

PustakaTBainun 🛑 ptbupsi

KENAF BAST FIBER FILTER CARTRIDGE FOR REMOVAL OF HEAVY METALS AND DYES IN AQUEOUS SOLUTION

RIDWAN BIN SHAMSUDIN

05-4506832 😵 pustaka.upsi.edu.my 🚹 Perpustakaan Tuanku Bainun VustakaTBainun PustakaTBainun btubupsi

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE BIOLOGY (MASTER BY RESEARCH)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2016

Õ

Kampus Sultan Abdul Jalil Shal

PustakaTBainun

ptbupsi

ABSTRACT

This research aimed to investigate the adsorption of heavy metals and dyes using adsorbent and filter cartridge from kenaf bast fiber (KBF). This research was conducted in several stages starting with adsorption and characterization studies followed by production and evaluation of filter cartridge prototype. Adsorption was studied through removal of heavy metals (Cd, Cu, Ni, Pb and Zn) and dyes (Congo red, Methyl orange, Methylene blue and Rhodamine B.) in single- and multi-systems. The effects of experimental variables (solution pH, initial concentrations and adsorbent dosage) on adsorption of KBF were also assessed. The adsorption equilibrium was analyzed using Langmuir and Freundlich isotherm models. The KBF adsorbent was characterized using Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-Ray (EDX) spectrometer and Fourier Transform Infrared Spectrometer (FTIR) before and after adsorption process. The performance of filter cartridge prototype to treat synthetic and real wastewater effluent was evaluated in laboratory. The results showed that Pb(II)and Methylene blue were the most adsorbed contaminants for all experimental conditions in single-system. However, the removal of all heavy metals and dyes was significantly reduced in multi-system due to competition effect for active sites on the adsorbent. The values of equilibrium separation factor $(R_{\rm L})$ and the Freundlich constants (n) indicated that the uptake of all contaminants by KBF was favorable. FESEM analysis revealed significant changes on adsorbent's surface following interaction with contaminants. The uptake of heavy metals by KBF was confirmed by EDX analysis. FTIR analysis proved that hydroxyl, carboxyl and amine are the main functional groups involved in heavy metals and dyes uptake. To conclude, the filter cartridge prototype was an excellent adsorbent to remove multi-contaminants in synthetic and real wastewater effluent. The implication of this study is KBF filter cartridge has great potential to replace conventional adsorbents for future environment friendly wastewater treatment.

l f

PustakaTBainur

9 PustakaTBainun

ptbupsi

KARTRIJ PENAPIS GENTIAN BASTA KENAF UNTUK PENYINGKIRAN LOGAM BERAT DAN PENCELUP DALAM LARUTAN AKUEUS

ABSTRAK

Penyelidikan ini bertujuan mengkaji penjerapan logam berat dan pencelup menggunakan penjerap dan kartrij penapis daripada gentian basta kenaf (GBK). Penyelidikan ini dijalankan dalam tiga peringkat bermula dengan kajian penjerapan dan pencirian diikuti dengan penghasilan dan penilaian prototaip kartrij penapis. Penjerapan dikaji melalui penyingkiran logam berat (Cd, Cu, Ni, Pb, Zn) dan pencelup (Kongo merah, Metil oren, Metilena biru dan Rhodamin B.) dalam sistem tunggal dan pelbagai. Kesan pembolehubah eksperimen (pH larutan, kepekatan awal dan dos penjerap) terhadap penjerapan GBK juga telah dinilai. Keseimbangan penjerapan dianalisis dengan model isoterma Langmuir dan Freundlich. Penjerap GBK dicirikan menggunakan Pengimbas Mikroskop Elektron Emisi Medan (FESEM), Spektrometer Penyebaran Tenaga Sinar-X (EDX) dan Spektrometer Inframerah Transformasi Fourier (FTIR) sebelum dan selepas proses penjerapan. Prestasi prototaip kartrij penapis untuk merawat air sisa sintetik dan sebenar juga dinilai dalam makmal. Hasil penyelidikan menunjukkan bahawa, Pb(II) dan Metilena biru adalah bahan cemar paling terjerap untuk semua keadaan eksperimen sistem tunggal. Walau bagaimanapun, penyingkiran semua logam berat dan pencelup berkurang dengan signifikan dalam sistem pelbagai disebabkan oleh kesan persaingan untuk tapak aktif pada penjerap. Nilai faktor pemisahan keseimbangan $(R_{\rm L})$ dan pemalar Freundlich (n) menunjukkan bahawa pengambilan semua bahan cemar adalah cenderung kepada GBK. Analisis FESEM menunjukkan perubahan signifikan pada permukaan penjerap akibat interaksi dengan bahan cemar. Pengambilan logam berat oleh GBK disahkan melalui analisis EDX. Analisis FTIR membuktikan bahawa hidroksil, karboksil dan amina adalah kumpulan berfungsi utama yang terlibat dalam pengambilan logam berat dan pencelup. Kesimpulannya, prototaip kartrij penapis adalah penjerap yang sangat berkesan untuk menyingkirkan pelbagai bahan cemar dalam air sisa sintetik dan sebenar. Implikasi kajian ini adalah kartrij penapis GBK berpotensi tinggi bagi menggantikan penjerap konvensional untuk rawatan air sisa mesra alam pada masa hadapan.

