

FABRICATION OF GRAPHENE OXIDE-BASED MEMBRANE AND DURIAN SHELL-BASED ACTIVATED CARBON FOR WATER TREATMENT APPLICATION

ROSMANISAH MOHAMAT

UNIVERSITI PENDIDIKAN SULTAN IDRIS 2020

FABRICATION OF GRAPHENE OXIDE-BASED MEMBRANE AND DURIAN SHELL-BASED ACTIVATED CARBON FOR WATER TREATMENT APPLICATION

ROSMANISAH MOHAMAT

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE (PHYSICS) (RESEARCH MODE)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS 2020

UPSI/IPS-3/BO 32 Pind: 00 m/s: 1/1

Please tick (√) Project Paper Masters by Research Master by Mixed Mode PhD

INSTITUTE OF GRADUATE STUDIES

DECLARATION OF ORIGINAL WORK

This declaration	is made	on the	day	of Jul	120.20.
------------------	---------	--------	-----	--------	---------

Student's Declaration:

I, ROSMA	INISAH BINTI MOHAMAT	(PL	EASE
INDICATE S'	TUDENT'S NAME, MATRIC NO. AND FACULTY) hereby declare that	t the	work
entitled	FABRICATION OF GRAPHENE ONIDE - BASED MEMBRANE AND DURIAN SHELL	- BASEI	0
ACTIVATED CA	RBON FOR WATER TREATMENT APPLICATION	is	my
original work	LI have not copied from any other students' work or from any other sou	rces ex	kcept
where due r	reference or acknowledgement is made explicitly in the text, nor has an	y part	been
written for m	e by another person.		
ustaka.up p i.e			

Signature of the student

Supervisor's Declaration:

PROF. DR. SURIANI BINTI ABU BAKAR (SUPER	VISOR'S NAME) hereby certifies that
the work entitled FABRICATION OF GRAPHENE OXIDE - B	ASED MEMBRANE AND DURIAN
SHELL - BASED ACTIVATED CARBON FOR WATER TREATMEN	IT APPLICATION
(TITLE) was prepared by	the above named student, and was
submitted to the Institute of Graduate Studies as a * parti-	al/full fulfillment for the conferment
of MASTER OF SCIENCE (PHYSICS)	(PLEASE INDICATE
THE DEGREE), and the aforementioned work, to the best of	of my knowledge, is the said student's
work.	

14 JULY 2020

Date

Signature of the Supervisor

PROFESOR DR. SURIONI ABU BAKAR Timbalan Naib Canselor (Penyelidikan dan Inovasi) Universiti Pendidikan Sultan Idris 35900 Tanjong Malim Perak Darul Ridzuan

UPSI/IPS-3/BO 31 Pind.: 01 m/s:1/1

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / Title:	FABRICATION OF GRAPHENE OXIDE - BASED MEMBRANE AND DURIAN
	SHELL - BASED ACTIVATED CARBON FOR WATER TREATMENT APPLICATION
No. Matrik /Matric No.:	M 2018 1001454
Saya / / :	ROSMANISAH BINTI MOHAMAT
	(Nama pelajar / Student's Name)

mengaku membenarkan Tesis/Disertasi/Laporan Kertas Projek (Kedoktoran/Sarjana)* ini disimpan di Universiti Pendidikan Sultan Idris (Perpustakaan Tuanku Bainun) dengan syarat-syarat kegunaan seperti berikut:acknowledged that Universiti Pendidikan Sultan Idris (Tuanku Bainun Library) reserves the right as follows:-

- 1. Tesis/Disertasi/Laporan Kertas Projek ini adalah hak milik UPSI. The thesis is the property of Universiti Pendidikan Sultan Idris
- Perpustakaan Tuanku Bainun dibenarkan membuat salinan untuk tujuan rujukan dan penyelidikan. Tuanku Bainun Library has the right to make copies for the purpose of reference and research.
- 3. Perpustakaan dibenarkan membuat salinan Tesis/Disertasi ini sebagai bahan pertukaran antara Institusi Pengajian Tinggi. The Library has the right to make copies of the thesis for academic exchange.
- Sila tandakan (√) bagi pilihan kategori di bawah / Please tick (√) from the categories below:-

SULIT/CONFIDENTIAL	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. I Contains confidential information under the Official Secret Act 1972
TERHAD/RESTRICTED	Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan. / Contains
	restricted information as specified by the organization where research was done.
TIDAK TERHAD / OPEN AC	CESS

(Tandatangan Pelajar/ Signature)

Tarikh: 14/07/2020

(Tandatangan Penyelia / Signature of Supervisor) & (Nama & Cop Rasmi / Name & Official Stamp)
PROFESOR DR. SURLANT ABU BAKAR
Timbalan Naib Canselor (Penyelidikan dan Inovasi)
Universiti Pendidikan Sultan Idris

35900 Tanjong Malim Perak Darul Ridzuan

Catatan: Jika Tesis/Disertasi ini SULIT @ TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai SULIT dan TERHAD.

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the related authority/organization mentioning the period of confidentiality and reasons for the said confidentiality or restriction.

ACKNOWLEDGEMENTS

All praises and glories to Almighty Allah (SWT) who had bestowed me courage and patience upholding this work. I would like to express my appreciation and immense gratitude to my supervisor Prof. Dr. Suriani Abu Bakar for the continuous support of my study and research, for her patience, motivation, enthusiasm and immense knowledge. Her guidance helped me a lot to develop my skill as well as my interest toward research. Besides my supervisor, I would like to thank my co-supervisor, Assoc. Prof. Dr. Azlan Kamari and Assoc. Prof. Dr. Azmi Mohamed from Chemistry Department, UPSI for their assistance, advice, support, and help me a lot by allowed me to use their laboratory equipment.

