

HYBRID WATERMARK TECHNIQUES FOR SKIN CANCER IMAGES

OMAR ADIL DHEYAB

05-4506832 😵 pustaka.upsi.edu.my F Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR DOCTOR OF PHILOSOPHY (ARTIFICIAL INTELLIGENCE)

FACULTY OF ART, COMPUTING & CREATIVE INDUSTRY SULTAN IDRIS EDUCATION UNIVERSITY

2019

psi V

ABSTRACT

The aims of this study are to reveal the potentials of digital watermarking in medical data management issues, and proposes a hybrid watermark technique for skin cancer to enforce integrity, authenticity and confidentiality of the medical information. Dermoscopic image dataset (PH2) was used for testing purpose, which includes 200 different images. The hybrid watermark is proposed based on chaotic embedding. The hybrid watermarking includes robust and fragile watermarks embedded in the region of non interest of the image. The robust watermark utilizes the discrete wavelet transform to hide the patient information in the frequency domain. The fragile watermark utilizes the least significant bit to hide the authentication data in the spatial domain. The findings of this study shows high watermarked image quality and promising robustness under different attacks, and when compared with other techniques including discrete cosine transform and 2LSB. The Peak Signal-to-Noise Ratio (PSNR) of the watermarked image is 37.64 dB and the Mean Square Error (MSE) is 36.7507 dB, which indicate good image equality. In general, the hybrid watermark did not degrade the image quality and enhanced medical data security and authentication. The proposed hybrid watermarking can help health organizations to deal with medical information effectively, especially during storage and transmission.

05-4506832

pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi

vi

TEKNIK WATERMARK HIBRID BAGI IMEJ KANSER KULIT

ABSTRAK

Kajian ini bertujuan untuk mendedahkan potensi *watermark* digital dalam isu pengurusan data perubatan dan mencadangkan satu teknik *watermarking* hibrid untuk mengukuhkan integriti, ketulenan dan kerahsiaan maklumat perubatan. Set data imej dermoskopik (PH2) digunakan untuk tujuan pengujian yang merangkumi 200 imej yang berbeza. Watermarking hibrid dicadangkan berdasarkan pembenaman huru-hara. Watermarking hibrid ini merangkumi robust watermark dan fragile watermark yang dibenam di rantau tanpa kepentingan imej Robust watermarking menggunakan transformasi wavelet diskrit untuk tersebut. menyembunyikan maklumat pesakit dalam domain frekuensi. Fragile watermarking menggunakan bit yang kurang signifikan untuk menyembunyikan data pengesahan dalam domain spatial. Penemuan kajian ini menunjukkan kualiti imej watermark yang tinggi dan menjanjikan kekukuhan di bawah pelbagai serangan, dan apabila dibandingkan dengan teknik lain termasuk transformasi kosinus diskrit dan 2LSB. Nisbah Isyarat Puncak kepada Hingar (PSNR) untuk imej watermark adalah 37.64 dB dan Min Kesilapan Persegi (MSE) adalah 36.7507 dB, yang menunjukkan kualiti imej yang baik. Secara umum, watermark hibrid tidak merendahkan kualiti imej dan meningkatkan keselamatan dan pengesahan data perubatan. Watermarking hibrid yang dicadangkan boleh membantu organisasi kesihatan untuk menangani maklumat perubatan dengan berkesan, terutamanya semasa penyimpanan dan penghantaran.

Pages

TABLE OF CONTENTS

DECLARATION OF ORIGINAL WORK ii **DECLARATION OF THESIS** iii ACKNOWLEDGEMENT iv ABSTRACT v ABSTRAK vi **TAPLE OF CONTENTS** vii LIST OF TABLES xiv **LIST OF FIGURES** xvi LIST OF ABBREVIATION xix LIST OF APPENDICES XX Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah ptbupsi PustakaTBainun ١.

