

A FACILE SURFACTANT-ASSISTED SYNTHESIS OF GRAPHENE OXIDE/ZINC OXIDE CATALYST FOR THE DEGRADATION OF METHYLENE BLUE DYE

UNIVERSITI PENDIDIKAN SULTAN IDRIS

2024

A FACILE SURFACTANT-ASSISTED SYNTHESIS OF GRAPHENE OXIDE/ZINC OXIDE CATALYST FOR THE DEGRADATION OF METHYLENE **BLUE DYE**

MIOR MOHD HASRI BIN ABDUL AZIZ

DISSERTATION PRESENTED TO QUALIFY FOR A MASTERS IN SCIENCE (RESEARCH MODE)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2024

Sila tanda (√) Kertas Projek Sarjana Penyelidikan Sarjana Penyelidikan dan Kerja Kursus Doktor Falsafah

INSTITUT PENGAJIAN SISWAZAH

PERAKUAN KEASLIAN PENULISAN

Perakuan ini telah dibuat pada(hari l	bulan) ⁰⁸ (bulan) 20 ²⁴
i. Perakuan pelajar :	
NYATAKAN NAMA PELAJAR, NO. MATE disertasi/tesis yang bertajuk	Z, M20202001351, FAKULTI SAINS DAN MATEMATIK (SILA RIK DAN FAKULTI) dengan ini mengaku bahawa DF GRAPHENE OXIDE/ZINC OXIDE CATALYST FOR THE
hasil kerja yang mengandungi hak cipta maksud yang dibenarkan dan apa-apa p	k memplagiat dan apa-apa penggunaan mana-mana telah dilakukan secara urusan yang wajar dan bagi petikan, ekstrak, rujukan atau pengeluaran semula kerja yang mengandungi hak cipta telah dinyatakan
Saya, PROF. DR. AZMI MOHAMED mengesahkan bahawa hasil kerja pelajar ya A FACILE SURFACTANT-ASSISTED SYNTHESIS OXIDE CATALYST FOR THE DEGRADATION OF	S OF GRAPHENE OXIDE/ZINC
	nama di atas, dan telah diserahkan kepada Institut nagian/sepenuhnya syarat untuk memperoleh Ijazah (SLA NYATAKAN NAMA
IJAZAH).	(JEA WIATANAN NAMA
21/08/2024	3/2
Tarikh	Tandatangan Penyelia

PROFESSOR DR. AZMI MOHAMED

Lecturer

Department of Chemistry

Faculty of Science and Mathematics
Universiti Pendidikan Sultan Idris
35900 Tanjong Malim

UPSI/IPS-3/BO 31 Pind,: 01 m/s:1/1

INSTITUT PENGAJIAN SISWAZAH / INSTITUTE OF GRADUATE STUDIES

BORANG PENGESAHAN PENYERAHAN TESIS/DISERTASI/LAPORAN KERTAS PROJEK DECLARATION OF THESIS/DISSERTATION/PROJECT PAPER FORM

Tajuk / <i>Title</i> :		TANT-ASSISTED SYNTHESIS OF GRAPHENE OXIDE/ZINC FOR THE DEGRADATION OF METHYLENE BLUE DYE
No. Matrik / <i>Matric's No.</i> :	M20202001351	
Saya / <i>I</i> :	MIOR MOHD HASI	RI BIN ABDUL AZIZ
	(Nama pelajar / Student's Name)
di Universiti Pendidikan Su seperti berikut:-	ıltan Idris (Perpust	oran Kertas Projek (Kedoktoran/Sarjana)* ini disimpan kakaan Tuanku Bainun) dengan syarat-syarat kegunaan Idris (Tuanku Bainun Library) reserves the right as follows:-
		k ini adalah hak milik UPSI. endidikan Sultan Idris
penyelidikan.		enarkan membuat salinan untuk tujuan rujukan dan nake copies for the purpose of reference and research.
antara Institusi Pen	igajian Tinggi.	salinan Tesis/Disertasi ini sebagai bahan pertukaran of the thesis for academic exchange.
4. Sila tandakan (√)	bagi pilihan katego	ori di bawah / Please tick (√) for category below:-
SULIT/COM	IFIDENTIAL	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam Akta Rahsia Rasmi 1972. / Contains confidential information under the Official Secret Act 1972
TERHAD/RE	STRICTED	Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan ini dijalankan. / Contains restircted information as specified by the organization where research was done.
TIDAK TERI	HAD / OPEN ACC	CESS
Hum	+	sfr.
(Tandatangan Pe	lajar/ Signature)	(Tandatangan Penyelia / Signature of Supervisor) & (Nama & PROFFESSON OF NATION Stamp)
Tarikh:		Department of Chemistry Faculty of Science and Mathematics Universiti Pendidikan Sultan Idris 35900 Tanjong Malim

Catatan: Jika Tesis/Disertasi ini **SULIT** @ **TERHAD**, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai **SULIT** dan **TERHAD**.