My sincere thanks to Dr. Rosiah Rohani and her student, Izzati Izni Yusoff, from Universiti Kebangsaan Malaysia (UKM) for letting me use their laboratory equipment and help me on my project. I would like to express my gratitude to all the staffs of Faculty Science and Mathematics, UPSI for their assistance. I would also express my appreciation to TWAS-COMSTECH Joint Research Grand and Fundamental Research Grand Scheme for financial support on my research.

My appreciation for my lab mates and friends: Dr. Muqoyyanah, Dr. Khayri Zaid Z Al-Zalit, Dr Ali Abdul Ameer Mohammed Al-Saadi, Nur Jannah Idris, and Nur Amira Jamaluddin for the help, comments, and stimulating discussions during my study.

Last but not least, I would like to thank to my family, especially my parent who always supporting, give me courage and always believe on me. Without their help, support, and love, I am nobody. May Allah S.W.T repay all your kindness and bless us always.

ABSTRACT

This study aimed to fabricate polyvinylidene fluoride (PVDF)/graphene oxide (GO)/titanium dioxide (TiO₂)-based nanofiltration (NF) membrane and durian shell based-activated carbon (DAC) for water treatment application. The electrochemical exfoliation assisted by customized double-tail sodium bis(3,5,5-trimethyl-1-hexyl) sulphosuccinate (AOT4) and triple-tail sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulphonate (TC14) surfactants were used to synthesize GO with N, N-dimethylacetamide (DMAc) as solvent. The fabrication of PVDF/GO/TiO2-based NF membrane was done via non-solvent induced phase separation method by utilizing DMAc_GO based and TiO2 as an additives and also PVDF as a main polymer material. On the other hand, durian shell was used to produce DAC by utilizing sulphuric acid as an activator agent via chemical activation method. The NF membrane samples via dead-end cell measurement as membrane separation were used for methylene blue (MB) dye rejection. Meanwhile, the DAC samples via adsorption process as adsorbent were then used for MB dye removal. The findings showed the PVDF/TC14-GO/TiO2 NF membrane presented the highest dye flux (98.539 L/m²h) and dye rejection efficiency (92.61%) as compared to PVDF/AOT4-GO/TiO₂ membrane. This was due to the higher surfactants' tail number improved the fabricated membrane performance. The DAC sample showed the maximum adsorption percentage (92.05%) by utilizing 0.6 g DAC dosage, 10 ppm initial MB concentration and 15 minutes contact time. In conclusion, the fabricated PVDF/TC14-GO/TiO2 and durian shell provided a potential to be applied as NF membrane material and activated carbon, respectively. Implication of this study is a novel, simpler, low-cost and greener for the PVDF/GO/TiO2 NF membrane fabrication and activated carbon from durian shell production.

FABRIKASI MEMBRAN BERASASKAN GRAFIN OKSIDA DAN KARBON DIAKTIFKAN BERASASKAN KULIT DURIAN UNTUK APLIKASI RAWATAN AIR

ABSTRAK

Kajian ini bertujuan memfabrikasi membran penapisan nano (PN) berasaskan polivinilidin florida (PVDF)/grafin oksida (GO)/titanium dioksida (TiO₂) dan karbon diaktifkan berasaskan kulit durian (KBD) untuk aplikasi rawatan air. Pengelupasan elektrokimia yang dibantu oleh surfaktan buatan rantaian bercabang dua sodium bis(3,5,5-trimetil-1-heksil) sulfosuksinat (AOT4) dan bercabang tiga sodium 1,4-bis (neopentiloksi)-3-(neopentiloksikarboni)-1,4-dioksobutana-2-sulfonat digunakan untuk mensintesiskan GO dengan N, N-dimetilasetamida (DMAs) sebagai pelarut. Fabrikasi membran PN berasaskan PVDF/GO/TiO₂ dilakukan melalui kaedah pemisahan fasa induksi tanpa pelarut dengan menggunakan DMAs_GO dan TiO₂ sebagai bahan tambahan dan PVDF sebagai bahan polimer utama. Selain itu, kulit durian digunakan untuk menghasilkan KBD dengan menggunakan asid sulfurik sebagai agen pengaktif melalui kaedah pengaktifan kimia. Sampel membran PN melalui pengukuran hujung mati sebagai pemisahan membran digunakan untuk penyingkiran warna metilena biru (MB). Manakala, sampel KBD melalui proses penjerapan sebagai bahan penjerap digunakan untuk penyingkiran warna MB. Dapatan kajian mendapati fluks warna (98.539 L/m²h) dan kecekapan penyingkiran warna (92.61%) bagi membran PN PVDF/TC14-GO/TiO2 adalah paling tinggi berbanding membran PVDF/AOT4-GO/TiO2. Ini adalah disebabkan oleh bilangan rantaian yang lebih tinggi meningkatkan prestasi membran yang telah dihasilkan. Sampel KBD menunjukkan bahawa peratusan maksimum penjerapan (92.05%) dengan menggunakan 0.6 g dos optimum KBD, 10 ppm kepekatan warna awal MB dan 15 minit masa hubungan. Kesimpulannya, PVDF/TC14-GO/TiO2 yang telah difabrikasi dan kulit durian, masing-masing berpotensi untuk digunakan sebagai bahan membran PN dan karbon diaktifkan. Implikasi kajian ini adalah sebuah pendekatan baharu, lebih mudah, kos rendah dan hijau untuk fabrikasi PVDF/GO/TiO2 PN membran dan penghasilan karbon diaktifkan daripada kulit durian.

