitable experimental conditions. The details 

regarding the Langmuir investigation, experiment characterisation, and DFT study 

were stated. Each of the steps involved in the experiments and computation calculations 

was mentioned. The parameters were decided as well. Both the experimental and 

computational studies were related and discussed in Chapter 4.  

 

Next, Chapter 4 presented the result and discussion after collecting the data. Π-

𝐴 isotherm, ∆𝑉-𝐴 isotherm and 𝜇⊥ calculation of C4, C6, C4-PABA, and C6-PABA 

Langmuir films were presented and discussed. After the deposition of materials onto 

the substrates using the LS technique, the morphology, elemental analysis, optical 

property, and bonding formation of the deposited thin film sample carried out using 

FESEM, EDX, CHNS, UV-Vis, and FTIR were investigated and presented. 

Furthermore, the results of UV-Vis solution characterisation and DFT studies for C4, 

C6, SC4, C4-PABA, C6-PABA, and SC4-PABA based on DFT were displayed. All of 

the data was presented in the form of tables and graphs. The discussion for each finding 

was explained holistically in Chapter 4. 

 

Last but not least, Chapter 5 discussed the conclusion and recommendation of 

this research according to the results obtained from the experiment and computation 

works. This chapter concluded the whole research and discussed the recommendations 

for research related to the host-guest complexion of C4, C6, SC4, and PABA that might 

be carried out in future.  

  




