

EFFECTS OF DUST, HUMIDITY AND AIR VELOCITY ON SOLAR PHOTOVOLTAIC (PV) PANEL EFFICIENCY

FARDILA BINTI MOHD ZAIHIDEE

FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF ENGINEERING

FACULTY OF ENGINEERING UNIVERSITY OF MALAYA **KUALA LUMPUR** 2013

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: FARDILA BINTI MOHD ZAIHIDEE

(I.C/Passport No: 821106-06-5020)

Registration/Matric No: KGZ110003

Name of Degree: MASTER OF ENGINEERING (MECHATRONICS)

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"):

"EFFECTS OF DUST, HUMIDITY AND AIR VELOCITY ON **SOLAR** PHOTOVOLTAIC (PV) PANEL EFFICIENCY"

Field of Study: RENEWABLE ENERGY

I do solemnly and sincerely declare that:

- 1) I am the sole author/writer of this Work;
- 2) This Work is original;
- 3) Any use of any work in which copyright exists was done by way of fair dealing and os-4506832 for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been Acknowledged in this Work;
 - 4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work Constitutes an infringement of any copyright work;
 - 5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
 - 6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

MM

Date 8/2/2013

Subscribed and solemnly declared before,

Witness's Signature

Date \$/2/2013

Name:

Designation:

DR. MAHIDZAL BIN DAHARI

Senior Lectures

Department of Engineering Design and Manufacture

Faculty of Engineering University of Malaya 50603 Kuala Lumpur

ii

Abstract

Transition from dependency on main source of electricity generation (fossil fuel) to the most promising renewable energy source (solar energy) in Malaysia is driven mainly by environmental and economic factors. However, to ensure the success of this process, solar PV technology in the country has to be reliable and efficient enough. There are many alterable and unalterable factors that can govern a PV module's efficiency. Dust, humidity and air velocity are some of the location-dependent environmental factors that fall under the unalterable factors group. Each of these three factors can degrade the efficiency of a PV panel by causing e.g. incoming solar radiation attenuation, changes in electrical characteristics, physical damages, temperature rise etc. One factor can also affect the other factor hence indirectly impact the panel performance. In more severe cases, undesired total module failure has been recorded upon extreme exposure. On the other hand, wind speed can enhance PV panel performance by promoting heat transfer. This work reviews, elaborates and summarizes the effects of dust, humidity and air velocity on solar PV cell efficiency.

Abstrak

Peralihan dari kebergantungan kepada sumber utama untuk penghasilan tenaga elektrik (bahan api fosil) ke sumber tenaga boleh diperbaharui yang paling mempunyai harapan di masa hadapan (tenaga suria) di Malaysia didorong sebahagian besarnya oleh faktor persekitaran dan ekonomi. Namun begitu, untuk memastikan kejayaan proses ini, teknologi suria fotovoltaik di negara ini perlu cukup andal dan cekap. Terdapat banyak faktor boleh ubah dan faktor tidak boleh ubah yang boleh mempengaruhi kecekapan sesebuah modul fotovoltaik. Habuk, kelembapan dan halaju angin ialah sebahagian daripada faktor persekitaran yang bergantung kepada lokasi yang tergolong di dalam kumpulan faktor tidak boleh ubah. Setiap satu daripada tiga faktor ini boleh mengurangkan kadar kecekapan sesebuah panel fotovoltaik melalui sebagai contoh mengurangkan kemasukan radiasi suria, mengubah ciri-ciri elektrikal, kerosakan fizikal, kenaikan suhu dan sebagainya. Setiap faktor juga boleh mempengaruhi faktor lain dan menjejaskan prestasi panel secara tidak langsung. Dalam kes-kes yang lebih teruk, kegagalan modul yang tidak diingini telah direkodkan pada pendedahan yang melampau. Sebaliknya, kelajuan angin boleh meningkatkan prestasi panel dengan menggalakkan pemindahan haba. Kerja ini mengkaji, menghuraikan dan meringkaskan kesan-kesan habuk, kelembapan dan halaju angin terhadap kecekapan sel suria fotovoltaik.