TABLE OF CONTENTS

				Page
	DECLARATIO	ON OF	ORIGINAL WORK	ii
	DECLARATIO	ON OF	THESIS	iii
	ACKNOWLEI	OGEM	ENTS	iv
	ABSTRACT			V
	ABSTRAK			vi
	TABLE OF CO	ONTE	NTS	vii
	LIST OF TAB	LES		xii
05-450	LIST OF FIGU	JRES		xiiiptbup
	LIST OF ABB	REVIA	ATIONS	xvi
	LIST OF APPI	ENDIC	CES	xix
	CHAPTER 1	INTE	RODUCTION	
		1.1	Introduction	1
		1.2	Research Background	2
		1.3	Problem Statement	11
		1.4	Research Objectives	13
		1.5	Scope and Limitations of Study	14
		1.6	Thesis Organization	14

CHAPTER 2 LITERATURE REVIEW

2.1	Introdu	action	16	
2.2	Dye Re	emoval Method	17	
2.3	Methyl	Methylene Blue Dye		
2.4	Membi	rane Separation Application	19	
	2.4.1	Definition of Membrane and Its Characteristics	19	
	2.4.2	Historical Development of Membranes	20	
	2.4.3	Membrane Separation Process	22	
	2.4.4	Membrane Flow Configuration	23	
		2.4.4.1 Dead-end Filtration	23	
		2.4.4.2 Cross-flow Filtration	24	
	2.4.5	Type of Membrane Separation Process	25	
		Kampus Sultan Abdul Jalil Shah 2.4.5.1 Reverse Osmosis	26	
		2.4.5.2 Ultrafiltration	26	
		2.4.5.3 Nanofiltration	27	
		2.4.5.4 Microfiltration	27	
2.5	Method	d for Membrane Fabrication	28	
2.6	Phase 1	Inversion Method	31	
2.7	Influen	ice Factors of Membrane Fabrication	34	
	2.7.1	Effect of Different Solvent	34	
	2.7.2	Effect of Polymer Concentration	34	
	2.7.3	Effect of Coagulation Temperature	35	
	2.7.4	Effect of Casting Solution Condition	36	
2.8	Materia	al of Polymer	37	

	2.9	PVDF	as a Polym	er	39
	2.10	Modifie	cation of P	VDF Properties	40
		2.10.1	Physical	Modification	40
			2.10.1.1	Grinding and Polishing	41
			2.10.1.2	Blending	41
			2.10.1.3	Coating	42
		2.10.2	Chemica	l Modification	42
			2.10.2.1	Chemical Procedure	43
			2.10.2.2	Plasma Technique	43
			2.10.2.3	UV-Induced Grafting	44
	2.11	Graphe	ne Oxide		45
		2.11.1	Introduct	ion of Graphene Oxide	45
05-4506832		2.11.2	The Synt	hesis Method of Graphene Oxide	46 ptbug
	2.12	Perforn	nance of P	VDF-based Membrane	48
	2.13	Membr	ane Foulin	g	50
					30
	2.14	Adsorp	tion Appli		53
	2.14	1			
	2.14	2.14.1		cation on Definition and Its Material	53
		2.14.1	Adsorption ed Carbon	cation on Definition and Its Material	53 53
		2.14.1 Activat	Adsorption Adsorption	cation on Definition and Its Material	535356
		2.14.1 Activate 2.15.1	Adsorption and Carbon Introduct Synthesis	cation on Definition and Its Material cion of Activated Carbon a Method of Activated Carbon Affecting the Production of	53535656
		2.14.1 Activat 2.15.1 2.15.2 2.15.3	Adsorption Adsorption Adsorption Introduct Synthesis	cation on Definition and Its Material cion of Activated Carbon a Method of Activated Carbon Affecting the Production of	5353565658

CHAPTER 3 METHODOLOGY

	3.1	Introdu	ction	65
	3.2	Synthe	sis of Graphene Oxide	66
		3.2.1	Types of Surfactants Used to Synthesize Graphene Oxide	66
		3.2.2	Electrochemical Exfoliation Method	67
	3.3	Fabrica Membr	ation of PVDF/GO/TiO ₂ Nanofiltration rane	68
	3.4	Produc	tion of Durian Shell-based Activated Carbon	70
		3.4.1	Preparation of Raw Material	70
		3.4.2	Production Method	71
	3.5	Sample	Characterization	73
		3.5.1	Field Emission Scanning Electron Microscopy and Energy Dispersive X-Ray	74
			Analysis I Fuanku Bainun PustakaTBainun	
		3.5.2	Micro-Raman Spectroscopy	75
		3.5.3	Ultraviolet-Visible Spectroscopy	76
		3.5.4	Hydrophilicity and Porosity Measurement	76
		3.5.5	Permeation Testing	78
		3.5.6	Surface Area Analyser	80
		3.5.7	Adsorption Testing	81
	3.6	Summa	nry	82
CHAPTER 4	RESU	JLTS A	ND DISCUSSIONS	
	4.1	Introdu	ction	84