C

vi

TABLE OF CONTENTS

	Page
DECLARATION	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABSTRAK	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	ptbupsi

CHAPTER 1 INTRODUCTION

1.1	Research background and motive	1
1.2	Problem statement	5
	1.2.1 Adsorption-filtration process by activated carbon	6
	1.2.2 Adsorption-filtration process by polypropylene	7
	1.2.3 Kenaf as an adsorbent and filter	8
1.3	Significance of study	10
1.4	Research objectives	13
1.5	Thesis outline	13

O5-4506832 Spustaka.upsi.edu	my f	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 🛛 💟 PustakaTBainun	ptbupsi
CHAPTER 2 LITE	ERATU	RE REVIEW	
2.1	Waster	water	16
	2.1.1	Water contamination by heavy metals	19
	2.1.2	Water contamination by dyes	27
2.2	Waster	water remediation	29
	2.2.1	Wastewater remediation: Adsorption	33
	2.2.2	Activated carbon as adsorbents and filters	39
2.3	Kenaf		40
2.4	Conclu	ision	45

CHAPTER 3 MATERIALS AND METHODS

05-4506832	3.1 pustaka.upsi.edu.my	Introdu y f	Iction Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	47 ptbupsi
	3.2	Resear	rch design	48
	3.3	Materi	als	49
		3.3.1	List of materials	49
		3.3.2	Raw material: Kenaf bast fiber	51
		Fundaı fiber	mental adsorption studies of kenaf bast	51
		3.4.1	Preparation of solutions	52
		3.4.2	Batch adsorption studies	52
		3.4.3	Langmuir and Freundlich isotherm models	55
		3.4.4	Atomic Absorption Spectrometer	56
		3.4.5	UV-Visible Spectrophotometer	58
	3.5	Charac	cterization studies on kenaf bast fiber	58
05-4506832	pustaka.upsi.edu.my	y f	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Dustaka TBainun	ptbupsi