Acknowledgements

I would like to thank my supervisor, Prof. Dr. Saad Mekhilef, Head of Department, Department of Electrical Engineering, Faculty of Engineering, University of Malaya for his guidance and support in completing this research.

I would also like to extend my appreciation to my family and colleagues for their continuous support and encouragement.

Table of Contents

ABSTRACT	Г		
ABSTRAK	******	•••••••••••••••••••••••••••••••••••••••	IV
ACKNOW	LEDG	EMENTS	V
LIST OF FI	GURE	S	VII
LIST OF TA	ABLES	S	X
LIST OF SY	/MBO	DLS	X
LIST OF A	BBRE	VIATIONS	XIV
CHAPTER	1:	INTRODUCTION	
1.1	INTRO	ODUCTION	1
1.2	PROB	BLEM STATEMENT	6
1.3	Scop	PE OF STUDY	6
1.4	OBJE	CTIVES	6
1.5		IS OUTLINE	
CHAPTER	pusta 2 :	Perpustakaan Tuanku Bainun EFFECTS OF DUST ON SOLAR PV PANEL EFFICIENCY PustakaTBainun	o ptbupsi
2.1	INTR	ODUCTION	8
2.2	EFFE	CTS OF DUST SCATTERING IN THE ATMOSPHERE ON SOLAR PV PANEL EFFICIENCY	g
2.3	EFFE	CTS OF DUST DEPOSITED ON PANEL SURFACE ON SOLAR PV PANEL EFFICIENCY	11
2.4	FACT	ORS GOVERNING DUST DEPOSITION ON PV PANEL	24
2.4.1	l D	ust properties	24
2.4.2	? E	nvironment and weather conditions	25
2.4.3	3 P	V module properties	28
2.4.4	1 P	V installation design	29
2.5	Con	CLUSION	29
CHAPTER	3:	EFFECTS OF HUMIDITY ON SOLAR PV PANEL EFFICIENCY	31
3.1	INTR	ODUCTION	31
3.2	EFFE	CTS OF HUMIDITY ON SOLAR INSOLATION	31
3.3	EFFE	CTS OF HUMIDITY INGRESSION INTO PV MODULE	32

3.	.4	FACTO	DRS GOVERNING RELATIVE HUMIDITY AND HUMIDITY INGRESSION INTO PV MODULE	3
	3.4.1	En	vironment4	3
	3.4.2	PV	/ module properties 4	4
	3.4.3	PV	/ installation designs4	14
3	.5	Conc	LUSION	14
СНА	PTER 4	1:	EFFECTS OF AIR VELOCITY ON SOLAR PV PANEL EFFICIENCY	16
4	.1	INTRO	DDUCTION	16
4	.2	EFFEC	TS OF AIR VELOCITY ON SOLAR PV PANEL EFFICIENCY	18
4	.3	Conc	LUSION	54
СНА	PTER !	5:	ANALYSIS AND DISCUSSION	55
СНА	PTER (6:	CONCLUSION AND FUTURE WORK	50
СНА	PTER 7	7:	REFERENCES	51