CHAPTER 1 INTRODUCTION

1.1 Overview	1
1.1.1 Watermarking	3
1.1.2 Medical Images	4
1.2 Problem Background	5
1.3 Problem Statement	7
1.4 Research Significance	9
1.5 Research Objectives	10
1.5 Research Questions	10
1.6 Research Scope	11

	05-4506832	
--	------------	--

pustaka.upsi.edu.my **f** Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi viii

1.7 Thesis Org	anization	11
1.9 Summary		13
CHAPTER 2 LITE	ERTURE REVIEW	
2.1 Introductio	n	14
2.2 Image Proc	cessing	16
2.2.1 Image	Types	18
2.2.2 Image (Color Models	21
2.2.2.1 R	GB	22
2.2.2.2 Y	CBCr	24
2.3 Medical im	nage	25
2.3.1 Medical	I Image Challenges Perpustakaan Tuanku Bainun Pustaka TBainun Optimusi	27
2.3.1.1 C	Clinical Challenges	27
2.3.1.2 T	Technical Challenges	28
2.3.1.3 A	Automation Challenges	29
2.4 Skin Cance	er Detection	30
2.4.1 Image S	Segmentation	38
2.4.1.1 F	Region Growing	39
2.4.1.2 (Clustering Methods	40
2.4.1.3 T	Thresholding	40
2.4.1.4 A	Artificial Neural Network Based Image Segmentation	41
2.4.2 Feature	Extraction	43
2.4.2.1 F	Principle Component Analysis	47

2.4	4.2.2	Scale-Invariant Feature Transform Descriptors	47
2.4	4.2.3	Speeded-Up Robust Features	49
2.4	4.2.4	Color Histogram	50
2.4	4.2.5	Color Coherence Vector	51
2.4	4.2.6	Gray level Co –Occurrence Matrices	51
2.4.3	Skin C	Cancer Classification	52
2.4	4.3.1 R	andom Forest	53
2.4	4.3.2	Fuzzy-Logic	53
2.4	4.3.3	Naïve Bayes	54
2.4	4.3.4	Artificial Neural Network	55
2.4	4.3.5	K-nearest Neighbors	57
05-4506832	4.3.6 pustal	Support Vector Machine ka.upsi.edu.my Ferpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah YustakaTBainun optbupsi	59
2.4	4.3.7	Hybrid Techniques	60
2.5 Info	ormatio	on Hiding Types	61
2.5.1	Stegar	nography	61
2.5.2	Water	marking	63
2.5	5.2.1	Fragile	66
2.5	5.2.2	Semi-Fragile	66
2.5	5.2.3	Robust	68
2.6 Info	ormatio	on Hiding Techniques	68
2.6.1	Transf	form Domain	69
2.6	5.1.1	Discrete Wavelet Transform (DWT)	70
2.6	5.1.2	Discrete Cosine Transform (DCT)	72

05-4506832

2.7

2.8

2.9

2.10

f

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi Х

2.6	5.2 Spati	al Domain	75
	2.6.2.1	Least Significant Bit	76
	2.6.2.2	2 Least Significant Bit Embedding	81
	2.6.2.3	Chaotic System	82
.7	Medical	Image Watermarking	88
2.7	7.1 Irrev	ersible Watermark	89
2.7	7.2 Reve	rsible Watermark	90
.8	Literatu	re survey on Watermarking Based Chaotic	94
.9	Research	h Gap	101
.10	Summa	V	102

CHAPTER 3 METHODOLOGY Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah ptbupsi C 📢 pustaka.upsi.edu.my PustakaTBainun 05-4506832 103 3.1 Introduction 104 3.2 **Research Frame Work** 3.3 **Research Data** 113 3.4 **Research Design** 113 3.5 **Evaluation Metrics** 115 Summary 3.6 118