Notes: If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

ACKNOWLEDGEMENTS

Gratitude overflows as I humbly acknowledge the Almighty Allah SWT, whose strength, courage, and blessings have empowered me to successfully complete my master's projects and thesis. Without His divine guidance, this achievement would have remained beyond reach. A heartfelt dedication of immeasurable appreciation is reserved for my pillars of unwavering support—my cherished parents and family, Abdul Aziz Mat Ali and Siti Samsiah Syed Abdul Rahman. Their boundless love and steadfast affection have been the bedrock of my resilience. To my paramount supporter, Muhd Firdaus Farhan, your unparalleled inspiration and steadfast encouragement have been the illuminating beacons guiding my journey. I express profound gratitude to my esteemed supervisor, Prof. Dr. Azmi Mohamed, whose continuous support, motivational wisdom, and profound expertise have been pivotal in the fruition of my thesis study and research. The privilege of having such dedicated advisors and mentors is a source of deep appreciation. Special acknowledgment is extended to my mentor, Dr. Tretya Ardyani, for her uplifting encouragement, profound insights, and significant role in making my postgraduate journey truly inspiring. Gratitude flows towards the entire UPSI Chemistry & Physics laboratory and instrumentation staff, including Mr. Mohd Zurin Mahmood, Mr. Ibrahim Saidin, Mr. Hashimi Ma'ani, Mr. Hazim Baharudin, Mr. Mohd Faisal Mohd Yassin, Mr. Ahmad Isa Hamizi, Mrs. Johana Jumiran, and Mr. Mohd Akmal Farhan Rashid, for their steadfast support and facilitation of access to laboratory equipment. Heartfelt thanks are extended to Prof Julian and Dr. Masanobu Sagisaka for their invaluable assistance in colloidal instrumentation. Gratitude is also extended to my colleagues for the stimulating discussions and shared camaraderie during our collaborative endeavors. In acknowledgment of all those who have directly or indirectly contributed to the realization of this project, my deepest appreciation resonates.

ABSTRACT

This research aimed to study the role and the stabilization mechanism of hybrid photocatalyst comprising surfactant-exfoliated graphene oxide (sEGO) with zinc oxide (ZnO) for methylene blue (MB) removal. Graphite sheet was exfoliated to produce sEGO by employing synthesized triple chain anionic surfactant, sodium 1,4bis(neopentyloxy)-3-(neopentylcarbonyl)-1,4-dioxobutane-2-sulfonate (TC14) compared with commercially available sodium dodecyl sulphate (SDS). The structure, interfacial and colloidal stability of surfactant were studied using proton nuclear magnetic resonance (¹H NMR) spectroscopy, air-water (a/w) surface tension and zeta potential measurement. The morphology of photocatalyst were characterized using Field emission scanning electron microscopy (FESEM), Raman spectroscopy, Highresolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The performance of photocatalyst for MB removal were measured through ultraviolet-visible (UV-vis) spectroscopy. The aggregation behaviour of sEGO in the presence of ZnO photocatalyst were analyzed using smallangle neutron scattering (SANS). Results showed that introduction of the triple-chain TC14 surfactant for sEGO with ZnO as photocatalyst demonstrated outstanding MB removal efficiency at 98.53%. SANS analysis revealed that employing TC14 surfactant enhances sEGO properties by having high surface area and rich oxygen functional group as photocatalyst compared to commercial SDS surfactant. In conclusion, the chain branching modification in surfactant chemical structure optimize sEGO properties with ZnO as efficient photocatalyst for MB removal. As implications, modification of surfactant in sEGO with ZnO as photocatalyst opens up new alternative approach for wastewater treatment.

SINTESIS MUDAH BERBANTU SURFAKTAN BAGI MANGKIN GRAFENA OKSIDA/ZINK OKSIDA BAGI PENGURAIAN PEWARNA METILENA BIRU

ABSTRAK

Kajian ini bertujuan untuk mengkaji peranan dan mekanisma penstabilan pemangkinfoto hibrid terdiri daripada surfaktan-pengelupasan grafena oksida (sEGO) dengan zink oksida (ZnO) bagi penyingkiran metilena biru (MB). Lembaran grafit telah dikelupas untuk menghasilkan sEGO dengan menggunakan surfaktan anionik berantai tiga yang disintesis iaitu 1, 4-bis (neopentiloksi) -3- (neopentiloksikarbonil) - 1, 4- dioksobutana-2-sulfonat (TC14) dan dibandingkan dengan natrium dodesil sulfat (SDS) yang terdapat secara komersial. Struktur, kestabilan antara muka dan koloid surfaktan telah dikaji menggunakan spektroskopi resonans magnet nuklear proton (¹H NMR), pengukuran tegangan permukaan udara-air (a/w), dan potensi zeta. Morfologi pemangkin-foto telah dicirikan menggunakan mikroskopi pengimbas pancaran medan elektron (FESEM), spektroskopi Raman dan mikroskopi penghantaran elektron resolusi tinggi (HRTEM), belauan sinar-X (XRD) dan analisis termogravimetri (TGA). Prestasi pemangkin-foto untuk penyingkiran MB telah diukur melalui spektroskopi ultralembayung-nampak (UV-vis). Kelakuan agregasi sEGO dengan kehadiran pemangkin-foto ZnO telah dianalisis menggunakan analisis serakan neutron sudut kecil (SANS). Dapatan kajian menunjukkan pengenalan surfaktan rantai tiga TC14 ke atas sEGO dengan ZnO sebagai pemangkin-foto menunjukkan kecekapan penyingkiran MB yang tertinggi pada 98.53%. Analisis SANS menunjukkan bahawa penggunaan surfaktan TC14 meningkatan sifat sEGO dengan mempunyai luas permukaan yang tinggi dan kumpulan berfungsi yang kaya dengan oksigen sebagai pemangkin-foto berbanding dengan surfaktan komersial SDS. Kesimpulannya, pengubahsuaian rantai bercabang dalam struktur kimia surfaktan mengoptimumkan sifat sEGO dengan ZnO sebagai pemangkin-foto yang cekap untuk penyingkiran MB. Sebagai implikasinya, pengubahsuaian surfaktan dalam sEGO dengan ZnO sebagai pemangkin-foto membuka pendekatan alternatif baru untuk rawatan air sisa.

