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Abstract

Ultrasound-based fetal biometry is used to derive important clinical information for

identifying IUGR (intra-uterine growth restriction) and managing risk in pregnancy. Accurate

However, qualitative visual assessment, which includes the visual identification of certain

anatomical landmarks in the image is prone to inter- and intra-reviewer variability and is also

time-consuming to perform. Automated anatomical structure detection is the first step

towards the development of a fast and reproducible quality assessment of fetal biometry

images. This thesis deals specifically with abdominal scans in the development and

evaluation of methods to automatically detect the stomach and the umbilical vein within

them.

First, an original method for detecting the stomach and the umbilical vein in fetal

abdominal scans was developed using a machine learning framework. A classifier solution

intensity image. The performance of the new method was compared on different clinically

relevant gestational age groups.

Speckle and the low contrast nature of ultrasound images motivated the idea of

introducing features extracted from local phase images. Local phase is contrast invariant and

has proven to be useful in other ultrasound image analysis application compared with

intensity. Nevertheless, it has never been implemented in a machine learning environment

discriminative power than intensity features which enabled them to be selected as the first

weak classifiers with large classifier weight.

and reproducible biometric measurement relies heavily on a good standard image plane.

was designed with AdaBoost learning algorithm with Haar features extracted from the

before. In our second experiment, local phase features were proven to have higher
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Third, a novel approach to improving the speed of the detection was developed using

a global feature symmetry map based on local phase to select the candidate locations for the

stomach and the umbilical vein. It was coupled with a local intensity-based classifier to form

a “hybrid” detector. A nine-fold increase in the average computational speed was recorded

along with higher accuracy in the detection of both the anatomical structures.

Quantitative and qualitative evaluations of all the algorithms were presented using

2384 fetal abdominal images retrieved from the image database study of the Oxford

Ultrasound Quality Control Unit of the 1NTERGROWTH-21S| project.

Finally, the “hybrid” detection method was evaluated in two potential application

scenarios. The first application was clinical scoring in which both the computer algorithm and

four experts were asked to record presence or absence of the stomach and the umbilical vein

in 400 ultrasound images. The computer-experts agreement was found to be comparable with

the inter-expert agreement. The second application concerned selecting the standard image

plane from 3D abdominal ultrasound volume. The algorithm was successful in selecting

93.36% of the images plane defined by the expert in 30 ultrasound volumes.
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Chapter 1 Introduction

i.i Motivation

Small for gestational age (SGA) refers to the situation when a fetus is smaller than

expected for the number of weeks of pregnancy. Newborn babies with SGA are often

associated with having intrauterine growth restriction (IUGR), which is a more specific

condition where the fetus fails to reach its growth potential. 18 million babies are born every

year with low birth weight because of IUGR and/or prematurity, resulting in significant short-

and long term morbidity and mortality (Lawn et al., 2005). Growth restricted fetuses have

poorer neonatal outcomes and it is recognised that developmental delay associated with

IUGR leads to significant health care and developmental problems during childhood and

most likely in adult life (Barker, 2006). Recognition of the serious risks associated with

IUGR has elevated its diagnostic importance among perinatologists. Thus, obtaining accurate

assessment of fetal growth and gestational age from fetal biometry for identifying risks to the

fetus/neonate is very important.

Historically, X-ray was used to measure fetal dimensions (e.g. fetal head, pelvic

dimension) (Shenton, 1922) before the development of ultrasound. The development of two-

dimensional (2D) ultrasound made it possible to measure the dimensions of bones and soft

tissue structures of the fetus faster and more reliably than with x-rays. 2D ultrasound is

currently considered to be the first choice for a safe, non-invasive, accurate and cost-effective

investigation in the fetus. It has progressively become an indispensable obstetric tool and

plays an important role in pregnancy management. Comprehensive ultrasound examination

during pregnancy includes standard fetal biometric measurements, which are primarily used

to estimate the gestational age of the fetus, to track fetal growth patterns, to estimate fetal
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weight and to detect abnormalities. A detailed description of ultrasound-based fetal biometry

used for age estimation and growth assessments is given in Section 2.2.

Fetal biometry is determined from standardized ultrasound planes taken from the fetal

head, abdomen and thigh. The acquisition of optimal image planes from which these

measurements are taken is crucial to allow for accurate and reproducible biometric

measurements, and also to minimize inter- and intra-observer variability. Criteria and

description of standard fetal biometric planes are presented in Section 2.5.

The importance of quality control for the scanning procedures and measurements has

been emphasized (Dudley, 2006, Ville, 2008) and a quality control policy based on image

scoring has been proposed (Salomon et al., 2006). To highlight challenges in scanning and

acquiring the standard image plane, scans made by several different sonographers for finding

the abdominal measurements after they had been briefed on the scanning protocol for a

scans shown in the figure are magnified satisfactorily, the appearance of the stomach and the

umbilical vein are inadequate in some of the scans. According to Salomon’s grading, scans in

the first column are acceptable with the stomach and the umbilical vein clearly identified and

in the correct position. However, elongated umbilical vein appearance in the second column’s

images indicates that the plane is too angled.

growth study known as INTERGROWTH-21st are shown in Figure 1.1. Even though all the
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There are several limitations of visual image quality assessment. The process of image

review, which includes the visual identification of certain anatomical landmarks in the image.

requires significant human resources. Extensive qualitative analysis is also time-consuming

and costly. Furthermore, there is an issue of inter- and intra-reviewer variability and also bias

imposed by a human reviewer. An automated image scoring system, which 1) can perform

the evaluation quickly, 2) is robust to appearance variations of the visual object ot interest,

and 3) efficient and economical for any scale of implementation would be a valuable support

to the quality control process.