CHAPTER 4 ALGORITHMS DESIGN

4.1 Introduction	119
4.2 Pre-Processing	120
4.2.1 Image Acquisition	121

ptbupsi xi

4.2.2 Images Resizing	122
4.2.3 Image Quality	122
4.3 Image Segmentation	126
4.3.1 Thresholding	127
4.3.2 Summary	130
4.4 Feature Extraction	131
4.5 Skin Cancer Classification	139
4.5.1 The Neural Network (ANN)	140
4.5.2 The Support Vector Machine (SVM)	145
4.5.3 The K-Nearest Neighbors (KNN)	148
4.6 Watermarking	150
4.6.1 Robust Watermark 05-4506832 pustaka.upsi.edu.my	stakaTBainun 151
4.6.1.1 Embedding Technique Using DWT	152
4.6.1.2 Extracting Technique Using DWT	155
4.6.1.3 Embedding Technique Using DCT	157
4.6.1.4 Extracting Technique Using DCT	158
4.6.2 Fragile Watermark	159
4.6.2.1 Embedding Technique Using LSB	160
4.6.2.2 Extracting Technique Using LSB	163
4.6.2.3 Embedding Technique Using 2LSB	165
4.6.2.4 Extracting Technique Using 2LSB	166
4.7 Summary	168

 \bigcirc

05-4506832

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ptbupsi xii

 $\overline{}$

CHAPTER 5 RESULTS AND DISCUSSION

5.1 Introduction	169
5.2 Preprocessing Results	170
5.2.1 Segmentation Results	172
5.2.2 Feature Extraction Results	177
5.2.3 Classification Results	178
5.2.3.1 Classifiers Parameters	178
5.2.3.2 Classifiers Performance	186
5.2.4 Comparison with Benchmark	190
5.3 Watermarking Result	193
5.3.1 Results of Robust Watermarking Using DWT	193
5.3.2 Results of Robust Watermarking Using DCT	196 ptbupsi
5.3.3 Result of Fragile Watermarking Using LSB	200
5.3.4 Result of Fragile Watermarking using 2LSB	203
5.4 Summary	206
CHAPTER 6 CONCLUSIONS	
6.1 Introduction	208
6.2 Research Objectives Fulfillment	209
6.2.1 To Extract the Significant Features for Skin Cancer in Medical Dermoscopy Images	210

6.2.2To Develop a Hybrid Detection Model for Skin Cancer in Medical
Dermoscopy Images210

E.

f

6	.2.3	To Develop an Em Embedding Watern Medical Dermosco	bedding Technique I nark in The Region o pic Images	Based on of Non Ir	Chaotic Map	For	211
6	.2.4	To Evaluate the Pe and The Detection	rformance of the Pro Model.	posed W	atermarking T	echnique	212
6.3	Co	clusion					212
6.4	Res	earch Limitations					213
6.5	Res	earch Contributions	5				214
6.6	Rec	ommendation and l	Future Work				215
6.7	Sur	nmary					215
REFER	ENC	ES					216
APPENI	DIC	ES					231
05-4506832		pustaka.upsi.edu.my	Perpustakaan Tuanku Ba Kampus Sultan Abdul J	ainun alil Shah	PustakaTBainu	in 🗐	ptbupsi

 \bigcirc

2.1	Common Values of Digital Image Parameters	19
2.2	Review of Researches on Skin Cancer	32
2.3	Comparison of different Segmentation Techniques	42
2.4	Image Features and their Properties	46
2.5	Advantages and Disadvantages of LSB Method	78
2.6	Watermarking Using Different Medical Images	92
2.7	Review of Various Watermarking Techniques	95
3.1	ABCD Features	108
4.1	Texture Features	132
05-4506832	Shape Features Ferpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	ptbupai34
4.3	Color Features	135
4.4	Dataset Sizes	143
5.1	Various variances for each Threshold	173
5.2	ANN Parameters	179
5.3	Values of SVM Parameters for the First Dataset	179
5.4	Values of SVM Parameters for the Second Dataset	181
5.5	Values of SVM Parameters for the Third Dataset	182
5.6	Values of KNN parameter for the first dataset	184
5.7	Values of KNN Parameter for the Second Dataset	184
5.8	Values of KNN Parameter for the Third Dataset	185

LIST OF TABLES

Pages

Table No.