	٠	٠	٠	
X 7	1	1	1	
v			1	

						V111
C	05-4506832	pustaka.upsi.edu.n	ny f 3.5.1	Kampus Sultar	Tuanku Bainun n Abdul Jalil Shah Pustaka TBainun rea and average pore diameter	ptbupsi 59
			3.5.2		ission Scanning Electron py (FESEM) analysis	59
			3.5.3	Energy D analysis	Dispersive X-Ray (EDX)	60
			3.5.4	Fourier T analysis	ransform Infrared (FTIR)	60
		3.6	Produce prototy		naf-based filter cartridge	60
		3.7	filter p raw le	prototype t	e evaluation of kenaf-based to treat synthetic effluent and laboratory scale wastewater model	63
	CILAD		т тс А		USSION	
C	CHAP 05-4506832	TER 4 RESU		ND DISC Perpustakaan ption Study		ptbupsi 65
C	_	pustaka.upsi.edu.n		Perpustakaan ption Study	Tuanku Bainun	
I I I I I I I I I I I I I I I I I I I	_	pustaka.upsi.edu.n	Adsor	Perpustakaan ption Study Adsorptic	Tuanku Bainun Abdul Jalil Shah Y	65
I I I I I I I I I I I I I I I I I I I	_	pustaka.upsi.edu.n	Adsor	Perpustakaan ption Study Adsorptic	Tuanku Bainun Abdul Jalil Shah PustakaTBainun on study overview	65 65
I I I I I I I I I I I I I I I I I I I	_	pustaka.upsi.edu.n	Adsor	Perpustakaan ption Study Adsorptic Adsorptic	Pustaka TBainun Abdul Jalil Shah Pustaka TBainun on study overview on of heavy metals	65 65 66
	_	pustaka.upsi.edu.n	Adsor	Perpustakaan ption Study Adsorptic Adsorptic 4.1.2.1	Pustaka TBainun y Pustaka TBainun on study overview on of heavy metals Effect of solution pH Effect of initial metal ion	65 65 66 66
	_	pustaka.upsi.edu.n	Adsor	Perpustakaan ption Study Adsorptic Adsorptic 4.1.2.1 4.1.2.2 4.1.2.3	Y Pustaka TBainun Y Pustaka TBainun On study overview On of heavy metals Effect of solution pH Effect of initial metal ion concentrations	65 65 66 66 70
	_	pustaka.upsi.edu.n	Adsor 4.1.1 4.1.2	Perpustakaan ption Study Adsorptic Adsorptic 4.1.2.1 4.1.2.2 4.1.2.3	Tuanku Bainun y Pustaka TBainun Pustaka TBainun On study overview On of heavy metals Effect of solution pH Effect of initial metal ion concentrations Effect of adsorbent dosage	 65 65 66 66 70 73
	_	pustaka.upsi.edu.n	Adsor 4.1.1 4.1.2	Adsorption Adsorption Adsorption 4.1.2.1 4.1.2.2 4.1.2.3 Adsorption	Tuanku Bainun y Pustaka TBainun Pustaka TBainun On study overview On of heavy metals Effect of solution pH Effect of initial metal ion concentrations Effect of adsorbent dosage On of dyes	 65 65 66 66 70 73 75

4.1.4 Equilibrium adsorption isotherms

85

O5-4506832 Sultan Abdul Jalil Shah Sutaka.upsi.edu.my

(\mathbf{L})			
(L)			
S. 1			
S. 1			

|--|

05-4506832	pustaka.upsi.edu.	my f	Perpustakaar Kampus Sult	n Tuanku Bainun an Abdul Jalil Shah	ptbupsi
			4.1.4.1	Langmuir isotherm model	86
			4.1.4.2	Freundlich isotherm model	88
			4.1.4.3	Langmuir and Freundlich isotherm constants and correlations coefficients	90
		4.1.5	Multi-sy	vstem study	100
	4.2	Charac	cterization	n Study	103
		4.2.1	Physical of KBF	l and chemical characteristics	103
			4.2.1.1	Surface area and pore analyses	104
			4.2.1.2	Field Emission Scanning Electron Microscope (FESEM) analysis	105
05-4506832	gy pustaka.upsi.edu.	my f	4.2.1.3 Perpustakaar Kampus Sult	Fourier Transform Infrared (FTIR) analysis PustakaTBainun	109 ptbupsi
			4.2.1.4	Energy Dispersive X-Ray (EDX) analysis	116
	4.3	Produce Prototy		Evaluation of Filter Cartridge	119
		4.3.1	Overvie	W	119
		4.3.2	Kenaf-b	ased filter cartridge prototype	119
		4.3.3	-	on of kenaf-based filter e on heavy metals and dyes in laboratory scale filtration	121
СНАРТ	TER 5 CON	CLUSI	ONS ANI	D RECOMMENDATIONS	
	5.1	Introdu	uction		128
	5.2	Conclu	usions		129

ix

O5-4506832 🜍 pustaka.upsi.edu	.my f 5.2.1	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Adsorption study	ptbupsi 129
	5.2.2	Characterization study	130
	5.2.3	Filter cartridge prototype	130
5.3	Recon	nmendations	131
REFERENCES			133
APPENDIX			157