4.2

Membrane for Dye Rejection Application

Properties of Fabricated PVDF-Based Nanofiltration

85

		4.2.1	Morphological Properties	85
		4.2.2	Structural Properties	88
		4.2.3	Hydrophilicity, Contact Angle Analysis and Porosity Measurement	90
		4.2.4	Water Flux	92
	4.3		jection Performance of Fabricated PVDF- Nanofiltration Membrane	94
	4.4		aling Properties of Fabricated PVDF-Based tration Membrane	96
	4.5		ies of the Produced Activated Carbon for Dye al Application	98
		4.5.1	Morphological Properties	98
		4.5.2	Structural Properties	99
		4.5.3	Surface Area Analysis	100
05-4506832 pustaka	4.6 d		emoval Performance of the Produced ed Carbon	101ptbup
		4.6.1	Effect of DAC Dosage	101
		4.6.2	Effect of Initial MB Dye Concentration	104
		4.6.3	Effect of Contact Time	107
	CONT	~~ .		
CHAPTER 5			ONS AND FUTURE WORK	
	5.1	Conclu	sions	111
	5.2	Future	work	114
REFERENCES	S			116
APPENDICES				132

LIST OF TABLES

Table No.		Page
2.1	Advantages and Disadvantages of Difference Membrane Fabrication Methods	29
2.2	Overview of the General Concept of Phase Inversion Techniques	32
2.3	Summary of Various Materials Used to Produce AC and Its Drawback	61
3.1	Surfactant's Molecular Structure Used in This Study	66
3.2	Material Weight Percentage for the PVDF/AOT4-GO/TiO ₂ and PVDF/TC14-GO/TiO ₂ Solution Preparation	69
05-4506 /4 /1 (3) pu	Contact Angle and Porosity Values of the Fabricated NF Membranes	92tbup
4.2	Water Flux Performance of the Fabricated PVDF/AOT4-GO/TiO ₂ and PVDF/TC14-GO/TiO ₂ NF Membrane Measured at Different Driving Pressure	94
4.3	Dye Rejection Performance of the Fabricated NF Membrane Measured at a Pressure of 2 MPa	96
4.4	Summary of BET Surface Area, Total Pore Volume and BET Average Pore Diameter	101
4.5	The Performance Details of the DAC Measured at Different DAC Dosage	104
4.6	The Performance Details of the DAC Measured at Different Initial MB Dye Concentration	107
4.7	The Performance Details of the DAC Measured at Different Contact Time	110

LIST OF FIGURES

Figures	No.	Page
2.1	The Illustration of MB Chemical Structure	18
2.2	The Schematic Diagram Represent the Basic of Membrane Separation Process	23
2.3	The Schematic Diagram of Dead-end Operating Filtration Process Configuration	24
2.4	The Schematic Diagram of Cross-flow Operating Filtration Process Configuration	25
2.5	The Schematic Diagram Represent of Possible Different Modes of Membrane Fouling during Dye Rejection; (a) New Membrane, (b) Adsorption in the Pores (Pore	51
05-4506832	Narrowing), (c) Pore Plugging and (d) Cake-layer Formation	
2.6	Type of Commercial AC; (a) Granular; (b) Pallete; (c) Powder	58
3.1	(a) The Schematic Diagram and (b) Experimental Procedures of Electrochemical Exfoliation Method to Synthesize GO	67
3.2	Experimental Procedures of PVDF/AOT4-GO/TiO2 and PVDF/TC14-GO/TiO2 NF Membrane via NIPS Method	70
3.3	The Schematic Diagram to Prepare Raw Material	71
3.4	Experimental Procedures to Produce DAC; (a) Impregnation Process with Activator Agent, (b) Carbonization Process at 500°C and (c) DAC in Powder Form	72
3.5	FESEM (Hitachi SU8020) and EDX Instrument (Horiba EMAX) Used in This Study	74

76 77
79
80
82
83
86
87 ptbu
90
91
93
93 95
95

- 4.10 (a) MB Dye Removal Efficiency and Its Adsorption 103
 Capacity by Utilizing Various DAC Dosage Measured with 10 ppm MB Dye and 15 Min Contact Time, (b) The Treated MB Dye Solution Utilizing Different DAC Dosage DAC Dosage; (i) 0.2, (ii) 0.6, (iii) 1.0, (iv) 1.4, (v) 1.8 and (vi) 2.2 g Measured with 10 ppm MB Dye and 15 Min Contact Time
- 4.11 (a) MB Dye Removal Efficiency and Its Adsorption Capacity by Utilizing Various Initial MB Concentration with 0.6 g DAC Dosage and 15 Min Contact Time, (b) The Treated MB Dye Solution Utilizing Different Initial MB Concentration; (i) 2.5, (ii) 5, (iii) 7.5, (iv) 10 and (v) 25 ppm Measured with 0.6 g DAC Dosage and 15 Min Contact Time
- 4.12 (a) MB Dye Removal Efficiency and Its Adsorption
 Capacity by Utilizing Various Contact Time with 0.6 g
 DAC Dosage and 10 ppm of Initial MB Dye
 Concentration, (b) The Treated MB Dye Solution Utilizing
 Different Contact Time; (i) 5, (ii) 10, (iii) 15, (iv) 20, (v)
 25 and (vi) 30 min Measured with 0.6 g DAC Dosage and
 10 ppm Initial MB Dye Concentration