List of Figures

FIGURE 1.1: GENERATION MIX OF ELECTRICITY IN MALAYSIA (1995-2010)	1
FIGURE 1.2: ANNUAL AVERAGE SOLAR RADIATION IN MALAYSIA (MJ/m²/DAY)	2
FIGURE 1.3: FACTORS GOVERNING PV CELL EFFICIENCY	4
FIGURE 1.4 : SCHEMATIC CROSS SECTION OF A PV CELL AND PROCESSES AFFECTING ITS EFFICIENCY	5
FIGURE 2.1: BREAKDOWN OF AIR POLLUTION SOURCES IN MALAYSIA IN 1996	9
FIGURE 2.2: IRRADIANCE EFFECT ON ELECTRICAL CHARACTERISTICS OF PV CELL	LO
FIGURE 2.3: EFFECT OF DUST DEPOSITION DENSITY ON GLASS COVER TRANSMITTANCE, WHERE THE CIRCLES REPRESENT TO	HE
MEASURED DATA AND THE SOLID LINE REPRESENTS THE CORRELATION PREDICTION DATA	15
FIGURE 2.4: PARTIAL SHADING EFFECT	18
FIGURE 2.5: THERMAL INVESTIGATION OF A CLEAN PANEL	20
FIGURE 2.6: PV PANEL WITH DEPOSITION	20
FIGURE 2.7: THERMAL INVESTIGATION OF PANEL WITH TEMPORARY DEPOSITION	21
FIGURE 2.8: EFFECT OF TEMPERATURE ON I-V CURVE	21
FIGURE 2.9: BEHAVIOUR OF I _{sc} REDUCTION DUE TO OUTDOOR SOILING	2 7
FIGURE 2.10: SOILING ACCUMULATION LAYERS	
FIGURE 3.1: LAYERS OF A TYPICAL PV MODULE	33
FIGURE 3.2: CONSTRUCTION ELEMENTS OF PV ENCAPSULATION	33
FIGURE 3.3: ENCAPSULANT DELAMINATION DUE TO HUMIDITY	34
FIGURE 3.4: DELAMINATION PROGRESS BY EXPOSURE TIME	35
FIGURE 3.5: DELAMINATION ORIGINATED ALONG FRAME AND BUSBARS	35
FIGURE 3.6: MOISTURE INGRESS AND DELAMINATION	36
FIGURE 3.7: INITIAL STAGE (A), ADHESIVE FAILURE (B) AND COHESIVE FAILURE (C)	36
FIGURE 3.8: WARPAGE OF PV MODULE	37
FIGURE 3.9: METAL CONNECTOR AFTER EXPOSURE TO 85% RELATIVE HUMIDITY AT 90°C FOR 660 HOURS	37
FIGURE 3.10: MOISTURE INGRESS CAUSES CORROSION AT CELL INTERCONNECT	38
FIGURE 3.11: CROSS-SECTIONAL SEM MICROGRAPH OF CORRODED CONTACT (LEFT) AND EDS SPECTRUM OF ALUMINIL	JM
OXIDE FORMED	38

FIGURE 3.12: YELLOWING EFFECT (LEFT) AND INITIAL MODULE CONDITION (RIGHT)
FIGURE 3.13: DISCOLOURATION DUE TO MOISTURE INGRESS
FIGURE 3.14: HOT-SPOT FORMATION SCHEMATICALLY DESCRIBED
FIGURE 3.15: MICROGRAPH SHOWING HOT-SPOT FORMED
FIGURE 3.16: PERCENTAGE OF DEGRADATION RATE OF EQE AGAINST HUMIDITY EXPOSURE
FIGURE 4.1: THEORETICAL MEAN WIND POWER FOR PENINSULAR MALAYSIA
FIGURE 4.2: THEORETICAL MEAN WIND POWER FOR EAST MALAYSIA
FIGURE 4.3: HEAT DISSIPATION MODEL
FIGURE 4.4: SUMMARY OF H _{FORCED} VALUES OBTAINED FROM INDOOR EXPERIMENTS
FIGURE 4.5: SUMMARY OF H _{FORCED} VALUES OBTAINED FROM OUTDOOR EXPERIMENTS
FIGURE 4.6: DIFFERENCE IN TEMPERATURE FOR ROOFTOP-MOUNTED AND ARRAY-INSTALLED MODULE
FIGURE 4.7: AIR TEMPERATURE EFFECT ON MODULE'S TEMPERATURE
FIGURE 4.8: ORIGIN OF EXTERNAL NOISES IN PV CELLS; DIVIDED INTO (1) LIGHT FLUCTUATIONS AND (2) RADIO FREQUENCY
EMISSIONS
FIGURE 5.1: THREE-LAYER CONFIGURATION WITH ADDITIONAL B-DRY® APPLICATION

05-4506832 pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

List of Tables

TABLE 1.1: FACTORS AFFECTING PV MODULE'S OUTPUT	4
TABLE 2.1: NORMALIZED TEMPERATURE COEFFICIENT FOR DIFFERENT MATERIALS	2
TABLE 2.2: HEIGHT AND SPACING OF DUST RIPPLES FOR DIFFERENT WIND VELOCITIES	5
TABLE 5.1: SUMMARY OF THE MAIN EFFECTS OF DUST, HUMIDITY AND AIR VELOCITY ON SOLAR PV CELL EFFICIENCY	9

x

List of Symbols

%	percentage
---	------------

kWh/m² kilowatt hour per meter square

MJ/m² megajoule per meter square

Wh/m² watt hour per meter square

MJ/m²/day megajoule per meter square per day

η efficiency

P_{out} output power (W)