Figure 1.1: Scans acquired by different sonographers for finding abdominal measurement 

during image quality training session. The stomach and the umbilical vein (white arrows) are 

dearly visible in the images in the first column. However, elongated umbilical vein in images 

in the second column indicates that the plane is too angled.
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This thesis deals specifically with the development of automated methods for the

detection of two important landmarks (the stomach and the umbilical vein) in fetal abdominal

ultrasound scans using machine learning. The plane containing these two landmarks is

described in the early proposal for using the abdominal circumference measurement for fetal

weight estimation (Campbell and Wilkin, 1975). The plane containing these two landmarks

was adopted in constructing the widely used chart for abdominal circumference size (Chitty

et al., 1994) and also proposed in the image quality scoring system (Salomon and Ville,

2005).

Contributions1.2

The main contributions of this thesis are summarized below:

1. The development of an original method to detect the stomach and the umbilical vein

in fetal abdominal scan using a machine learning technique (Chapter 3). Parts of this

chapter have been published at peer-reviewed conferences:

i.

Biomedical Imaging (ISBI), 2011.

ii. Image Analysis Using Machine Learning: Anatomical Landmarks Detection in

Fetal Ultrasound Image. IEEE Signature Conference on Computers, Software,

and Applications (COMPSAC), 2012.

The investigation of introducing features extracted from the local phase1 image into2.

the machine learning framework for the detection of the two anatomical landmarks

1 Local phase concept used in this thesis is different than the term 'phase' used in the radio frequency signal 
used at acquisition time for ultrasound images. Detailed explanation can be found in Chapter 4.

Anatomical Landmarks using Adaboost. IEEE International Symposium on

Quality Control of Fetal Ultrasound Images: Detection of Abdomen
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peer-reviewed conference:

i. Multi-Scale Local Phase Features for Anatomical Object Detection in Fetal

Ultrasound Images. Medical Image Understanding and Analysis Conference

(MIUA), 2012.

3. The development of a faster and more accurate detector using a hybrid approach for

the detections of the stomach and the umbilical vein (Chapter 5). Part of this chapter

has been published at a peer-reviewed conference:

Integration of Local and Global Features for Anatomical Object Detection in

Ultrasound. International Conference on Medical Image Computing and

Computer Assisted Intervention (MICCAI), 2012.

The evaluation of the proposed detection method in two clinical application scenarios4.

(Chapter 6). Parts of this chapter has been published at a peer-reviewed conference:

Automated Selection of Standardized Planes from Ultrasound Volume.

MICCAI Workshop on Machine Learning in Medical Imaging (MLMI), 2011.

and as abstracts in the following clinical meetings:

A Pilot Study of Automated Image Scoring for Quality Control Purposes inii.

the Context of Multicentre Studies: Abdominal Circumference. World

Congress on Ultrasound in Obstetrics and Gynecology, 2011.

Automated Fetal Biometry Image Landmark Detection for Confirming Correctiii.

Image Planes: Abdominal Circumference. World Congress on Ultrasound in

Obstetrics and Gynecology', 2012.

(stomach and umbilical vein) (Chapter 4). Part of this chapter has been published at a
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iv. Automated Standard Plane Selection from Fetal Abdominal Ultrasound

Ultrasound in Obstetrics and Gynecology, 2012.

1.3 Thesis Outline

Chapter 2 describes the background knowledge on fetal growth restriction and the

current clinical practice which uses ultrasound for its assessment along with its challenges

and the quality control process. The chapter also provides the review of related image

analysis work in fetal ultrasound domain and the application of machine learning for

detection purposes in medical imaging.

Chapter 3 describes the initial method used for the detection of important anatomical

landmarks in fetal abdominal ultrasound images using machine learning framework.

Chapter 4 deals with utilizing features from multi-scale local phase images in the same

detection framework. The efficiency of the new feature sets are compared to the performance

intensity-based features used in Chapter 3.

Chapter 5 introduces a new hybrid approach for the enhancement of the performance

and the speed of the detection. A multi-scale feature symmetry measure derived using local

phase is combined with the local intensity-based detector (developed in Chapter 3) is utilized

for fast object detection and its detection performance is analysed.

Chapter 6 evaluates the application of the proposed algorithm in two potentials

scenarios: comparison with experts’ agreements in recording the presence and absence of the

anatomical structures in fetal abdominal scan and utilizing the algorithm for the selection of

standard plane from 3D volumes.

Chapter 7 concludes the thesis and discusses directions for future work.

Volumes using a Machine Learning Algorithm. World Congress on