LIST OF ABBREVIATIONS

A Area

AC Activated Carbon

Al₂O₃ Aluminium Oxide

AOT4 Sodium Bis(3,5,5-Trimethyl-1-Hexyl) Sulphosuccinate

BJH Barret-Joyner-Halenda

BET Brunauer-Emmet-Teller

C Carbon

 C_o Initial Dye Concentration

05-4506 C_f pusta Final Dye Concentration Sultan Abdul Jalil Shah

PustakaTBainur

 C_p Permeate Dye Concentration

CNT Carbon Nanotubes

D Defect and Disorder Raman Peak

DAC Durian Shell-based Activated Carbon

DI Deionized

DMAc N, N-Dimethylacetamide

DMF Dimethylformamide

DS Durian Shell

DSSCs Dye-Sensitized Solar Cells

EDX Energy Dispersive X-Ray

F Fluorine

FESEM Field Emission Scanning Electron Microscopy

FRR Flux Recovery Ratio

G Crystalline Graphitic Raman Peak

GO Graphene Oxide

HNO₃ Nitric Acid

H₃PO₄ Phosphoric Acid

H₂SO₄ Sulphuric Acid

 I_D/I_G Ratio of Raman's D- and G-Peak Intensity

J Permeated Flux

KClO₃ Potassium Chlorate

KOH Potassium Hydroxide

m Mass

MB Methylene Blue

MF

Microfiltration

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shal Pustak

ainun

ptbup:

NaOH Sodium Hydroxide

NF Nanofiltration

NMP N-Methyl-Pyrrolidinone

NIPS Non-Solvent Induced Phase Separation Process

O Oxygen

PA Polyamide

PAN Polyacrylonitrile

PES Polyethersulfone

PMMA Poly(methyl methacrylate)

PVDF Polyvinylidene Fluoride

ppm Parts Per Million

q_e Adsorption Capacity

Dye Rejection Efficiency R

RO Reverse Osmosis

SDS Sodium Dodecyl Sulphate

Time

TC14 Sodium 1,4-Bis(Neopentyloxy)-3-(Neopentyloxycarbonyl)-1,4-

Dioxobutane-2-Sulphonate

TEP Triethyl Phosphate

Ti Titanium

Titanium Dioxide TiO_2

TIPS Thermally Induced Phase Separation

UF Ultrafiltration

UV-Vis Ultraviolet-Visible

pustal Voltage u.my

VVolume

VIPS Vapour-Induced Phase Separation

W Weight

 H_2O Water

wt% Weight Percentage

ZnCl₂ Zinc Chloride

ZnO Zinc Oxide

Membrane Porosity

Density of Water ρ_w

PVDF Density ρ_p

LIST OF APPENDICES

- Academic Journal A
- В Presentation

CHAPTER 1

INTRODUCTION

This chapter discusses the research background of graphene oxide (GO)-based membrane and durian shell-based activated carbon (DAC) for water treatment application. The research problem, objectives, scope and limitation of this study are also described in this chapter. This chapter is ended with a description of the thesis organization.

1.2 Research Background

The rapid growth of various industries such as paints, textile, printing inks, paper and plastics causes both of high polluted water and high demand of clean water, simultaneously. These industries, especially textile and dyeing industries utilized a large amount of synthetic dyes to colour their product which resulted large amount of polluted wastewater and released to the environment. Dyes presence can affect water quality since they are toxic and non-biodegradable (H. Liu et al., 2019; Tran, Kumar, & Lue, 2019). Therefore, the removal of this kind of pollutant is crucially needed.

Numerous approaches have been attempted to find an effective method to treat the polluted water in order to protect human health and the environment. Among various dye removal methods, membrane separation is one of the versatile and effective technologies to remove polluted water, such as dye contamination (T. Liu, Yang, Graham, Yu, & Sun, 2017). This was due to its several advantages, such as no phase changes, simple in operation and relatively low energy consumption (Kang & Cao, 2014). Over the past few decades, it becomes popular and plays an important role in major industries for water purification, metal recovery and protein separation (Escobar & Van Der Bruggen, 2015).

Membrane separation technology has become a promising in many type of filtration such as reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF) and microfiltration (MF). All of these types of filtration can be classified based on its membrane properties and separation principle. Recently, the NF membrane has widely applied for water treatment due to its small pore size (1-5 nm), low operating

pressure (4-20 MPa), high water permeability and can retain ions and low material's molecular weight (S. J. Park et al., 2012; Shon, Phuntsho, Chaudhary, Vigneswaran, & Cho, 2013). The polymeric membrane can be fabricated by a different technique such as phase inversion, sintering, track-etching and stretching (Liao, Loh, Tian, Wang, & Fane, 2018). Among them, phase inversion method is commonly used due to its several advantages, such as applicable for various polymers, simple in preparation and easy optimization of membrane thickness and pore size (Ladewig & Al-Shaeli, 2017).

Synthetic polymer membrane namely polyvinylidene fluoride (PVDF), a semicrystalline polymer with repeating units of -CH₂-CF₂- has been extensively used in water treatment processes due to its outstanding physical and chemical properties 05-4500 (Kang & Cao, 2014). However, the hydrophobic nature of the PVDF membrane causes some critical problems which limit its application due to the membrane fouling during the separation process (Li et al., 2015; Wu, Zhang, Wang, Du, & Yang, 2018). The membrane fouling causes the declining in water flux permeability, shortening membrane lifetime and altering membrane selectivity thus decreased the membrane performance (R. Zhang et al., 2016). Therefore, several approaches have been developed to increase the hydrophilic properties of PVDF membrane such as physical and chemical modification with hydrophilic organic and inorganic materials (Kang & Cao, 2014; Xia & Ni, 2014).

Among these approaches, a physical modification of blending with organic or inorganic materials has been widely used due to its advantage of facile preparation method through phase inversion (non-solvent induce phase separation (NIPS)).

