
 

 

POTENTIOMETRIC DETERMINATION OF SALICYLATE BY USING ZINC 

ALUMINIUM 4(2,4-DICHLOROPHENOXY)BUTYRATE NANOCOMPOSITE  

AS ION SELECTIVE ELECTRODE 

 

 

 

 

 

NORSEYRIHAN BINTI MOHD SOHAIMI 

 

 

 

 

 

 

 

 

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE ANALYTICAL CHEMISTRY (MASTER BY 

RESEARCH) 

 

 

 

 

 

 

 

 

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN 

SULTAN IDRIS 

 

2014 



iv 

 

 

ABSTRACT 

This study describes the construction and characterisation of zinc aluminium layered 

double hydroxides-4(2,4-dichlorophenoxy)butyrate (Zn/Al-DPBA) nanocomposite 

membrane electrode for determination of salicylate. The best performance of the 

membrane electrode was shown by having compositions Zn/Al-DPBA : PVC : 2-NPOE : 

NaTPB at 7 : 33 : 60 : 3 The sensitivity, selectivity, response time, working range and 

detection limit of the membrane sensor depends on the ionophore and the pH value of  

the solution. The best Nernstian slope for the membrane sensor is 58.8 ± 1.0 mV per 

decade in the concentration range of 1.0 x 10
-5

 to 1.0 x 10
-1

 M with a detection limit of 

3.9 x 10
-6

 M. The potentiometric response is independent of the pH of the solution in the 

pH range 4.0 to 12.0 at temperature 25.0 ± 1.0 ºC. The proposed sensor was easy to 

develop, low cost, fast response time (11-35 seconds) and shows a good stability for at 

least 4 months without significant change in its performance characteristics. The 

selectivity coefficients were determined by the mixed solution method with fixed 

interference. Good selectivity towards salicylate ion in the presence of other ions was 

obtained. 
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PENENTUAN POTENSIOMETRIK SALISILAT DENGAN MENGGUNAKAN 

NANOKOMPOSIT ZINK ALUMINIUM 4(2,4-DIKLOROFENOKSI)BUTIRAT  

SEBAGAI ELEKTROD PEMILIH ION 

 

ABSTRAK 

Kajian ini menghuraikan pembinaan dan pencirian elektrod membrane nanokomposit 

lapisan berganda zink aluminium-4(2,4-diklorofenoksi)butirat (Zn/Al-DPBA) bagi 

penentuan salisilat. Keupayaan terbaik elektrod membran telah ditunjukkan dengan 

mempunyai komposisi Zn/Al-DPBA : PVC : 2-NPOE : NaTPB pada 7 : 33 : 60 : 3. 

Kepekaan, kepilihan, masa gerak balas, julat bekerja dan had pengesanan membran 

bergantung kepada ionofor dan nilai pH larutan. Kecerunan Nernstian terbaik bagi 

pengesan membran ialah 58.8 ± 1.0 mV per dekad dalam julat kepekatan 1.0 x 10
-5

 

hingga 1.0 x 10
-1

 M dengan had pengesanan 3.9 x 10
-6

 M. Gerak balas potensiometrik 

tidak bergantung kepada pH larutan dalam julat pH 4.0 hingga 12.0 pada suhu                

25.0 ± 1.0 
o
C. Pengesan yang dicadangkan mudah dibina, murah, masa gerak balas yang 

cepat (11- 35 saat) dan menunjukkan kestabilan yang baik sekurang-kurangnya 4 bulan 

tanpa perubahan yang bermakna dalam ciri-ciri keupayaannya. Pekali kepilihan telah 

ditentukan melalui kaedah larutan bercampur dengan menetapkan gangguan. Kepilihan 

yang baik terhadap ion salisilat dalam kehadiran ion-ion lain telah diperolehi. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction to Salicylate 

 