P_{solar} solar power (W)

A_C collector's surface (m²)

G_T total solar insolation on surface (W/m²)

U output voltage (V)

I output current (A)

Pin pustaka.upsi.edu.my input power (W)

I_{SC} short circuit current (A)

V_{OC} open circuit voltage (V)

V_{MP} voltage at maximum power (V)

I_{MP} current at maximum power (A)

μm micrometer

μg/m³ microgram per cubic meter

g/m² gram per meter square

Δτ transmittance reduction (%)

 ρ_d dust density (g/m²)

degree degree

β tilt angle (°); temperature coefficient

less th

$\tau_{b(0)}$	beam light transmittance at differen	t incidence angle
---------------	--------------------------------------	-------------------

Qe particle extinction efficiency

 $A_{c(0)}$ total area covered at different incidence angle (m²)

°C degree Celsius

n model constant

k Boltzmann's constant (J/K)

T cell temperature (K)

q electron charge (Coulomb)

I_L photocurrent (A)

I₀ diode reverse saturation current (A)

Δη_i efficiency difference between polluted and clean panel

η₀ efficiency of clean panel

05-4506832 A_j pustaka upst edu dust type dependent coefficient ($0.06 \le A_j \le 0.24$) (m²/g) upst

j type of pollutant

 ΔM_i mass deposition of pollutant (g/m²)

≈ approximately

m/s meter per second

kmh⁻¹ kilometer per hour

0 incidence angle (°)

 R_s series resustance (Ω)

I_{ph} current generated by photon absorption (A)

wt % weight percent

Q heat transfer (W)

h convection coefficient (W/m²K)

 \pm

temperature difference (K)

panel surface area (m²) Α

forced convection heat transfer coefficient (W/m²K) hforced

 V_{\parallel} free-stream wind velocity parallel to module (measured near

> surface) (m/s) approximately

 ϵ Euro (currency)

kilowatt peak kWp

millimeter mm

microampere μΑ

List of Abbreviations

PV photovoltaic

FF fill factor

RMAQG Recommended Malaysian Air Quality Guideline

DC dirt correction factor

P-V power-voltage

I-V current-voltage

EVA Ethylene Vinyl Acetate

UV ultraviolet

EQE external quantum efficiency

a-Si:H hydrogenated amorphous silicon

RH relative humidity

EDS electrodynamic screen, energy-dispersive spectral

pustaka.upsi.edu.my
Perpustakaan Tuanku Bainun
PustakaTBainu
IEC
International Electrotechnical Commission

CIGS copper indium gallium selenide

TiO₂ titanium dioxide

SEM scanning electron microscopy

CHAPTER 1: INTRODUCTION

1.1 Introduction

Electricity demand in Malaysia has risen by 64.5% in 10 years since 1999. Growth of energy consumption is expected at 4.8% annually from year 2000 for 30 years [1]. Fossil fuel e.g. natural gas, coal and oil has been the main source of electricity of the country as seen in Figure 1.1, where in year 2010, 93.5% of the total electricity is produced by the above-stated sources [2].

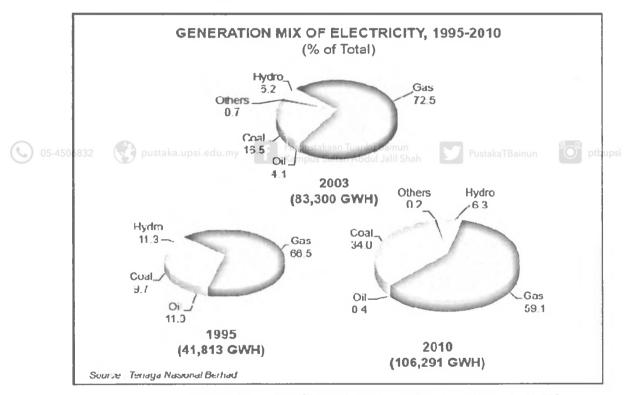


Figure 1.1: Generation mix of electricity in Malaysia (1995-2010) [2]

Transition towards power generation from renewable energy sources such as solar, wind, hydropower, biomass and tidal energy is driven by many factors which include increasing concerns on environmental impacts (climate change and global warming) and rapid growth in fuel prices. Solar energy is considered as the most promising

renewable energy source due to its availability (natural, abundant and free) and cleanliness (free from emission and noise) [3].