O5-4506832 V pustaka.upsi.edu.my

Х

y

O5-4506832 Spustaka.upsi.edu.my F Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun topp pubupsi

xi

LIST OF TABLES

Table		Page
1.1	The description on physical, chemical and biological unit operations in wastewater treatments	4
2.1	Classification of Scheduled Wastes	17
2.2	Quantity of selected Scheduled Wastes generated in 2012	18
2.3	Maximum contaminants level in drinking water by WHO and USEPA	21
2.4	Cancer causing agents	26
2.5 (S) 05-4506832	Standard discharge for wastewater from treatment plant based on Environmental Quality (Industrial Effluent) Regulations 2009 Pustaka upsi.edu.my	27 ptbupsi
2.6	Advantages and disadvantages of several wastewater treatment techniques	32
2.7	Study on bio-based materials, natural materials and agricultural wastes as adsorbents for several contaminants	36
2.8	The comparison between kenaf core fiber and kenaf bast fiber	42
3.1	List of chemicals	49
3.2	Physiochemical properties and molecular structures of dyes studied	50
3.3	The specific operating systems for metal studied	57
3.4	Contaminants studied for each system	64
4.1	The Langmuir and Freundlich isotherm constants and correlation coefficients for adsorption of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) onto KBF	90
4.2	The atomic weight, ionic radii and ion electronegativity of metal studied	91
05-4506832	pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah DustakaTBainun	ptbupsi

	٠	٠	
v	1	1	
		1	

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Rainun

4.3 The Langmuir and Freundlich isotherm constants and correlation 92 coefficients for adsorption of CR, MO, MB and RB onto KBF $R_{\rm L}$ values for metal ions studied based on Langmuir isotherm 94 4.4 model 4.5 $R_{\rm L}$ values of dyes studied based on Langmuir isotherm model 95 4.6 Comparison of maximum adsorption capacity estimated for metal 96 ions from Langmuir isotherm model for selected adsorbents 4.7 Comparison of maximum adsorption capacity estimated for dyes 99 from Freundlich isotherm model for selected adsorbents 4.8 Single- and multi-metal system (Uncontrolled pH) 101 4.9 Single- and multi-dye system at pH 2.0 and pH 6.0 102 4.10 The physical characteristics of KBF 104 4.11 The removal percentage of contaminants in seven systems studied 123 in filtration system using kenaf-based filter cartridge pustaka.upsi.edu.my PustakaTBainun

O5-4506832 Spustaka.upsi.edu.my F Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun topp pubupsi

xiii

LIST OF FIGURES

Figure		Page
1.1	Stages in wastewater treatment	3
1.2	Thesis map	15
2.1	Important stages in wastewater remediation	30
2.2	The basic operation applied by IWK in wastewater treatment system	31
2.3	The special features of kenaf plant	44
3.1	Research design	48
3.2 05-4506832 3.3	Descriptions on each system for parameters studied pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun Flow chart on the production of wastewater filter	54 ptbupsi 62
3.4	Design of laboratory wastewater filtration system	63
4.1	Effect of solution pH on the (a) adsorption capacity and (b) percentage of removal of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) onto KBF	67
4.2	Effect of initial metal concentration on the (a) adsorption capacity and (b) percentage of removal of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) onto KBF	71
4.3	Effect of adsorbent dosage on the (a) adsorption capacity and (b) percentage of removal of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) onto KBF	
4.4	Effect of solution pH on the (a) adsorption capacity and (b) percentage of removal of CR, MO, MB and RB onto KBF	76
4.5	Effect of initial dyes concentration on the (a) adsorption capacity and (b) percentage of removal of CR, MO, MB and RB onto KBF	81
05-4506832	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun	ptbupsi