Salicylic acid (SA) is a biological substance that acts as a phytohormone and plays an 

important role to signal transduction in plants. It involves in the regulation of many 

physiological processes such as flowering, heat production, seed germination, 

stomatal closure, membrane permeability and ion absorption (Wang, Ai, Xu, Yang, 

Yu, Huang, et al., 2010). SA is also widely used in chemical and pharmaceutical 

industries. Thus, several derivatives have been synthesized, in particular, the esters 

obtained by reaction of the carboxylic group with alcohols or of the phenolic group 

with organic acids (Gualandi, Scavetta, Zappoli, & Tonelli, 2011). 
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Salicylate and its derivatives, including acetylsalicylate (Aspirin), are widely 

used as an analgesic and inflammatory agent. Salicylate, including acetylsalicylate 

(aspirin), is available to the public in a wide variety of formulation. The free acid is 

widely used as an antiseptic and a preservative of food. Nowadays, aspirin is widely 

used to treat cardiovascular complications (Ardakani, Pourhakkak, & Salavati-

Niasari, 2007). Hydrolysis of this compound produces salicylic acid, which circulates 

blood in its ionized form. Monitoring the plasma salicylate concentration is important 

to control the dose and frequency of aspirin administrations.  

 

Salicylate, acetylsalicylic acid and their derivatives have been used as 

fungicidal and antimicrobial agents in pharmaceuticals preparations (external use) as 

well as in the treatment of inflammatory processes as antipyretic and analgesic drugs 

(internal use). Salicylate has been used in beverages and foods for preservation, but it 

hasbeen forbidden since in the sixties in several countries due to its toxicity 

(Rainsford, 2004; Thiessen, 1992). After the aspirin ingestion, this compound 

hydrolyses into salicylic acid and circulates the blood in an ionized form as salicylate. 

When the salicylate concentration in the blood is higher than 2.2×10
-3

 mol L
-1

(300 mg 

L
-1

), it becomes toxic, requiring control and monitoring of the salicylate level in the 

serum. The effective therapeutic range is between 1.1 and 2.2×10
-3

 mol L
-1

(150–300 

mg L
-1

), which is very close to the toxicity stage. Salicylate concentration values 

higher than 4.3×10
-3

mol L
-1

(600 mg L
-1

) is regarded as lethal (Thiessen, 1992; 

Nietsch, 1989). Salicylate is the main aspirin metabolite in the body, reaching its 

maximal level in the blood serum two hour after aspirin hydrolyses. Other aspirin 

metabolites analogous to salicylate, such as gentisic acid (2,5-dihydroxybenzoic acid) 

and salicyluric acid are present in the blood, but at minor levels. Paracetamol 
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(acetaminophen) is another compound with analgesic effects similar to the aspirin as 

pain relief and can be presented in plasma at relatively high concentrations (Nietsch, 

1989). 

 

 

1.1.1 Structure of Salicylate 

 

Salicylic acids is a monohydroxybenzoic acid. It is an important part to produce the 

acetyl salicylic acid, salicyluric acid, salicylic acyl glucuronide, salicylic phenol 

glucuronide and gentisic acid. Figure 1.1, shows the derivative of salicylate. 

 

 

1.2 Introduction to Layered Double Hydroxides (LDH) 

 

 

Layered double hydroxides (LDH), also referred to as hydrotalcite like compounds 

(HT) or anionic clays, is an important class of ionic lamellar solids (Cavani, Trifiro, & 

Vaccari, 1991). Its’ important applications include LDH as heat stabilizers in PVC 

(Ferreira, De Moraes, Duran, Cornejo, & Alvez, 2006), or as flame retardant additives 

in plastic (Wang, Zhang, Evans, & Duan, 2005). Furthermore, LDH can also be used 

as sorbents for purification of wastewater in order to remove phosphate or heavy 

metal such as chromate (Ferreira, De Moraes, Duran, Cornejo, & Alvez, 2006) LDH 

can be used as a host for the formation of LDH-intercallated or the so- called the host 

guest type materials. This type of material attracted intense research interest lately due  
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Figure 1.1. Chemical structures of acetyl salicylic acid (ASA) and its metabolites 

salicylic acid (SA), salicyluric acid (SU), gentisic acid (GA) and two SA glucuronides 
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to its versatile capability in various technological applications; pharmaceuticals 

(Ambrogi, Fardella, Grandolini, & Perioli, 2001), carrier for drugs (Tyner, Schiffman, 

& Giannelis, 2004), urea biosensor and supports (Vial, Forano, Shan, Mousty, 

Barbouni, Martelet et al., 2006), electrode modifiers (Wang, Zhang, Evans, & Duan, 

2005) and others. 