With average solar radiation of approximately 1400-1900 kWh/m² yearly, 400-600 MJ/m² monthly and 4000-5000 Wh/m² daily and with average sunhour of 4-6 hours/day (refer figure) [1], solar energy has a high potential to be one of the significant energy sources in Malaysia.

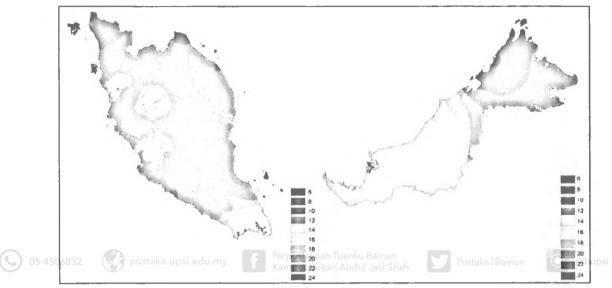


Figure 1.2: Annual average solar radiation in Malaysia (MJ/m²/day) [1]

In 1980s, photovoltaic technology was introduced in Malaysia to supply electricity to rural areas, communication towers and consumer products [1]. Solar photovoltaic (PV) cell is a device that converts energy carried by optical electromagnetic radiation to electrical energy using photovoltaic effect of semiconductors [4]. Due to inherent material property of semiconductor, efficiency of PV system is limited within 15-20% [5]. However, other factors can cause further system losses e.g. inappropriate installation design and environmental factors. Denholm, et al. [6] claimed that PV system's efficiency can reduce 10-25% further, due to inverter, wiring and dust accumulation on panel.

O5-4506832 pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Pustaka TBainun Pust alterable and unalterable factors. From another perspective view, optimum yield of the system is affected by the characteristics of the PV module itself and solar insolation on

the module [5].

PV module is an assembly of multiple solar cells in a sealed unit which is covered with glass for protection [7]. Its characteristics can be described in form of material of cell, coatings and type of glass used. Appropriate choice of module will result in maximum efficiency. On the other hand, the module material and structure itself can cause energy losses e.g. due to material efficiency limit and stacking in the structure. These factors are unalterable for a particular choice of module.

Solar insolation on a module is defined as solar radiation energy in a given time on a given surface. Quantitatively, it can be defined as the integral of solar irradiance over time, whereby solar irradiance is the instantaneous flux of solar radiation incident on surface [8]. Environmental factors (dust, wind movements and humidity etc) and PV installation design (tilt-angle, orientation etc) have huge impact on the solar insolation on the PV module. Environment is an unalterable factor in determining PV cell efficiency. However, appropriate protection and scheduled maintenance activities can eliminate or minimize their effects. Similarly, the limits from fix solar window and orientation (especially in retrofitted PV system) can be compensated using additional technologies such as sun-tracking devices and solar reflectors.

It is crucial to identify, distinguish and understand the relations between the alterable and unalterable factors governing the PV system efficiency. By doing so, the alterable factors can be optimally parameterized to minimize the effects of the unalterable factors.

Summary and overview of the factors governing the solar PV module efficiency are illustrated in diagram below.