		AIV
05-4506832	😵 pustaka.upsi.edu.my 🚹 Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 💟 PustakaTBainun	ptbupsi
4.6	Effect of adsorbent dosage on the (a) adsorption capacity and (b) percentage of removal of CR, MO, MB and RB onto KBF	84
4.7	Langmuir adsorption isotherm of metal ions by KBF	87
4.8	Langmuir adsorption isotherm of dyes by KBF	88
4.9	Freundlich adsorption isotherm of metal ions by KBF	89
4.10	Freundlich adsorption isotherm of dyes by KBF	89
4.11	FESEM micrograph images of KBF (a) before adsorption and (b) after adsorption of Cd(II), (c) Cu(II), (d) Ni(II), (e) Pb(II) and (f) Zn(II)	106
4.12	FESEM micrograph images of KBF (a) before adsorption and (b) after adsorption of CR, (c) MO, (d) MB and (e) RB	107
4.13	FTIR spectrum of KBF	108
4.14	FTIR spectra of KBF before adsorption (upper line) and (a) after interaction with Cd(II), (b) Cu(II), (c) Ni(II), (d) Pb(II) and (e)	112
05-4506832	Perpustakaan Tuanku Bainun pustaka.upsi.edu.my ff Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun	ptbupsi
4.15	FTIR spectra of KBF before adsorption (upper line) and (a) after interaction with CR, (b) MO, (c) MB and (d) RB	115
4.16	EDX spectrum of KBF (a) before adsorption and (b) after adsorption of Cd(II), (c) Cu(II), (d) Ni(II), (e) Pb(II) and (f) Zn(II)	117
4.17	Kenaf-based filter: (a) front view and (b) upper view	120
4.18	Dimensions of kenaf-based filter catridge prototype	120
4.19	Kenaf-based filter cartridge prototype: (a) Front view of wrapped filter, (b) upper view of wrapped filter and (c) kenaf-based filter cartridge placed in commercial filter housing	121
4.20	Laboratory wastewater filtration system	122

xiv

O5-4506832 Spustaka.upsi.edu.my F Perpustakaan Tuanku Bainun PustakaTBainun PustakaTBainun ptbupsi

XV

LIST OF ABBREVIATIONS

AAS	Atomic Absorption Spectrometer	
ASTM	American Society for Testing and Materials	
BDAC	Bamboo Derived Activated Carbon	
BET	Brunauer-Emmett-Teller	
BJH	Barrett, Joyner and Halenda	
CR	Congo Red	
DOE	Department of Environment	
EDX	Energy Dispersive X-Ray	
FESEM	Field Emission Scanning Electron Microscopy	
05-4506832 FTIR pustaka.upsi.edu.my	Fourier Transform Infrared PustakaTBainun ptbupsi	
IARC	International Agency for Research on Cancer	
IUPAC	International Union of Pure and Applied Chemistry	
IWK	Indah Water Konsortium	
KBF	Kenaf Bast Fiber	
KCF	Kenaf Core Fiber	
MARDI	Malaysian Agricultural Research and Development Institute	
MB	Methylene Blue	
МО	Methyl Orange	
NKTB	National Kenaf and Tobacco Board	
RB	Rhodamine B	
SW	Scheduled Wastes	
USEPA 05-4506832 vstaka.upsi.edu.my	United States Environment Protection Agency Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	

05-4506832 Votaka.upsi.edu.my

PustakaTBainun ptbupsi

PustakaTBainun O ptbupsi

CHAPTER 1

INTRODUCTION

1.1 **Research Background and Motive**

Earth consists of 71% of water and therefore preservation of water is crucial to maintain clean water access for all living things (United States Geological Survey, 2015). Water resources might be polluted due to improper management of wastewater. As mentioned by Anastopoulos & Kyzas, (2014), wastewater that comes from various activities are a major reason contributes to deterioration of water quality globally.

Wastewater is defined as a complex mixture of domestic, industrial and agricultural wastes. A collection of wastewater in wastewater tanks in often termed as "sewage" (Mateo-sagasta, Raschid-sally, & Thebo, 2015). Sewage contains variety of

organic as well as inorganic substances (Abdel Raouf, Al Homaidan, & Ibraheem,

2012; Ali, Asim, & Khan, 2012).

pustaka.upsi.edu.my

Generally, wastewater consists more than 99% of water, but the remaining 1% contains ions, suspended solids and harmful microorganism that must be removed before the wastewater is released into the river/sea. Different industries may release different substances based on their raw processing materials. Wastewater can be characterized based on their physical, chemical and biological properties as described below (Indah Water Konsortium, 2015a).