CONTENTS

			Page
D	ECLARATIO	N OF ORIGINAL WORK	ii
D	ECLARATIO	N OF DISSERTATION	iii
A	CKNOWLED	GEMENTS	iv
A	BSTRACT		V
	BSTRAK		vi
05-4506832 C	ONTENTS		Vii
L	IST OF TABL	ES	xiv
L	IST OF FIGU	RES	XV
L	IST OF ABBR	REVIATIONS	xix
C	HAPTER 1	INTRODUCTION	
		1.1 Research Background	1
		1.2 Problem Statement	6
		1.3 Aim and Research Objectives	8

	1.4	Scope of Study	8		
	1.5	Significance of Study	9		
CHAPTER 2	LITERATURE REVIEW				
	2.1	Dye Pollution in Water	11		
	2.2	Current Dye Removal Methods	12		
		2.2.1 Physical Process	12		
		2.2.2 Biological Process	14		
		2.2.3 Chemical Process	16		
05-4506832 pustaka.	2.3	Photocatalytic Dye Treatments Pustaka TBainun	16 ptbups		
		2.3.1 Fundamental of Photocatalysis	16		
		2.3.2 Metal Oxide as Semiconductor Photocatalyst	18		
		2.3.3 Basic Mechanism of Dye Photodegradation	23		
	2.4	The Unveiling of Graphene	26		
	2.5	The Lattice Structure of Graphene	28		
		2.5.1 Properties of Graphene Oxide	30		
	2.6	Remarkable Features of Graphene	33		
		2.6.1 Electrical Properties of Graphene	33		

		2.6.2	Optical Pr	roperties of Graphene	34
		2.6.3	Thermal F	Properties of Graphene	34
		2.6.4	Mechanic	al Properties of Graphene	35
	2.7	Method	d of Synthe	esizing Graphene	36
		2.7.1	Physical A	Approach	36
			2.7.1.1	Micromechanical Exfoliation	36
			2.7.1.2	Epitaxial Growth on Silicon	37
				Carbide	37
05-4506832	pustaka.upsi.edu		2.7.1.3 Perpustak Kampus S	Chemical Vapor Deposition aan Tuanku Bainun ultan Abdul Jalil Shah	37 ptbup
		2.7.2	Chemical	Approach	38
			2.7.2.1	Hummer's Method	39
			2.7.2.2	Electrochemical Exfoliation	41
				Method	71
	2.8	Surfact	ant		43
		2.8.1	General Ir	ntroduction	43
		2.8.2	Adsorptio	n at Interface	45
		2.8.3	Surfactant	Micellization	46

		2.8.4 DLVO Theory: Ground Rules for Colloidal Stability in Charge-Stabilized Colloids	49
		2.8.5 Simulation and Experimental Investigations of Surfactant Self-Assembly on Graphene Surfaces	54
		2.8.6 Surfactant Interactions with Graphene	59
		2.8.7 Dye Interactions	65
	2.9	Fabrication of Hybrid Photocatalyst Materials	68
CHAPTER 3	ME	THODOLOGY	
	3.1	Introduction	70
	3.2	Materials	74
05-4506832 pustaka.		3.2.1 Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Chemicals	ptbups
		3.2.2 Solvents	74
	3.3	Synthesis of Surfactant	75
		3.3.1 Esterification	75
		3.3.2 Purification of Triester	76
		3.3.3 Sulfonation	76
		3.3.4 Surfactant Purification	77
	3.4	Preparation of Surfactant Assisted Exfoliation Graphene Oxide (sEGO) by Electrochemical Exfoliation Method	78