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

E

ptbupsi XV

5.9	Classification Results of First Dataset	186
5.10	Classification Results of Second Dataset	187
5.11	Classification Results of Third Dataset	188
5.12	Comparison Results	191
5.13	Performance of Robust Watermark Using DWT	195
5.14	Performance of Robust Watermark Using DCT	197
5.15	Performance of Robust Watermark	199
5.16	Performance of Measures for Fragile Watermark Using LSB	202
5.17	Performance of Measures for Fragile Watermark Using 2LSB	204
5.18	Fragile Watermarks Comparison	205

🕓 05-4506832 🔮 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

E

LIST OF FIGURES

Figure No.			Pages
1.1	Watermarking Taxonomy		4
2.1	Literature Map		16
2.2	RGB Color Model		23
2.3	Features Vector		44
2.4	Artificial Neural Network Structure		56
2.5	Support Vector Machine		60
2.6	Steganography process		62
2.7	Wavelet Decomposition		74
2.8	Bifurcation Diagram for a Logistic Map		72
05-35.96832	Perpustakaan Tuanku Bainun Perpustakaan Tuanku Bainun Perpustakaan Abdul Jalil Shah	PustakaTBainun	105 ptbupsi
3.2	Detection Model		110
3.3	Potential Embedding Regions		111
3.4	Research Design		114
4.1	Preprocessing Framework		121
4.2	Segmentation framework		126
4.3	Feature Vector		131
4.4	ANN Parameters for Training		144
4.5	Embedding Scheme Using DWT		152
4.6	A Segmented Image		153
4.7	An Image 4x4 Blocks		153

E

O5-4506832 Og pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

4.8	DWT Image Decomposition	154
4.9	Extracting Scheme Using DWT	155
4.10	Embedding Scheme Using DCT	157
4.11	Embedding Scheme Using DCT	158
4.12	Embedding Scheme in LSB	160
4.13	An Image 2x2 Blocks	161
4.14	8 bits Number	161
4.15	Extraction Scheme in LSB	163
4.16	The Embedding Scheme in 2LSB	165
4.17	Extraction Scheme in 2LSB	166
5.1	Preprocessing Results	171
5.2 05-4506832	Thresholding Results pustaka.upsi.edu.my	174 ptbupsi
5.3	XOR Operation	175
5.4	Image Pixels Intensity Values	176
5.5	Segmentation Results	176
5.6	Classification Results of the Classifiers Using First Dataset	186
5.7	Classification Results of the Three Classifiers Using Second Dataset	188
5.8	Classification Results of the Three Classifiers Using Third Dataset	189
5.9	Comparison Results	192
5.10	Watermark Using DWT	193
5.11	Watermark Using DCT	196
5.12	Fragile Watermark with no Attacks Using LSB	200

E

5.13	Fragile Watermark with Attacks Using LSB	202
5.14	Fragile Watermark with no Attacks Using 2LSB	203
5.15	Fragile Watermark with Attacks Using 2LSB	204

O 05-4506832 **O** pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

C

f

ptpupsi	

	AI	Artificial Intelligent
	ANN	Artificial Neural Network
	BCR	Bit Correction Rate
	СТ	Computed Tomography
	DCT	Discrete Cosine Transform
	DES	Data Encryption Standard
	DFT	Discrete Fourier Transform
	DWT	Discrete Wavelet Transform
05-4506832	IDEA pustaka.upsi.edu.my f Pe KNN	International Data Encryption Algorithm rpustakaan Tuanku Bainun mpus Sultan Abdul Jalii Shah K-Nearest Neighbors
	LSB	Least Significant Bit
	MRI	Magnetic Resonance Imaging
	MSE	Mean Square Error
	NC	Normalized Cross Correlation
	PCA	Principal Component Analysis
	PSNR	Peak Signal -to-Noise Ratio
	SVM	Support Vector Machine
	MI	Medical Image
	ROI	Region of Interest
	RONI	Region of Non-Interest