Recently, organic materials-blended PVDF (Poly(methyl methacrylate) (PMMA), Polyvinyl acetate, Poly(ether sulfones)) (PES) (Freire, Bianchi, Martins, Monteiro, & Forte, 2012; Vo & Giannelis, 2007), metal oxide particles (aluminium oxide (Al₂O₃), titanium dioxide (TiO₂) and zinc oxide (ZnO)) (J. Li et al., 2015; Q. Liu, Huang, Zhang, & Zhao, 2018), carbon nanotubes (CNT) (Sivakumaran, Kundu, Kumaran, Mishra, & Pandian, 2016; Zheng et al., 2009) and graphene oxide (GO) (Wu et al., 2018) have been utilized to enhance the PVDF membrane properties by increasing antifouling effect, permeability and membrane selectivity.

In particular, a potential candidate to effectively reinforce PVDF polymeric materials is TiO₂ due to its excellent properties such as commercial availability, chemical stability, hydrophilicity, and low toxicity (Ayyaru & Ahn, 2018; Behboudi, Jafarzadeh, & Yegani, 2016). TiO₂ is considered as the best metal oxide candidate to overcome the fouling issues by increasing the membrane hydrophilicity (Q. Liu et al., 2018; Wu et al., 2018). In addition, it also possesses small size particle and a large surface area (H. J. Park et al., 2018). Several reports have demonstrated that the utilization of TiO₂ could improve the membrane performance in dye separation.

Wang, Wang, Wang, Huang, and Wang (2013) showed that the introduction of TiO₂ into the PVDF membrane drastically increased membrane permeability (190 L/m²h.MPa) as compared to the pure PVDF membrane (70 L/m²h.MPa). Such improvement in the membrane permeability was believed due to the uniform deposition of the hydrophilic TiO₂ along the membrane pores. The result obtained by J. Zhang, Wang, Wang, Pan, and Wu (2017) showed an improvement in antifouling properties when TiO₂ was used as additive. Higher O element was observed which

indicated hydrophilicity enhancement with the TiO₂ presence. Méricq, Mendret, Brosillon, and Faur (2015) showed the improvement of membrane structure, hydrophilicity properties and permeability when TiO₂ nanoparticles were used as an additive for membrane fabrication.

On the other side, GO was also utilized as an additive to fabricate hydrophilic membrane. GO offers many advantages for water treatment due to its large surface area (calculated up to 2630 m²g⁻¹) (X. Huang, Qi, Boey, & Zhang, 2012), good chemical stability and high mechanical strength (Young modulus~ 1TPa) (C. Lee, Wei, Kysar, & Hone, 2008). As exfoliated GO contains the considerable number of oxygen-functional groups, such as carboxyl, carbonyl, epoxy, and hydroxyl groups, GO are highly hydrophilic (Miao, Li, Yan, Guo, & Lang, 2017; J. Zhang, Xu, et al., os 450 2013). GO can be synthesized by using chemical approach, such as Hummers' method and electrochemical exfoliation. The common Hummers' method resulted a high quality of the synthesized GO. However, this method involved high hazardous chemical consumption, long time production and complicated procedures (Zaaba et al., 2017).

A low cost and simpler GO synthesis approach, which is electrochemical exfoliation method assisted by surfactant then offers several advantages such as greener, simpler and low cost production to synthesize GO (Nurhafizah et al., 2015; Parvez, Li, Puniredd, & Hernandez, 2013; Suriani, Muqoyyanah, Mohamed, Othman, Rohani, et al., 2019). Many reports of GO-incorporated membranes for wastewater treatment systems have also successfully increased membrane hydrophilicity, rejection for different heavy metal (Kochameshki, Marjani, Mahmoudian, & Farhadi,

2017) and dye pollutant (Safarpour, Vatanpour, & Khataee, 2016; M. Yang, Zhao, Zhang, Li, & Hou, 2017; Zhu et al., 2017). Nonetheless, the agglomeration of GO is the major drawback in the development of PVDF/GO membrane, which can reduce its performance (Sun & Li, 2018). In order to prevent GO from agglomeration, the utilization of surfactant for better dispersion of GO in the polymer matrix is essentially needed.

Previous report showed that the highest CNT dispersion was achieved by using the triple-tail sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4dioxobutane-2-sulphonate (TC14) surfactant as compared to single- or double-tail surfactant (Mohamed et al., 2014). Suriani, Nurhafizah, et al. (2016) showed that the utilization of triple-tail TC14 surfactant has presented smooth surface with low agglomeration of GO when the synthesized GO was intermixed with natural rubber latex. The triple-tail surfactant offers triple interaction during electrochemical exfoliation which resulted higher dispersion of GO. This result was also in a good agreement when the synthesized GO utilizing triple-tail TC14 surfactant was used to fabricate thin film and resulted higher DSSCs efficiency as compared to the single-tail surfactant (Suriani, Fatiatun, et al., 2018; Suriani, Muqoyyanah, Mohamed, Mamat, et al., 2018; Suriani, Muqoyyanah, Mohamed, Othman, et al., 2018). These confirmed that the surfactant's tail number essentially affect the quality of the synthesized GO. Previous report has also proved that the direct GO synthesis utilizing single-tail sodium dodecyl sulphate (SDS) surfactant and N, N-dimethylacetamide (DMAc) as solvent was successfully achieved and can be used to fabricate NF membrane which resulted high dye rejection of 92.76% (Suriani et al., 2019).

In this work, the utilization of both customized double-tail sodium bis(3,5,5-trimethyl-1-hexyl) sulphosuccinate (AOT4) and triple-tail TC14 surfactants were then carried out in order to improve membrane performance. In addition, it is believed that better dispersion and homogeneity of GO-based membrane sheet were achieved and resulted better performance for water treatment application. To the best of our knowledge, the novelty of this study lies on utilization of customized double-tail AOT4 and triple-tail TC14 surfactants for the GO synthesis by electrochemical exfoliation method for dye rejection application. It is believed that the utilization of both surfactants in the fabrication of the PVDF/GO-based hybrid membrane will increase the hydrophilicity, water flux, dye rejection and antifouling performance.