	3.5	Prepai	ration of s	sEGO-ZnO by Immersion Method	79
	3.6	•	vlene Blue catalyst	e (MB) degradation by sEGO-ZnO	80
		3.6.1	Prepara	tion of Methylene Blue Solution	80
		3.6.2	Photoca	ntalysis	80
	3.7	Chara	cterizatio	n	82
		3.7.1	Surfacta	ant	82
			3.7.1.1	Proton Nuclear Magnetic Resonance (¹ H NMR) Spectroscopy	82
			3.7.1.2	Air-Water (a/w) Surface Tension Measurement	83
05-4506832	pustaka.upsi.ed	3.7.2	Photoca	ntalyst uanku Bainun us Sukan Abdul Jalil Shah	83 ptbups
			3.7.2.1	Field Emission Scanning Electron Microscopy (FESEM)	83
			3.7.2.2	High Resolution Transmission Electron Microscopy (HRTEM)	84
			3.7.2.3	Raman Spectroscopy	85
			3.7.2.4	Thermogravimetric Analysis (TGA)	85
			3.7.2.5	X-ray Diffraction Analysis (XRD)	86
			3.7.2.6	UV-Vis/NIR Spectroscopy for Dye Photodegradation	87
		3.7.3	Graphe	ne-Stabilized Surfactant Dispersion	88
			3.7.3.1	Zeta Potential Measurement	88

	3.7.3.2 Small-Angle Neuron Scattering (SANS)	89
CHAPTER 4 RE	SULTS AND DISCUSSIONS	
4.1	Introduction	92
4.2	The Characterization of Synthesized Surfactant	94
	4.2.1 Proton Nuclear Magnetic Resonance (¹ H NMR) Spectroscopy	94
	4.2.2 Air-Water (a/w) Surface Tension Measurement	97
4.3	The Characterization of Photocatalyst	101
	4.3.1 Morphology: FESEM and HRTEM	101
05-4506832 pustaka.upsi.ed	4.3.2 Raman Spectroscopy	106 ptoup
	4.3.3 Thermal Properties	108
	4.4.4 X-ray Diffraction (XRD)	110
4.4	Surfactant and Stabilization and Aggregation	112
	4.4.1 Zeta Potential Measurement	112
	4.4.2 Small-Angle Neuron Scattering (SANS)	114
4.5	Effect of the Experimental Parameter Towards the Photodegradation of MB	117
	4.5.1 Effect of Initial Dye Concentration	118
	4.5.2 Effect of Dye Solution pH	119

	4.5.3	Effect of Photocatalyst Dosage	121
4		ole of Surfactant on the Exfoliation of Graphite ye Removal Mechanism	125
CHAPTER 5	CONCLUS	SION	
5	5.1 Conclu	usion	128
5	5.2 Recom	nmendations	130
REFERENCE			131
APPENDICES			166

LIST OF TABLES

	Table No.		Page
	2.1	The Pros and Cons Physical Process	13
	2.2	The Pros and Cons of the Biological Process	15
	2.3	Properties of Homogeneous and Heterogeneous Catalyst	18
	2.4	Physical Properties of ZnO Wurtzite Structure at T=300 K	22
	3.1	Surfactant Employed in this Research	73
05-45068	3.2	The Study Provides the Scattering Length Densities (p) for the Constituents Employed in this Research Herpustakaan Iwanku Bamun Kampus Sultan Abdul Jalil Shah Pustaka TBainun	90 ptbup
	4.1	Comparison of Expected and Experimental ¹ H NMR Peak Integrals for Surfactant SDS. Labels A to C Represent the Environment of Each Proton Set in The Surfactant	96
	4.2	Comparison of Expected and Experimental ¹ H NMR Peak Integrals for Surfactant TC14. Labels A to D Represent the Environment of Each Proton Set in The Surfactant	96
	4.3	Parameters Derived from Surface Tension Measurements.	98
	4.4	Zeta Potentials of sEGO and Its ZnO Complexes with Different Surfactants	113
	4.5	Model Fit Parameters for The SANS Data	117
	4.6	Comparison of the Methylene Blue (MB) Degradation Rate of Various Reported Graphene-Based Photocatalysts	121

LIST OF FIGURES

Figure No.		Page
2.1	Characteristics of a Good Photocatalyst	19
2.2	ZnO Phases (a) Cubic Rocksalt, (b) Cubic Zinc Blende and (c) Hexagonal Wurtzite	22
2.3	Illustrates the Process of MB Degradation Facilitated By Ag/GO/Zno Photocatalyst	24
2.4	MB degradation Pathway in Photocatalysis Process	25
05-4506832.5 pustal	Graphene Is a Two-Dimensional Building Material for All Carbon Materials. It Can Be Rolled into 0D Buckyballs, layered into 3D Graphite, Or Wrapped into 0D Buckyballs	27 ptbup
2.6	Illustrates (a) The Low-Energy Band Structure of Graphene (GE), (b) The Honeycomb Lattice, and (c) The Reciprocal Lattice	29
2.7	Dispersion of GO in Various Solvents	31
2.8	The Structural Model of Graphene Oxide (GO) Encompasses Various Proposed Models, Including The Lerf-Klinowski Model (Lerf et al., 1998), Dékány Model (Szabó et al., 2006), Nakajima-Matsuo Model (Nakajima et al., 1988; Nakajima & Matsuo, 1994), Hofmann Model (Hofmann & Holst, 1939), Ruess Model (Ruess, 1947), and Scholz-Boeh Model (Scholz, 1969)	32
2.9	Energy Dispersion of (a) A Typical Two-Dimensional Semiconductor and (b) A Zero-Gap Semiconductor	33