 

It’s has received considerable attention in recent years because of the potential 

applications such as ion-exchangers, catalysts or catalyst supports, and antacids 

(Cavani, Trifiro, & Vaccari, 1991). The structure of LDH consists of positively 

charged mixed metal hydroxide layers separated by charge balancing anions and 

water molecules. 

 

The LDHs consist of positively charged metal hydroxide sheets with anions 

located between the layers to compensate the positive layer charges. The 

compositions are generally represented as, where M
2+

 and M
3+

 are divalent and 

trivalent cations, respectively, x is the ratio M
3+

/(M
2+

 + M
3+

), and is an anion with a 

charge of n (such as NO3
-
, CO3

2-
, Cl

-
, or SO4

2-
). M

2+
 and M

3+
 species represent Zn

2+
, 

Ni
2+

, Mg
2+

 or Cu
2+

 and Al
3+

, Cr
3+

, Fe
3+

, or Ga
3+

 respectively. Various kinds of organic 

and inorganic anions have been immobilized into layers by the ion-exchange or co-

precipitate method (Cavani, Trifiro, & Vaccari, 1991). In co-precipitate method, the 

precursors for the host as the mother liquor are mixed together with the guest species 

followed by the aging process to form a well ordered layered nanohydrid. Aisawa, 

Takahashi, Ogasawara, Umetsu, and Narita (2001) and Dupin, Martinez, Guimon, 
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Dumitriu, and Fecther (2004) have stated the intercalation of the guest molecules into 

the interlayer of the host by using anion exchange method. 

 

 

1.2.1 Structure and Properties of Layered Double Hydroxides 

 

The general chemical formula of these lamellar solids can be written as 

[M1−x
2+

Mx
3+

(OH)2](A
n−

)x/n·mH2O, where M
2+

 and M
3+

 are divalent and trivalent 

cations respectively, and A
n−

 is an interlayer anion. Such A
n−

 anions may be 

polymers, organic dyes (Orthman, Zhu, & Lu, 2003), surfactants or organic acids 

(You, Zhao,& Vance, 2002). The interesting properties of these materials are the 

result of the structural brucite-like sheets. It consists of metal cations octahedral 

coordinated to OH
−
 and interlayer region containing water and anions which 

compensate the positive charge of the brucite-like sheets. The synthesis of surfactant 

intercalated layered double hydroxides, as reported in the literature, controlled to 

consider this type of materials as sorbent for organic solutes and particularly the 

negatively charged species. The organophilic nature of surfactant in the LDH 

interlayer would permit the sorption of many types of organic molecules (Akçay & 

Yurdakoc, 2000). Water molecules also exist in the interlayer space. 

 

Hydrotalcite like clays (HT) is promising because spatial constraints and 

surface chemical effects induced by these materials can lead to new patterns of 

reactivity and selectivity. The function of the new electrode that constructed from 

hydrotalcite is to attract ion species. The heterogeneous electron transfers kinetics and 

to the mass transport which takes place to compensate the excess of negative or 
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positive charge, generated during the electron transfer through a hydrotalcite clay film 

(Therias & Mousty, 1995; Yao, Taniguchi, Nakata, Shimazu, Takahashi, & 

Yamagishi, 1998; Therias, Lacroix, Schollhorn, Mousty, & Palvadeau, 1998). Figure 

1.2 shows the structure of LDH. 

 

 

1.3 Significance of Study 

 

Medication is essential life and health to people of the world. Therefore, this study is 

conducted to investigate the salicylate in pharmaceutical samples using potentiometric 

ion selective electrode based on (ISE). Potentiometric method is a simple method to 

determine salicylate. Therefore in this study, this method is chosen to determine the 

salicylate because it offers great advantages such as fast response, low cost, selectivity 

and sensitivity compared to other methods (Ganjali, Norouzi, Rezapour, Faridbod, & 

Pourjavid, 2006). The use of the direct potentiometric promises a good measure for 

performance compared to other methods (Bakker, Buhlmann, & Pretsch, 1997). 