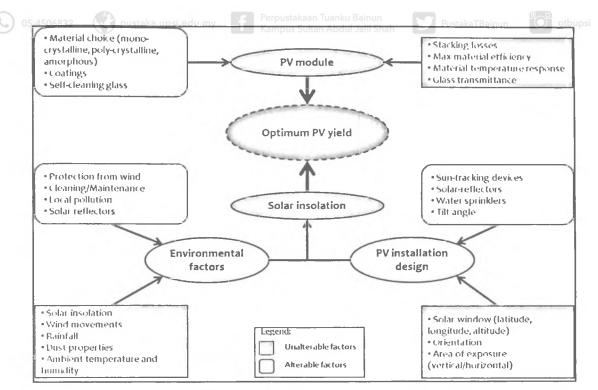


Figure 1.3: Factors governing PV cell efficiency [5]

Kaldellis and Kokala [9] stated that solar radiation intensity on surface is the main factor that affects the PV modules' output. Other major factors affecting the modules' efficiency are tabulated below, where soil and dirt can affect up to 15% of the efficiency of PV module.

Table 1.1: Factors affecting PV module's output [9, 10]

NO	FACTOR	RANGE
1	Temperature	1%-10%
2	Angle of incidence	1%-5%
3	Ageing	5% over lifetime
4	Soil and dirt	0%-15%
5	Snow	Location dependent
6	Partial shading	Location dependent
7	Diodes and wiring	3%

05-4506832 Pustaka upsi edu my Perpustakaan Tuanku Bainun Pustaka Figure 1.4 illustrates the processes that can affect PV cell's efficiency.

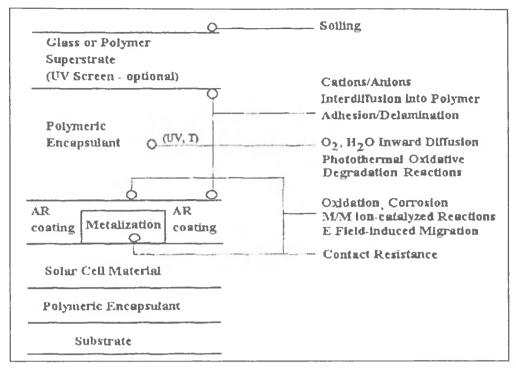


Figure 1.4: Schematic cross section of a PV cell and processes affecting its efficiency [11, 12]

O5-4506832 pustaka upsi edu my Perpustakaan Tuanku Bainun Pustaka TBainun ptbupsi In general, energy conversion efficiency, η of a PV cell is the ratio of the output power to the incident solar power [6, 13, 14].

$$\eta = \frac{P_{out}}{P_{solar}} = \frac{P_{out}}{A_c G_T} = \frac{UI}{A_c G_T}$$
 (Eq. 1.1-1)

In terms of fill factor (FF), efficiency can be calculated with equation (Eq. 1.1-2) [15], where fill factor is defined by equation (Eq. 1.1-3) [16].

$$\eta = \frac{I_{SC}V_{OC}FF}{P_{in}}$$
 (Eq. 1.1-2)

$$FF = \frac{V_{MP}I_{MP}}{V_{OC}I_{SC}}$$
 (Eq. 1.1-3)

Depends on module design, installation and environment, each photovoltaic panel has different level of performance. Environmental factors such as dust, humidity and air velocity are the varying parameters that should be considered in optimizing PV panel efficiency. Lack of understanding on how and to what extend these three factors can govern a PV panel's performance is the reason why their effects are often overlooked or sometimes simply considered as negligible by PV system designer. The challenge on investigating these effects lies in the time-fluctuating and location-dependent characteristics of dust, humidity and air velocity.

1.3 Scope of study

on solar photovoltaic (PV) panel efficiency which includes detail study on how these parameters are directly related to the panel, on how they cause indirect changes on panel electrical characteristics, visual and physical damages of panel, severity of their influence and the factors that can promote or demote their effects.

1.4 Objectives

The objectives of this project are:

- To study the multiple ways and different degrees of how dust, humidity and air velocity can affect the performance of a PV panel
- To recommend appropriate countermeasure and improvement to avoid performance degradation

This research report is divided into seven chapters. The first chapter consists of introduction, problem statement, objectives of research, scope of study and outline. Chapter two, three and four elaborate on the effects of dust, humidity and air velocity on solar PV panel efficiency respectively. In chapter five, the effects of all three factors are discussed and summarized and appropriate recommendations are proposed. Conclusion and future work are presented in chapter six, followed by the list of references in the last chapter.