2.10	Schematic Representation of Surfactants	43
2.11	The Different Types of Surfactants, and It Is Accompanied by Chemical Structures of Surfactant Examples	45
2.12	Varieties Of Micelles and Their Corresponding Critical Packing Parameter (CPP) Values	49
2.13 05-4506832 pusta	Illustrates key characteristics of a graphene–SDBS (Sodium Dodecyl Benzene Sulfonate) dispersion, offering insights into its stability and interactions. (A) Zeta Potentials are displayed for different scenarios, including a freshly prepared for a Fresh Graphene–SDBS Dispersion (CSDBS = 0.5 mg/ml, CG = 0.006 mg/ml), and SDBS dispersion (CSDBS = 0.5 mg/ml), and Aged (6 Week Old) Graphene–SDBS Dispersion (CSDBS = 0.5 mg/ml, CG = 0.002 mg/ml). (B) The Absorbance at wavelength (λ = 650 nm) as a Function of Time for a CG = 0.006 mg/ml, CSDBS = 0.5 mg/mL Sample. (C) Plot of the Total Interaction Potential per Unit Area for Two Charged Parallel Sheets Separated by Distance D. The DLVO and vdW Components are also shown for Comparison. Inset: Graph of Upper and Lower Limits of V_T , Max, as a Function of Zeta Potential	51 ptbu
2.14	Displays various aspects of the S-G-PC nanocomposites (a) Scattering Profiles of the S-G-PC Nanocomposites at 0.2 (O), 1.1 vol% (Δ), 2.2 vol% (□) Filler Loading Fitted with Stacked disk Model (–). (b) Guinier Plot of the 0.1 vol% S-G-PC Nanocomposite. (c) Comparison of the Theoretical Representation of Stacked Disk Model with the Experimental Data of 2.2 vol% S-GPC Nanocomposites	56
3.1	The General Synthesis of Tri-Chain Sulphosuccinate Surfactant	75
3.2	A Schematic Illustration of the Electrochemical Exfoliation of Graphite for sEGO Preparation	79
3.3	The Full Process of sEGO-ZnO Catalyst Preparation and Performance	81

	4.1	H NIVIR Spectrum for Surfactant SDS. Solvent is D ₂ O	93
	4.2	¹ H NMR Spectrum for Surfactant TC14. Solvent is CDCl ₃	95
	4.3	Air–Water Surface Tension γ_{cmc} Vs ln(Concentration) Plot for Surfactant Solutions (a), sEGOs (b) And sEGOs-ZnO (c) At 25 °C	99
	4.4	FESEM Images of SDS sEGO (A-a'), TC14 sEGO (B-b'), ZnO (C-c'), SDS sEGO-ZnO (D-d') and TC14 sEGO-ZnO (E-e') and EDX Analysis for TC14 sEGO-ZnO (f). Red Squares Indicate the Area Used for Observation at High Magnification Shown in a'- e'	104
	4.5	HRTEM Micrographs for TC14 sEGO-ZnO	105
	4.6	Raman Spectra of SDS sEGO (a), TC14 sEGO (b), SDS sEGO-ZnO (c) And TC14 sEGO-ZnO (d)	107
05-45068	4.7 32 pusta	Thermogram Analysis for SDS, TC14, ZnO, sEGOs and TC14/SDS sEGOs-ZnO _{takaan} Tuanku Bainun Kampus Sultan Abdul Jalil Shah	108 ptbup
	4.8	XRD plot of nanocomposites; (a) TC14 sEGO, (b) ZnO, and (c) TC14 sEGO-ZnO	111
	4.9	SANS Data for (a) TC14, TC14 sEGO and TC14 sEGO-ZnO, (b) SDS sEGO and SDS sEGO-ZnO. [Surfactant] = 30 mM, and [sEGO] = 0.2 mg/mL at 25 °C. Lines Are Model Fits for Ellipsoid and Spherical Micelles (Incorporating A Hayter–Penfold S(Q)). Characteristic Error Bars Are Shown for The Lowest Intensity Samples	116
	4.10	Percentage Degradation of MB from Aqueous Dispersion with 3 h Contact Time. [MB]=15 mg L ⁻¹ , dosage = 10 mg, pH 9	118
	4.11	Effect of Initial Dye Concentration for Photocatalytic Studies On MB Removal at 22.5°C. [MB]= 5-25 mg L ⁻¹ , dosage= 10 mg, pH 6	119

- 4.12 Optimization of Colloidal Environment 121 Photocatalytic Studies Using [MB]= 15 mg L⁻¹, dosage= 10 mg, pH= 3,6,7,9 at 22.5°C
- 4.13 Optimization of Dosage in [MB]= 15 mg L⁻¹, pH 9, dosage= 122 5, 10 and 15 mg at 22.5°C