LIST OF ABBREVIATION

🕓 05-4506832 🔮 pustaka.upsi.edu.my 👖

AES

Advanced Encryption Standard

 $\overline{\mathbf{O}}$

 $\overline{\mathbf{O}}$

XX

LIST OF APPENDICES

- А List of Publications
- В List of Conferences

🕓 05-4506832 🔮 pustaka.upsi.edu.my 👖

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

CHAPTER 1

INTRODUCTION

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 🕓 05-4506832 🔮 pustaka.upsi.edu.my 👖 9 PustakaTBainun ptbupsi

1.1 Overview

Internet facilitates the communication of huge numbers of people and the transmission of enormous data, which poses a challenge to information security, resources and to ensure the network authenticity against various attacks. The security is essential and compulsory due to the digital technologies rapid development including Internet technologies and image processing tools. These developments facilitate easy access to

huge digital data via various transmission channels, and facilitate digital media transmission such as images, audio, video and text more adequately. On the other hand, the powerful image processing tools and advanced software make it easy to manipulate, alter and distribute data (Moniruzzaman et al., 2014; Ghebleh & Kanso, 2014). Therefore, it becomes mandatory to enhance content security during data use and transmission. Cryptography and steganography are significant methods to ensure security. The cryptography scrambles data in a random manner based on encryption key. However, the encrypted text is known, and therefore raises the suspicion of the attackers to exist secret information. Cryptography provides confidentiality, authenticity, nonrepudiation, and integrity of data. Steganography is an embedding technique of sensitive information into a cover media in such a way that it cannot be seen. Steganography

techniques are combined with encryption to achieve more active security.

05-4506832 your pustaka.upsi.edu.my f Perpustakaan Iuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun of ptbupsi

The extensive researches on authenticity and integrity of images have led to develop two approaches namely digital signature, and digital watermark. The basic idea of digital signature is to use a hash function that generates the digital signature, which is embedded in the image as redundant data, invisible to the eye. In case of a malicious attack, the digital signature can be identified and the image authenticity cannot be confirmed. A main drawback of such scheme is the inability to localize the tampered area on the image, and the damaged data cannot be recovered (Rawat & Raman, 2011). To overcome this problem, watermarking based scheme has been proposed as an alternative approach, which embeds data called a watermark into a multimedia object (Zhang et al., 2013).

05-4506832

📢 pustaka.upsi.edu.my

1.1.1 Watermarking

Watermarking is the art of hiding formation (text, images, audios or videos) into cover mediums so that the presence of the secret information cannot be detected (Xu et al., 2010). Watermarking emerged as an effective mean to protect data and prevent unauthorized manipulation of information against illegal use during their transmission and store particularly medical image databases, military image databases, online private images album, etc. The digital watermarking concept emanated while attempting to find solutions to problems related to intellectual property of digital products management. Digital watermarks are widely and successfully used in most media objects across various applications such as copyright protection, data hiding and authentication,

fingerprinting, and more (Zhu & Zhao, 2010; Hamouda et al., 2014).

05-4506832 V pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah V PustakaTBainun ptbupsi

The watermark should be robust against a diversity of potential attacks including compression, scaling, rotation, cropping, altering, cryptographic and statistical attacks, (Pereira et al., 1999). Various watermarking techniques exist, which can be classified into various categories as shown in Figure 1.1.

