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ABSTRACT 

 

This study aimed to enhance the field electron emission (FEE) properties of carbon 

nanotubes (CNTs) synthesized from waste cooking palm oil combined with zinc oxide 

(ZnO) to produce CNTs/ZnO nanocomposites. The methods used in this study were 

single and multi-step depositions. The single-step deposition method was done by 

directly mixing the CNTs and ZnO precursors and they were synthesized using 

thermal chemical vapor deposition (TCVD) method for 30 minutes. Meanwhile, the 

multi-step deposition process was carried out by combining TCVD and sol-gel 

immersion methods to fabricate CNTs/ZnO nanocomposites. There were three 

different ZnO nanostructures namely nanorods, nanoflowers and nanorods-nanoflakes 

which were composited with CNTs via multi-step deposition process. The obtained 

samples were analyzed using electron microscopy, energy dispersive X-ray, micro-

Raman spectroscopy, X-ray diffraction spectroscopy, photoluminescence 

spectroscopy and four-point probe current-voltage measurement. The field emission 

properties of the samples were also studied using FEE measurement. The findings 

showed that the turn-on and threshold fields of CNTs/ZnO nanocomposites decreased 

as compared to pristine CNTs. Other than that, different nanostructures of ZnO 

contributed to the FEE performance of CNTs/ZnO nanocomposites. The best FEE 

properties were given by the growth of CNTs on ZnO nanoflowers, which has the 

lowest turn-on field of 0.8 V/m at current density of 1 A/cm
2
 and a high field 

enhancement factor of 9417. Larger emission site density and lower screening effect 

in this sample were believed to affect the FEE performance. As a conclusion, the 

fabrication of CNTs/ZnO nanocomposites have successfully enhanced the FEE 

properties of CNTs. Implication of this study is that it provide a new insight on 

advancing the synthesis of CNTs/ZnO nanocomposites for electron emission devices. 
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PENINGKATAN SIFAT PEMANCARAN ELEKTRON MEDAN BAGI 

NANOKOMPOSIT NANOTIUB KARBON/ZINK OKSIDA  

MENGGUNAKAN KAEDAH TUNGGAL  

DAN BERPERINGKAT   

ABSTRAK 

 

Kajian ini bertujuan meningkatkan sifat pemancaran elektron medan (PEM) nanotiub 

karbon (NTK) yang disintesis menggunakan minyak masak terpakai dengan 

menggabungkan zink oksida (ZnO) bagi menghasilkan nanokomposit NTK/ZnO. 

Kaedah yang digunakan bagi kajian ini adalah pemendapan tunggal dan berperingkat. 

Kaedah pemendapan tunggal telah dilakukan dengan mencampurkan secara langsung 

prekursor NTK dan ZnO kemudian disintesis menggunakan kaedah pemendapan wap 

kimia terma (PWKT) selama 30 minit. Sementara itu, proses pemendapan 

berperingkat dilakukan dengan menggabungkan kaedah PWKT dan rendaman sol-gel 

untuk fabrikasi nanokomposit NTK/ZnO. Terdapat tiga struktur nano ZnO yang 

berbeza iaitu nanorod, nanobunga dan nanorod-nanoemping yang telah dikompositkan 

dengan NTK melalui proses pemendapan berperingkat. Sampel yang dihasilkan 

dianalisis menggunakan mikroskop elektron, analisis penyerakan tenaga sinar-X, 

spektroskopi mikro-Raman, spektroskopi pembelauan sinar-X, spektroskopi 

kefotopendarcahayaan dan pengukuran prob empat titik arus-voltan. Sifat pemancaran 

medan daripada sampel juga telah dikaji melalui pengukuran PEM. Dapatan kajian 

menunjukkan bahawa nilai bagi medan permulaan dan medan ambang nanokomposit 

NTK/ZnO menurun berbanding dengan NTK tulen. Selain itu, struktur nano ZnO 

yang berbeza menyumbang kepada prestasi PEM nanokomposit NTK/ZnO. Sifat PEM 

yang terbaik diberikan oleh pertumbuhan NTK di atas ZnO nanobunga yang 

mempunyai medan permulaan terendah iaitu 0.8 V/µm pada ketumpatan arus 1 

A/cm
2
 dan faktor peningkatan medan yang tinggi iaitu 9417. Kesimpulannya, 

fabrikasi nanokomposit NTK/ZnO telah berjaya meningkatkan sifat PEM NTK. 

Implikasi kajian adalah ianya memberi gambaran baharu bagi pengembangan sintesis 

nanokomposit NTK/ZnO sebagai peranti pemancar elektron. 
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INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

“There’s plenty of room at the bottom” was brilliant idea that has been presented by 

Feynman in 1959, which opened up the possibility to work and manipulate materials 

at nanometer scale. The possibility to manipulate and modify a nanomaterial as well 

as to produce large surface area without changing its dimension makes these studies 

beneficial for further application devices. The word “nanotechnology” is introduced 

for the first time by Taniguchi (Taniguchi, 1974). Since then, numerous studies and 

investigations, both on nanomaterial and nanotechnology, have been extensively 

explored (Drexler & Minsky, 1990; Gohel, Chin, Zhu, Sow, & Wee, 2005). To date, 

the application of nanotechnology has been applied in large areas such as electronic 

(Liu & Guo, 2012), energy production (Y. Zhang et al., 2009), aerospace component 

(Cabrera & Miranda, 2014) and medicine (Sui, Zhang, Sheng, Huang, & She, 2013).  