LIST OF ABBREVIATIONS

AOPs Advanced oxidation processes

Limiting area per molecule at cmc Acmc

a/w Air-water

Bi₂WO₆ Russellite

CBConduction band

 Cd^{2+} Cadmium ion

CdS Cadmium sulfide

05-450683 cm²V⁻¹S⁻¹ stakes Square centimeters per volt per siemens

Critical micelle concentration cmc

 CO_2 Carbon dioxide

Co₃O₄ Cobalt(II,III) oxide

CVD Chemical vapour deposition

DLS Dynamic light scattering

Band gap energy Eg

eVElectronvolt

FESEM Field emission scanning electron microscopy

GO Graphene oxide

GPa Gigapascals

 H_2O Water

XX

H₂SO₄ Sulfuric acid

HRTEM High-resolution transmission electron microscopy

I(Q) Scattering intensity

I_D/I_G Ratio of defect and graphitic band intensity

K Kelvin

KMnO₄ Potassium permanganate

MB Methylene blue

meV Millielectronvolt

MO dye Methylene orange dye

P(Q) Form factor

pH Potential of hydrogen

rGO Reduced graphene oxide

05-45068 SANS Small-angle neutron scattering Small-angle neutron scattering

PustakaTBain

SDS Sodium dodecylsulfate

SLD Scattering-length density

SnO₂ Tin oxide

SrTiO₃ Strontium titanate

sEGO Surfactant-assisted exfoliation graphene oxide

S(Q) Structure factor

TC14 Sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-

dioxopentane-2-sulfonate

TGA Thermogravimetric analysis

TiO₂ Titanium dioxide

TMS Tetramethylsiloxane

UV Ultraviolet

V(*h*) Potential energy

VBValence band

 WO_3 Tungsten oxide

XRD X-ray diffraction

ZnO Zinc oxide

 ZrO_2 Zirconium dioxide

Γ Adsorption isotherm

Surface tension at cmc γ_{cmc}

ζ-potential Zeta potential

¹H NMR Proton nuclear magnetic resonance

CHAPTER 1

INTRODUCTION

Water, as a fundamental necessity, profoundly influences our daily lives. However, the escalating challenges of water pollution, rapid urbanization, and a burgeoning global population have thrust humanity perilously close to a severe water resource shortage. A stark revelation from the United Nations World Water Development Report (2017) underscores the alarming reality that over 80% of wastewater globally, and surging to over 95% in certain least developed nations, is released into the environment without undergoing any treatment. This dire situation underscores the crucial role of wastewater management, as highlighted by the report, not only in mitigating pollution but also in generating social, environmental, and financial benefits essential for sustainable development. The report emphasizes the urgency of adopting responsible wastewater

management practices to address these multifaceted challenges. It is within this context that the work presented here gains paramount significance, contributing to the collective effort required to safeguard water resources and foster a sustainable future. The latest update from the United Nations on wastewater treatment outlines ambitious goals aimed at enhancing water quality globally. The strategies involve reducing pollution, eliminating improper dumping practices, and restricting the discharge of hazardous materials and chemicals into water bodies. The overarching objective is to diminish untreated pollution significantly. A key target set by the United Nations is that, by the year 2030, the entire world will adopt comprehensive measures for recycling and reusing water resources (Alabaster, Johnston, Thevenon, & Shantz, 2021). In the context of these global initiatives, the work conducted here gains heightened importance. The research and advancements in water treatment technologies discussed in this context contribute directly to the collective effort to achieve these worldwide goals, aligning with the United Nations' vision for a sustainable and responsibly managed water future.

The escalating contamination of water systems, encompassing streams, rivers, and lakes, has emerged as a pressing issue in contemporary times. This predicament is largely attributed to the unregulated discharge of industrial pollutants without adequate treatment. Notably, textile industries significantly contribute to the release of wastewater laden with heavy metals and non-biodegradable organic dyes (Saravanan, Gracia, & Stephen, 2017). Among these pollutants, methylene blue (MB) dye, an extensively employed aromatic cationic dye in paper, agrochemical, and textile industries, stands out as a pervasive environmental contaminant (González, Villanueva, Piehl, & Copello, 2015). Its introduction into water bodies imparts undesirable color,

rendering the water unsuitable for various purposes, including drinking. Given the persistence of these dyes and their adverse effects on living organisms through prolonged exposure, concerted efforts are imperative to preserve the cleanliness of water sources. Consequently, the continuous removal of such pollutants from water assumes paramount importance in ensuring a sustainable and healthy environment.

Various techniques, including coagulation, biodegradation, adsorption, and membrane filtering, have been employed for the remediation of colored wastewater. However, these conventional approaches have demonstrated limitations in completely degrading contaminants in polluted water. Membrane technologies, while effective, are expensive and may lead to the generation of secondary pollutants, contrasting with adsorption and coagulation, which primarily transfer pollutants to different phases (Anjum, Miandad, Waqas, Gehany, & Barakat, 2019; Fei et al., 2018; Katheresan, Kansedo, & Lau, 2018). There is an urgent need for the development of environmentally friendly methods capable of efficiently breaking down dye pollution, considering the drawbacks associated with current approaches.