The second method to overcome dye contamination is via adsorption.

O5-4506 Adsorption process is considered as a versatile and effective method for dye removal due to its advantages such as low cost, high efficiency, eco-friendly and ease in operation (Cheng et al., 2017; Narvekar, Fernandes, & Tilve, 2018; Novais, Caetano, Seabra, Labrincha, & Pullar, 2018). A number of different adsorbents type have been employed for adsorption process including activated carbon (AC) (Marrakchi, Ahmed, Khanday, Asif, & Hameed, 2017; Novais et al., 2018), metal oxide (Taman, Ossman, Mansour, & Farag, 2015), bio sorbents (Gurung et al., 2013) and zeolites (Mateen et al., 2015). Among these adsorbents, AC becomes the most promising material and widely employed in adsorption process due to its convenient properties such as large surface area, high adsorption capacity (qe) and possesses microporous structure (Rashid, Tehreem, Rehman, & Kumar, 2019; Solgi, Najib, Ahmadnejad, & Nasernejad, 2017).

Nevertheless, the commercial AC are uneconomical which hinder their widely used as adsorbent since they are fabricated from expensive precursors and non-renewable material such as coal and lignite (Rafatullah, Sulaiman, Hashim, & Ahmad, 2010). Regarding the aforementioned limitation, the development of a low cost and renewable carbonaceous material (Geçgel, Özcan, & Gürpınar, 2013) but possesses equivalent qe as commercial AC has widely done (Rashid et al., 2019). This has led to the production of AC by utilizing agricultural waste variety as a precursor including pumpkin peels (Rashid et al., 2019), palm kernel shell (Nicholas, Hussein, Zainal, & Khadiran, 2018), banana stem (Misran, Bani, Situmeang, & Purba, 2018), lapsi seed stone (Sahira, Mandira, Prasad, & Ram, 2013), papaya peel (Musa, Alwi, Ngadi, & Abbaszadeh, 2017) and *Ficus carica* bast (Pathania, Sharma, & Singh, 2013).

In Malaysia, about 209,343 metric tons of durian fruit are produced in year 2017 and its production are estimated to be increased in year 2020 (M. C. Lee et al., 2018). The durian fruit consists of 40% of flesh and 60% of waste. Durian shell (DS) has no economic value thus usually burned without taking care of the surrounding environment. DS is suitable for preparing AC due to the abundance number and its availability which makes them a good source as a raw material in AC production. On the other hand, this AC conversion using agricultural waste would enhance the value of these agricultural commodities and at the same time decrease the waste disposal cost and provide potentially alternative on economic AC. AC from agricultural waste can be produced via two methods which are physical and chemical activation (Nicholas et al., 2018; Solgi et al., 2017; Xianlong Zhang, Cheng, Wu, Tang, & Wu, 2015).

Physical activation involves the carbonization of the precursors in an inert gas before activated it by using oxidizing agents such as steam and carbon dioxide. Meanwhile, chemical activation is a single step method which includes the process of carbonization and activation simultaneously occurs. In chemical activation, the impregnation process of the precursor can be done with chemical activator such as sulphuric acid (H₂SO₄) (Narvekar et al., 2018; Pathania et al., 2013), zinc chloride (ZnCl₂) (Xianlong Zhang et al., 2015), potassium hydroxide (KOH) (Musa et al., 2017; Novais et al., 2018) and phosphoric acid (H₃PO₄) (Misran et al., 2018; Nicholas et al., 2018). Comparing both methods, chemical activation offers several advantages including less energy usage, low operating temperature and higher carbon yields (Solgi et al., 2017). Furthermore, pore structure development can be modified by changing the parameters such as temperature during carbonization process,

The q_{e} of AC is mainly depends on the type of activator agent, pyrolysis

temperature and activation time (Rafatullah et al., 2010). Among several activator agents, H₂SO₄ is known as a super oxidizing agent that has been widely used for the preparation of carbonaceous adsorbents (Jawad, Razuan, Appaturi, & Wilson, 2019). Jawad et al. (2019) has proved that watermelon peels were successfully converted into AC by utilizing H₂SO₄ and presented excellence performance on methylene blue (MB) removal from aqueous solution. Meanwhile, Sahira, Mandira, Prasad, and Ram (2013) showed that AC was successfully prepared from lapsi seed stone which had been initially impregnated with H₂SO₄. High q_e was also achieved as compared to the utilization of others activator agent due to a well-developed mesoporosity of H₂SO₄ (Sahira et al., 2013).

AC with the different surface area can be synthesized from the same precursor with different carbonization time and temperature. Recently, Nicholas et al. (2018) showed that carbonization temperature of 500°C produced the highest AC's surface area. However, lower surface area was observed when the carbonization temperature was increased up to 700°C. This result was in good agreement with the data presented by Srinivasakannan, Zailani, and Bakar (2004). They found that optimized carbonization temperature was around 400-500°C depends on impregnation ratio and time of carbonization. They also found that the optimum carbonization process time was around 1-3 hours. However, by increasing carbonization time, lower AC product and higher surface area was achieved.