I. Physical properties

Physical properties refer on wastewater odor, color, temperature and amount of solids.

05-45 H.832 Chemical properties f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

> Chemical properties can be divided into three constituents namely organic, inorganic and gases. Organic materials referring to the amount of carbohydrates, grease, fats, oil, proteins and surfactants while an example of inorganic substances are chlorides, phosphorus and so on. Lastly, gases referring to the amount of chlorides and phosphates in the wastewater.

III. Biological properties

Biological properties refer to the amount microorganisms such as bacteria, protozoa, fungi and algae that may exist in wastewater.

In this era, the world productions of wastewater keep increasing due to several factors. Rapid industrialization, global urbanization, high rate of population growth and agricultural activities are the main reason of increasing amount of effluent being pustaka.upsi.edu.my Perpustakaan Tuanku Bainun PustakaTBainun prbupsi prbupsi

5-4506832 Spustaka.upsi.edu.my representation Kampus Sultan Abdul Jalil Shah PustakaTBainun Of ptbupsi disposed to the environment (Ali et al., 2012; Hegazi, 2013; Kamari, Yusoff, Abdullah, & Putra, 2014; Tzu, Tsuritani, & Sato, 2013). Therefore, wastewater must be treated properly before being discharge to the environment.

Basically, wastewater treatment system can be divided into four phases that start with preliminary treatment followed by primary treatment, secondary treatment and tertiary treatment where each stage has different functions as described in Figure 1.1 (Indah Water Konsortium, 2015b).

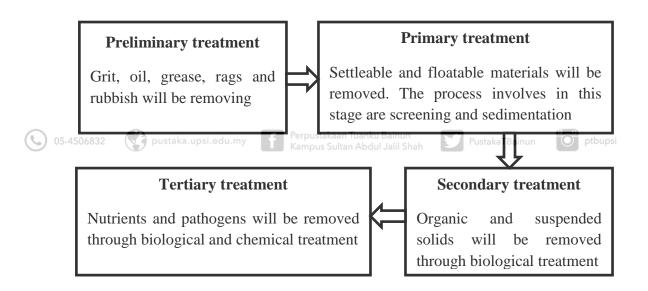


Figure 1.1. Stages in wastewater treatment

However, many wastewater treatment plants in Malaysia did not provide tertiary treatment system and were more focused on improving the available treatment systems (Azman, Shaari, & How, 2013).

In wastewater treatment plant, the treatment processes can be divided into physical unit operation, chemical unit operation and biological unit processes. The 5-4506832 pustaka.upsi.edu.my freepustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah stakaTBainun

process involves in physical unit operation are screening, mixing, flocculation, sedimentation, filtration and flotation in order to treat sewage physically. Meanwhile, chemical unit operations comprised of adsorption, precipitation, and disinfection processes. Lastly, in biological unit processes, contaminants are removed through

between these three operations of wastewater treatment.

Table 1.1

The description on physical, chemical and biological unit operations in wastewater treatments

biological activity (Indah Water Konsortium, 2015b). Table 1.1 shows the differences

Aspects	Definition	Types	Material used
Physical	Application of	Screening, mixing,	Sand filters
	physical forces to	flocculation,	
05-4506832 🚱 pustaka.up	streat wastewater stakes	sedimentation, y Pus	takaTBainun ptbupsi
		filtration, flotation,	
		etc.	
Chemical	Consumption of	Chlorination,	Use of chemicals
	chemicals to	adsorption, ion	such as chlorine,
	remove pollutants	exchange, etc.	lime, etc.
Biological	Use of	Aerobic and	Use of microbes,
	microorganisms	anaerobic,	agricultural wastes,
	and other biological	digestion,	natural materials,
	means to treat the	adsorption, etc.	etc.
	wastewater		

Note. Adapted from Dhir, 2014; Indah Water Konsortium, 2015c.

pustaka.upsi.edu.my

In adsorption-filtration stages in wastewater treatment system, the filters used in current adsorption-filtration process are not environment friendly. The application

4

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shak

takaTBainun

of activated carbon filters and plastic-based filter made from polypropylene in wastewater treatment plant have several drawbacks to the environment. Therefore, this study intends to improve existing adsorption-filtration stages, so that a better management of wastewater treatment could be achieved.