The rising demand for efficient water treatment has led to significant attention on advanced oxidation processes (AOPs), particularly those involving the generation of reactive oxygen radicals capable of reacting with various pollutants. Among these AOPs, photocatalysis stands out as a promising approach, utilizing light and semiconductors (Banerjee, Benjwal, Singh, & Kar, 2018; Khataee & Kasiri, 2010; Martins et al., 2018). Photocatalysis offers high degradation efficiency, effectively breaking down diverse organic compounds with low energy consumption. However, challenges such as interfacial charge transfers, inhibition of charge carrier

recombination, catalyst preparation techniques, and reactor design can impact its efficacy (Iervolino, Zammit, Vaiano, & Rizzo, 2020). Addressing these challenges becomes crucial in advancing photocatalytic technologies for tackling the persistent issue of dye pollution in water bodies.

Semiconductor materials are crucial for activating photon excitation in photocatalysis processes, with zinc oxide (ZnO), titanium dioxide (TiO₂), cadmium sulfide (CdS), tungsten oxide (WO₃), tin oxide (SnO₂), strontium titanate (SrTiO₃), russellite (Bi₂WO₆), and zirconium dioxide (ZrO₂) being frequently employed in such applications (Gaya, 2014). Notably, according to reports by Anjum et al. (2019) and Adnan et al. (2016), ZnO stands out as the ideal semiconductor photocatalyst due to its exceptional attributes. ZnO exhibits high electron mobility, solid thermal and mechanical stability, elevated quantum efficiency, formidable resistance to degradation, potent oxidizing ability, and an expansive surface area, making it highly suitable for efficient photocatalytic processes. This recognition emphasizes ZnO's pivotal role in harnessing light energy for effective pollutant degradation. The efficiency of the ZnO photocatalyst faces challenges due to the tendency of ZnO particles to aggregate, resulting in a decrease in the accessibility of active surface sites (Azmina et al., 2017). Additionally, Sun et al. (2018) highlight that ZnO's broad bandgap energy (3.37 eV) promotes rapid recombination of electron-hole pairs, potentially diminishing the effectiveness of its photocatalytic activity. These issues underscore the importance of addressing aggregation tendencies and bandgap energy limitations to enhance the overall performance of ZnO in photocatalysis. ZnO is frequently susceptible to hybridization with other semiconductors, metals, non-metals, or carbon-based materials to get over these restrictions and improve its photocatalytic

capabilities. Graphene oxide (GO) is a more modern and promising option. The high rate of electron-hole pair recombination within ZnO is a problem that can be mitigated by combining ZnO with similar materials (Y. Sun, Zhang, Li, Liu, & Wang, 2023). By exploring these synergistic approaches, we can unlock the full potential of ZnO-based photocatalysts, paving the way for novel and improved solutions in photocatalytic applications.

Numerous reports have highlighted the significant enhancement of photocatalytic efficiency through the incorporation of graphene oxide (GO), owing to the rapid electron transfer facilitated by the sp² hybridization of GO carbon atoms (N. Sun et al., 2018). Currently, the widely favored method for synthesizing GO involves the Hummers' approach, which yields a substantial amount of product. However, this method comes with drawbacks, particularly its reliance on environmentally unfriendly chemicals such as strong oxidizing agents like H₂SO₄/KMnO₄ and excessive use of organic solvents like dimethylformamide or tetrahydrofuran (Moosa & Abed, 2021). In response to these concerns, researchers have explored alternative environmentally friendly approaches, one of which involves an electrochemical method assisted by electrical power to generate GO. Traditionally, GO is produced through the oxidation and exfoliation of graphite electrodes in the presence of electrolytes, often utilizing inorganic salts and aqueous acids (Z. Xue, Zhao, Zhao, Li, & Gao, 2016). However, this method necessitates neutralization of the resulting GO suspension for further applications.

In the context of graphene oxide (GO) synthesis, an intriguing alternative to the conventional use of salts and acids involves the utilization of surfactant solutions in the

exfoliation electrolyte. This surfactant-assisted strategy not only simplifies and enhances the safety of the process compared to the Hummers' method but also imparts additional stability to the resulting GO suspension (Pendolino & Armata, 2017). In the electrochemical exfoliation method, the inclusion of surfactants plays a pivotal role in facilitating the intercalation and exfoliation processes of graphite, contributing to the formation of oxidized graphene oxide (GO) (Narayan, Lim, Jeon, Li, & Kim, 2017). The surfactant-facilitated exfoliation of graphite represents an appealing and promising approach for the efficient production of GO (Hu, Su, Xie, Sun, & Kou, 2019).

1.2 Problem Statement

Zinc oxide (ZnO), often utilized as a semiconductor material in photocatalytic applications, confronts challenges associated with its separation from treated water and a propensity to aggregate, resulting in a reduction of its photocatalytic efficiency (Mousavi, Davar, & Loghman-Estarki, 2016). Moreover, the use of ZnO in powder form proves ineffective, yielding a milky solution that is easily dispersed (Katheresan et al., 2018). To mitigate these challenges, carbonaceous materials such as graphene oxide (GO) can be employed to enhance photocatalytic performance further. Owing to their exceptional strength, high conductivity, and extensive surface area, these materials hold the potential to stabilize electron/hole separation by acting as electron acceptors and carriers (Mallakpour & Rashidimoghadam, 2018; Saleh, 2013). According to Kang et al. (2016), Hummer's method, is frequently used for high-quality GO production. However, this approach involves the use of hazardous chemicals and potent acids that can severely pollute the environment, demand extended production times, and leave