Figure 1.1. Watermarking Taxonomy

1.1.2 Medical Images

The health care system exploits the Internet to simplify the digital medical images and information exchange between health institutions to provide e-health services to patients. Complicated data set such as medical notes, clinical examinations, diagnosis

psi 5

and receipt, scanned images of patient's clinical examinations, etc are the significant information of any medical information system (Chitla & Chandra Mohan, 2014). Digital medical images such as Ultrasound scan (US), Computed Tomography (CT), Electrocardiography (ECG), Magnetic Resonance Imaging (MRI) and X-ray images are essential to diagnosis and treatment of several diseases, and thus, it is quite important to ensure secure storage, transmission, processing and analysis of medical images without breaching the ethics code for health information (Das & Kundu, 2013). To attain these objectives, health authorities and interested entities in information security pay more attention to digital watermarking application in medical images to meet the authentication and security requirement. Embedding watermarking in medical imaging aims to embed large data in images to include more useful information of the patient,

and to protect images (Chitla & Chandra Mohan, 2014). 05-4506832 pustaka.upsi.edu.my

PustakaTBainun

O ptbupsi

1.2 Problem Background

05-4506832

(pustaka.upsi.edu.my

Digital images usually have very large-sized. Encrypting such huge data with conventional ciphers such as data encryption standard (DES), advanced encryption standard (AES), and international data encryption algorithm (IDEA) needs significant overhead, and is too costly for real-time applications (Tabash et al., 2013). To facilitate digital images sharing and remote handling in a secure manner, watermarking ensures attractive properties. Several watermark-based image authentication schemes have been proposed to check the digital images integrity and authenticity (Xiao & Jin 2012).

05-4506832

Among these medical images are dermoscopy images. The dermoscopy images are taken by an optical system called dermatoscope. The dermatoscope is an optical device coupled with a robust lighting system used to magnify the skin lesions during the examination process (Mendonca et al., 2013; chakravorty et al., 2016).

Medical image watermarking needs more attention than other watermarking types. In natural image watermarking, deformation can be accepted unlike medical images, because even a change in single bit may misguide the diagnosis decision. In other words, embedding additional information into the medical images, should not affect the quality of image. Recently, the medical images amount that transmitted through the internet has increased speedily, thus needs more bandwidth and more 05-4 memory, as well as speedy and safe transmission medium. Medical images security is a major issue which should be considered remarkably during store or transfer the image for diagnosis purposes (Naseem et al., 2013). Cryptographic methods are not suitable for medical image security due to fundamental issues such as needing more computational resources and depleting more time to recover the original image (Koppu & Viswanatham, 2017).

Protecting medical information risks are augmented, particularly over the Internet. This obliges three compulsory characteristics: confidentiality, integrity, and authenticity. Another main requirement is that any degradation that affects the diagnosis from the medical images is not acceptable. In general, medical images should remain intact with no visible change to their original form. There are many techniques for

medical image watermarking; however, they have many disadvantages: some are task and modality specific, while others suffer from low security, imperceptibility, payload capacity problems and without capability to locate tamper (Das & Kundu, 2013).

Medical image watermarking imperceptibility, robustness and capacity must be attained. However, these issues might contradict with each other. In all previous works, either the watermarking algorithm works for a specific medical image, or there is no good balancing between imperceptibility and embedding capacity, moreover, the watermarking are less secure (Al-Qershi & Khoo, 2011).

1.3 Problem Statement

05-4506832

👌 pustaka.upsi.edu.my

05-4506832

💽 🕽 pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun

o ptbupsi

Medical image watermarking is a proper method to enhance medical data security and authentication, which is crucial and used for further diagnosis and treatment. Most watermarking techniques alter, and may distort the host image in order to insert authentication information (Rawat & Raman, 2011; Xiao & Jin, 2012). In several applications, image fidelity loss is not forbidden as long as original and modified images are perceptually equivalent except in medical, military, and legal applications, where the need for authentication is often essential (Das & Kundu, 2013, Bilal et al., 2014). Many techniques and approaches have been developed for watermarking. Least significant bit (LSB) and spread spectrum are some of the spatial domain techniques. LSB substitution is the most popular one that embeds secret data by replacing some LSBs of a cover image pixel with secret data bits directly. The LSB substitution method is simple and