Most studies reported the production of AC from DS by utilizing the various activator agent with different carbonization temperature and time (Chandra, Mirna, Sunarso, Sudaryanto, & Ismadji, 2009; Ismail, Sudrajat, & Jumbianti, 2010; Tham, Latif, Abdullah, & Taufiq-Yap, 2010; Mahmood, Samsuddin, & Deris, 2015). However, there is insufficient information of obtaining the durian shell-based AC (DAC) by utilizing H₂SO₄. Therefore, in the present study, the DS as an agricultural waste is used as a precursor to produce AC by utilizing H₂SO₄ as the activator agent via chemical activation. Furthermore, the synthesized DAC is further used to investigate its performance for MB removal in the adsorption process.

1.3 Problem Statement

PVDF polymer has widely been applied in membrane separation process for water treatment application since it has outstanding physical and chemical properties. However due to its hydrophobic nature, the application of the PVDF membrane is limited and becomes the main causes of membrane fouling. The membrane fouling causes a decline in water flux permeability, shortening membrane lifetime, altering membrane selectivity and affecting its dye rejection performance. Consequently, several approaches have been developed to increase the hydrophilicity of the PVDF membrane including physical and chemical modification with organic and inorganic material. Among those approaches, physical blending with organic and inorganic material has been widely used due to its advantage of facile preparation method which

05-450c is through phase inversion. In addition, phase inversion method commonly used since it is applicable for various polymers and easy optimization of membrane thickness and pore size.

Recently, inorganic material-blended PVDF such as metal oxides particle, CNT and graphene have been utilized to enhance the PVDF membrane properties which increased antifouling effect, permeability and membrane selectivity. TiO₂ is considered as a potential candidate to reinforce PVDF polymeric material due to its properties such as commercially availability, chemical stability, low toxicity, and hydrophilicity. On the other hand, GO also offers several advantages for water treatment due to its large surface area, high chemical stability and contains abundance number of oxygen-functional group. Therefore, GO is considered as a highly

hydrophilic material. Nonetheless, agglomeration of GO is the major drawback in the development of PVDF/GO-based membrane.

As compared to other methods, electrochemical exfoliation method presents a simpler synthesis process of GO. To date, the utilization of the customized double-and triple-tail surfactants, AOT4 and TC14, respectively has proven the effectiveness for better exfoliation as compared to the commercially available single-tail SDS surfactant. In addition, the utilization of surfactant compound for better dispersion of GO in the polymeric membrane has also been proven. However, the surfactant for GO dispersion in polymeric membrane is limited to single-tail surfactant (SDS). The utilization of both double-tail AOT4 and triple-tail TC14 surfactants were believed resulted in better homogeneity and dispersion of GO in the polymeric membrane.

AC for the adsorption process has also gained a lot of interest due to its characteristics such as high q_e, large surface area, and possesses microporous structure. However, the commercial AC is expensive since they are obtained from costly precursor and non-renewable material. In recent year, many researches have been performed on finding the effective and economical source of AC with high q_e which equivalent to the commercially available AC. Variety of agricultural waste has also been employed on AC production. Production of AC from agricultural waste not only provides a potential low cost of AC but overcome the environmental problem since their disposal can cause pollution. AC can be synthesis by two methods which

are physical and chemical activation. However, chemical activation presented more advantages than physical activation, such as require less energy, low operating temperature, resulted high carbon product and controllable of pore formation. DS is a potential candidate to be applied as a precursor for AC production since its abundance presence and availability of agricultural waste. The previous report on DAC is more focused on using KOH and H₃PO₄ as a chemical activator. However, there is insufficient research on using H₂SO₄ as a chemical activator on DAC and its performance on dye removal.

Therefore, in this work, GO-based material synthesized from the simple electrochemical exfoliation assisted by customized double-tail AOT4 and triple-tail TC14 surfactants are used for membrane application. Meanwhile, AC was produced using DS as starting material via chemical activation for adsorption process to investigate its performance on MB removal for water treatment application.

1.4 Research Objectives

The objectives of this study are:

- To synthesize GO solution using electrochemical exfoliation assisted by customized double-tail AOT4 and triple-tail TC14 surfactants.
- ii. To fabricate PVDF/GO/TiO₂-based hybrid membranes by using phase inversion method for dye rejection application.
- iii. To produce durian-based AC for dye removal application.

1.5 Scope and Limitations of Study

The GO synthesis was performed using graphite rod as a carbon precursor via electrochemical exfoliation method instead of other graphite material. The utilization of the surfactants for GO synthesis is also limited to the customized double-tail AOT4 and triple-tail TC14 surfactants. The scope of this study was to optimize the membrane performances which include the effects of utilizing the various surfactants on dye rejection and antifouling performance.

Meanwhile, H₂SO₄ is utilized as an activator agent instead of others in the production of AC from DS. The production of DAC is limited to 500°C of carbonization temperature for 3 hours of carbonization time. The scope of this research is based on the optimization of the effect of DAC dosage, contact time, and initial MB dye concentration.

1.6 Thesis Organization

This work is focused on the water treatment applications based on carbon-based material, which are GO and AC material. The improvement of dye rejection and antifouling performance by utilizing two types of surfactants are done for membrane separation. Meanwhile, the adsorption process is investigated by utilizing AC produced from DS via chemical activation. Chapter 1 consists of research background, research problem, research objective and scope and limitations of the study. Meanwhile, Chapter 2 presents the previous study and theories about

membrane separation and adsorption process in brief. The fabrication method of membrane and AC and its characterization techniques are discussed in Chapter 3. Chapter 4 explains the results and discussion including the morphology, structural and performance on dye removal for membrane separation and adsorption process. Finally, Chapter 5 covers the conclusion and suggestion for future work.