metal ion impurities on GO sheets (Pei, Wei, Huang, Cheng, & Ren, 2018; Suriani et al., 2018). In response to these concerns, the electrochemical exfoliation approach was chosen for GO synthesis due to its ease of use, cost-effectiveness, environmental friendliness, and the ability to operate at room temperature and pressure (Jaiswal, Modak, & Devi, 2024). In the context of the photocatalytic degradation of methylene blue, this dye presents a distinct set of challenges. Methylene blue is commonly used in various industries and its removal from wastewater is crucial due to its harmful effects on the environment and human health (Oladoye, Ajiboye, Omotola, & Oyewola, 2022). The primary issue lies in its resistance to degradation under conventional treatment methods. Therefore, an efficient and sustainable approach, such as advanced photocatalysis, becomes imperative for its successful removal. However, the combination of graphene oxide and zinc oxide, while promising for enhanced photocatalysis, also encounters certain challenges. The tendency of ZnO to aggregate and the difficulty in its separation from the treated water can hinder the overall efficiency of the photocatalytic process (Raizada, Sudhaik, & Singh, 2019). Additionally, achieving proper dispersion and interaction between GO and ZnO is crucial for optimizing their synergistic effects in promoting electron/hole separation and facilitating the photocatalytic degradation of pollutants. Since the surfactant solely serves as a stabilizing agent, recent literature has mostly concentrated on the efficiency and optimization of exfoliation (Md Disa et al., 2015). The exploration and refinement of surfactant chemical structures play a pivotal role in achieving the desired outcomes, particularly in the context of wastewater treatment.

1.3 Aim and Research Objectives

The aims were to systematically study the role and the stabilization mechanism of graphene-compatible surfactants for the production of graphene oxide-zinc oxide nanocomposite and their applications for the degradation of methylene blue.

The research objectives of this study are:

- To synthesize and characterize graphene-compatible surfactant.
- To produce surfactant-assisted exfoliation graphene oxide (sEGO) through the electrochemical exfoliation method.
- To fabricate sEGO-ZnO photocatalyst for the degradation of methylene blue dye.

Scope of Study 1.4

The primary objective of these research initiatives is to bridge existing knowledge gaps by leveraging hyperbranched surfactant structures to optimize the synthesis of graphene oxide, subsequently applied in the realm of photocatalytic wastewater treatment. Surfactants, specifically a commercial single chain (SDS) and a custom-made triplechain surfactant (TC14), were instrumental in facilitating the electrochemical process employed for graphene oxide production.

To elucidate the chemical structures of the surfactants, proton nuclear magnetic resonance (¹H NMR) spectroscopy was employed. The surface tension of surfactant solutions in air-water (a/w) systems was measured using a Willhelmy tensiometer,

while zeta (ζ) potential analysis was concurrently utilized to assess the surface charge of surfactant-stabilized exfoliated graphene oxide (sEGO). Moreover, small-angle neutron scattering (SANS) was applied to investigate the shapes and sizes of the selfassembled materials.

A comprehensive characterization of the structural and morphological features of both sEGO and the sEGO-ZnO catalysts was achieved through the synergistic application of Field Emission Scanning Electron Microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), Raman spectroscopy and Xray Diffraction (XRD). Photocatalytic investigations were conducted using a UV spectrophotometer, and the thermal characteristics of the catalysts were examined through Thermogravimetric Analysis (TGA).

This multi-faceted approach integrates various analytical techniques to provide a holistic understanding of the synthesized materials, emphasizing their potential applications in the field of wastewater treatment and beyond.

1.5 Significance of Study

It has been 19 years since Andre Geim and Konstantin Novoselov first discovered graphene. There is a vast of research on the photocatalytic use of GO with different production and modification techniques. However, the specialized production of GO using one-pot electrochemical exfoliation using modified surfactant for water treatment receives less attention. As a result, the primary purpose of this work is to investigate

how the introduction of a terminal methyl group in the surfactant chain can improve sEGO characteristics with ZnO for photocatalytic applications. The next step is to look into how the generated sEGO might be used to improve photocatalytic studies of methylene blue removal in an aqueous solution. Moreover, contemporary research has predominantly concentrated on optimizing the exfoliation process, emphasizing efficacy, rather than delving into the fundamentals of contaminant and dye removal. In this context, the surfactant primarily serves as a stabilizing component (Sham & Notley, 2018). The ultimate objective is to develop surfactants that support effective exfoliation and dye removal simultaneously.

A study was done on the functions of sEGO as an efficient catalyst for the removal of methylene blue from an aqueous solution. Various initial methylene blue concentrations, pH levels, and dosages were used in the photocatalytic investigations. The absorbance value information was gathered using UV-visible spectroscopy. To evaluate the removal behavior of MB by sEGO-metal oxide, the experiment data from batch photocatalytic investigations was examined and interpreted for photodegradation performance. The findings demonstrate new potential for employing sEGO as a catalyst in direct (in situ) applications and lay the groundwork for the creation of future surfactants for water treatment systems based on carbon nanomaterials.