1.2 Problem Statement

In the last decades, sewage disposal and wastewater treatment has attract global attention in order to protect the environment especially in developed and developing countries (Cao, Zhu, Lu, & Xu, 2005). However, treating wastewater can be very challenging because wastewater consists of mixture of organic and inorganic chemical, organic matters and many type of toxic substances (Bendida, Tidjani, Badri, Kendouci, & Nabou, 2013) which is dangerous to human being and the natural environment.

Therefore, when the domestic, municipal and industrial wastewater is not being treated effectively, it will contribute to environmental and health problems. The consequence highlights the significance of wastewater treatment, so that rivers and streams as drinking water resources can be protected (United States Environmental Protection Agency, 2004). This is because untreated wastewater that contain contaminate toxic substances such as heavy metals and dyes might enter our drinking resources (Henze & Comeau, 2008).

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shał

pi pi

There are several techniques available to sequester heavy metals and dyes in wastewater such as adsorption, membrane filtration, chemical precipitation, ion exchange, flocculation, electrochemical treatment, extraction, electro dialysis and coagulation (Bilal et al., 2013; Erto, Giraldo, Lancia, & Moreno-Piraján, 2013; Rawat, Giri, & Rai, 2014; Taşar, Kaya, & Özer, 2014). In choosing the appropriate method, factors such as effectiveness, operational cost and production of toxic by-products must be taken into consideration (Abdolali et al., 2014). Within the context of this research, the adsorption-filtration description by activated carbon and polypropylene filters is further discussed in the following subsections.

1.2.1 Adsorption-filtration process by activated carbon

In recent decades, adsorption is the most employed and has been regarded as an effective techniques to remove contaminant such as heavy metals and dyes in wastewater (Albadarin et al., 2014; H. Guo, Lin, Chen, Li, & Weng, 2015; Gusmão, Gurgel, Melo, & Gil, 2013; Kamari et al., 2014; Rangabhashiyam, Anu, Giri Nandagopal, & Selvaraju, 2014). For adsorption, activated carbon has been extensively used as an adsorbent in wastewater treatment (Banerjee, Sharma, Chattopadhyaya, & Sharma, 2014; H. Chen, Zhao, & Dai, 2011; Coelho et al., 2014; Motahari, Mozdianfard, & Salavati-Niasari, 2015; Politi & Sidiras, 2012). This scenario can be related to activated carbon high surface area and excellent adsorption capacity (Al-Ghouti et al., 2010; Bharathi & Ramesh, 2013; Iakovleva & Sillanpää, 2013).

However, the application of activated carbon in wastewater treatment as adsorbent and filter has major drawbacks especially in large scale treatment system due to its high cost (Ponnusami, Vikram, & Srivastava, 2008; Rangabhashiyam, Anu, et al., 2014). For example, the market price for bamboo based activated carbon (800-1300 m²/g) is USD 1000-1500 per metric tonnes. The expensive price would contribute to high operational cost to run wastewater treatment facilities.

Besides, the process to alienate contaminants from the exhausted activated carbon and the regeneration of used activated carbon are technically challenging and add up more to a treatment plant operational cost (Demir, Top, Balköse, & Ulkü, 2008; Weng et al., 2014). Therefore, activated carbon is not economic especially for developing and undeveloped countries that practice small-scale wastewater treatment facilities (Gong, Zhang, Liu, Sun, & Liu, 2007; Gusmão et al., 2013; Hossain & Alam, 2012).

1.2.2 Adsorption-filtration process by polypropylene

Another common filter applied in wastewater treatment plant is polypropylene-based filter. The polypropylene that broadly implemented in this stage is known as micro porous Melt-brown polypropylene filter (L. L. Wu et al., 2007). Polypropylene (C_3H_6) is a plastic polymer where it can be used both as a structural plastic and also as a fiber. However, there are certain major problems that rise due to the using of polypropylene as wastewater filter.