 

The aim of this study is to produce membrane sensor with zinc aluminium 

layered double hydroxide-4-(2,4-dichlorophenoxy)butyrate nanocomposite as a 

salicylate ion selective electrode in pharmaceutical sample. 
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Figure 1.2. Structure of layered double hydroxides (LDHs) 
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1.4 Electrochemical Sensors 

 

After the 1980s, miniaturized electrochemical sensor became available for detection 

of many different toxic gases, with the sensor exhibiting good sensitivity and 

selectivity. In fact, the appearance of the electrochemical sensor used to detect various 

gases may be similar, but their functions are markedly different. Consequently, one 

can expect varying performance from each of these sensors, in term of sensitivity, 

selectivity, response time and operating life.  

 

Electrochemical sensors continue to be a mainstay of analytical chemistry as 

demands for increasingly selective and sensitive detection methods grow. In contrast 

to spectroscopy and chromatography, electrochemical sensors are inexpensive, 

simple, and adaptable to demanding environments where robust, miniaturized 

analytical method is required. This is obvious especially in the field of potentiometric 

sensor where recent research has focused on enhancing the ability of ion selective 

electrodes to operate effectively in both high concentration of background analytes 

(Ardakani, Jalayer, Safari, Sadeghi, & Zare, 2005). 

 

Electrochemical approaches are widely used in the development of microbial 

biosensors. According to the detection principle, electrochemical techniques can be 

divided into amperometry (measure current), potentiometry (measure voltan), 

conductometry (measure conductivity), voltammetry, and microbial fuel cell (MFC). 

Potentiometry involves the measurement of the potential difference between the 

working electrode, the reference electrode and the potential signal exhibits 

concentration dependent behavior. The transducer employed in the potentiometric 
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technique is usually a gas-sensing electrode or anion-selective electrode (Bobacka, 

Lindfors, Lewenstam, & Ivaska, 2004). 

 

Moreover, electrochemistry is most suitable for investigating the redox 

properties of drugs that can give insight into its metabolic fate. The data obtained 

from electrochemical techniques are often correlated with molecular structures and 

pharmacological activities of drugs (Sattarahmady, Heli, & Faramarzi, 2010). 

 

Electrochemical process is a change of electric energy from the electrode 

phase to the other phase in solid and liquid. Electricity in a chemical process produces 

chemical on the electrode to the sample phase. Electrode reaction processes the 

movement of the electrical energy, which provides the basis for the detection. There 

are general rules that should be used in all electrochemical sensors in which the 

system requires a closed electric circuit. Thus, at least two electrodes electrochemical 

are needed to complement tools.  

 

Besides, the general aspects of electrochemical sensors are the transition 

between the electric energy detector, or a detector, and support equipment, where the 

entire system involves electronic circuits. In other words, the movement of electricity 

in the sample may consist of electronic, ionic or combination of the two. 
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1.5  Introduction to Potentiometric Method 

 

Potentiometric is one of the measurements used for measuring ion in the chemistry. It 

monitors potential values under zero current flow, to determine the analytical 

concentration desired component in an analyte. In this method, the potential 

difference between an indicator electrode (i.e. ion-selective electrode, redox electrode, 

metal-metal oxide electrode) and the reference electrode is measured as the analytical 

potential. The potential of the electrochemical cell is due to the changes in free energy 

that occurs if the chemical phenomena reach an equilibrium, in which case, the 

difference between the cathodic and the anodic potentials is the potential of the 

electrochemical cell and is calculated using the so-called Nernst equation. 

 

Another source of the potential may be physical phenomena which does not 

involve explicit redox reactions but having non-zero free energy initial condition. For 

example of such phenomena is ion concentration gradient across a semi-permeable 

membrane. This phenomenon is the basis of measurements that uses ion-selective 

electrodes. According to which the below equation is used to determine the 

concentration of the analyte. 

 

 

 

Where Emem represent are potential across membrane, E˚ is a standard 

potential, R is gas constant, T is temperature, n is number of electron transfer, F is 

Faraday constant and ai is the activity of ion interest respectively. 

1.1 