05-4506832

pustaka.upsi.edu.my

) ptbupsi

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shał

PustakaTBainu

Firstly, polypropylene has high melting point that prolong degradation time of exhausted polypropylene filters in landfill (Lenntech, 2015). It was reported that the degradation of polypropylene could take up to several decades in natural environment (Montagna, Forte, & Santana, 2013). Therefore, it might need high cost for its recycling or for disposal.

In general, the application of activated carbon and polypropylene filters are costly and the mismanagement of exhausted activated carbon and polypropylene filters could lead to secondary pollution. Therefore, investigation on alternatives filters developed from renewable resources such as lignocellulosic materials is significant.

Lignocellulosic materials refer to natural biomass substances, agro-industrial wastes and its by-products. One of the examples of lignocellulosic plants is kenaf fiber. At present, the integration of natural materials especially lignocellulosic materials in many sectors such as wastewater treatment attracts attentiveness of environmental researchers due to the limited source of petroleum globally as well as production of secondary contaminants that comes from available wastewater treatment plant (Singha & Guleria, 2014a).

1.2.3 Kenaf as an adsorbent and filter

In fact, interest on renewable lignocellulosic materials have received great attention from environmental scientists due to their low-cost, available at large quantities, environmental friendly and non-hazardous waste production during wastewater

9

treatment (Barakat, 2011; Martins et al., 2013; Weng et al., 2014). One of the biomass that fulfills the characteristics is kenaf fiber.

Asadi, Shariatmadari, & Mirghaffari, (2008) reported that agricultural-based fiber and wood can be used as contaminants filter to treat polluted water. In addition, Saba et al., (2015) reported that kenaf is effective in term of cost and have environmentally friendly properties. A recent study conducted by Shamsudin, Abdullah, & Sinang, (2015) also suggested that kenaf can acts as oil or chemicals adsorbents.

One of interesting facts about natural fiber like kenaf is it is classified as renewable energy and do not have negative impacts on the environment due to its ability to self degrades (Basri., Arifin, Nasima, Hazandy, & Khalil, 2014; John, Bellmann, & Anandjiwala, 2010). Hence, kenaf provides a good alternative solution to replace activated carbon and polypropylene filter with comparable adsorption capacity and good biodegradability.

In Malaysia, the government encourages the cultivation of kenaf because kenaf fiber has high prospective market. Currently, there are about 2000 Ha of kenaf plantation in Malaysia. According to Malaysian National Kenaf and Tobacco Board, (2014), 1 ha of land can produce 8 tonnes of kenaf fiber. Therefore, the estimated production of kenaf fiber at year 2014 is 16 000 tonnes (Mingguan Malaysia, 2014). In addition, the Malaysian climate is also appropriate for kenaf planting (Basri. et al., 2014) and reassure kenaf planting in large scale. Malaysian kenaf fiber can be

ustakaTBainun

otbuosi

10

classified into two grades namely Temafa and MR grade. In this study, Kenaf Bast Fiber (KBF) (MR grade) was chosen due to its low-cost compare to Temafa grade.

1.3 Significance of Study

In overall, one of the factors that must be considered to build a good wastewater treatment plants is the design of the wastewater treatment plant. A system that is not only effective but minimize negative impacts to the environment should be selected. Therefore, this study focused on the potential of KBF to be applied as filter to replace activated carbon and polypropylene in wastewater treatment system. With the disadvantages of activated carbon and polypropylene filters as well as the potential of lignocellulosic materials, there are opportunities for production of green filter in adsorption-filtration stages to remove contaminants in wastewater.

In view of the concept of sustainable wastewater treatment and waste minimization, investigation about performance of natural untreated KBF to adsorb heavy metals and dyes is therefore significant. Based on literature, data on the adsorption and characterization studies of KBF in the removal of heavy metals and dyes is scarce. Besides, most of studies before employed chemicals to produce the adsorbents; which in turn contributes to additional processing cost especially for material and waste treatment.

In last 15 years, research on kenaf fiber mostly explained on Kenaf Core Fiber (KCF) and modified kenaf fiber. For example, acid treated kenaf fiber char 4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah