

05-4506832 🛞 pustaka.upsi.edu.my 🚹 Perpustakaan Tuanku Bainun VersakaTBainun PustakaTBainun bergerikaan Sultan Abdul Jalil Shah

SYNTHESIS, CHARACTERISATION AND APPLICATION OF AMPHIPHILIC CHITOSAN DERIVATIVES FOR WATER-INSOLUBLE PESTICIDE FORMULATIONS

NURUL FARHANA BINTI AHMAD ALJAFREE

O5-4506832 Sutaka.upsi.edu.my Frepustakaan Tuanku Bainun Sultan Abdul Jalil Shah PustakaTBainun of ptbupsi

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE ANALYTICAL CHEMISTRY (MASTER BY RESEARCH)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2017

ptbupsi

pustaka.upsi.edu.my

05-4506832

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

ABSTRACT

This study investigates the feasibility of amphiphilic chitosan derivatives, namely oleoyl carboxymethyl chitosan (OCMCs), N,N-dimethylhexadecyl carboxymethyl chitosan (DCMCs) and deoxycholic acid carboxymethyl chitosan (DACMCs) as carrier agents for rotenone in water-insoluble pesticide formulations. This research is divided into three parts, such as characterisation studies, performance studies and pot experiments. The characterisation studies were carried out using Fourier Transform Infrared (FTIR) Spectrometer, Proton Nuclear Magnetic Resonance (¹H NMR) Spectrometer, CHN-O Elemental Analyser (CHN-O), Transmission Electron Microscope (TEM), Differential Scanning Calorimeter (DSC) and Thermogravimetric Analyser (TGA). The critical micelle concentration (CMC) of amphiphilic chitosan derivatives was determined using a Fluorescence Spectrometer. The ability of OCMCs, DCMCs and DACMCs to load and release rotenone in vitro system was determined using a High Performance Liquid Chromatography (HPLC). The pot experiments were conducted for 12 weeks to evaluate the effectiveness of pesticide formulations. Chilli (Capcisum annuum) was used as an indicator to monitor the effects of aphids and thrips infestation. Based on TEM analysis, findings have shown that amphiphilic chitosan derivatives formed self-assembly and exhibited spherical shape. The critical micelle concentration (CMC) for OCMCs, DCMCs and DACMCs were determined as 0.093, 0.098 and 0.468 mg/mL, respectively. The encapsulation efficiency (EE) values were within the range of 60.3 to 98.7%, meanwhile the loading capacity (LC) values were within the range of 0.97 to 7.90%. OCMCs, DCMCs and DACMCs micelles exhibited an excellent ability to control the release of rotenone, of which 90.0% of rotenone was released within 40 to 52 h. Based on pot experiments, the application of OCMCs as a carrier agent and polyvinyl alcohol (PVA) as an emulsifier was proven to be the most effective formulation to treat aphids and trips infected plants. In conclusion, OCMCs, DCMCs and DACMCs possess several key features to act as effective carrier agents for pesticide formulations. The implication of this study is the utilisation of amphiphilic chitosan derivatives could reduce the application of organic solvents in agrochemicals production by 33.3%, creating a greener and safer environment.

SINTESIS, PENCIRIAN DAN PENGGUNAAN TERBITAN KITOSAN AMFIFILIK UNTUK FORMULASI RACUN PEROSAK TAK TERLARUTKAN AIR

ABSTRAK

Kajian ini menyelidik kebolehlaksanaan terbitan kitosan amfifilik, iaitu kitosan oleoil (OCMCs), kitosan karboksimetil N,N-dimetilheksadesil karboksimetil (DCMCs) dan kitosan karboksimetil asid deoksikolik (DACMCs) sebagai ejen pembawa untuk rotenon dalam formulasi racun perosak tak terlarutkan air. Penyelidikan ini dibahagikan kepada tiga bahagian, iaitu kajian pencirian, kajian prestasi dan eksperimen pasu. Kajian pencirian telah dilakukan menggunakan Spektrometer Inframerah Transformasi Fourier (FTIR), Spektrometer Resonans Magnet Nukleus Proton (¹H NMR), Penganalisis Unsur CHN-O (CHN-O), Mikroskop Pancaran Elektron (TEM), Kalorimeter Pengimbasan Pembezaan (DSC) dan Penganalisis Termogravimetri (TGA). Kepekatan Misel Kritikal (CMC) bagi terbitan kitosan amfifilik telah ditentukan menggunakan Spektrometer Pendarfluor. Keupayaan OCMCs, DCMCs dan DACMCs untuk memuatkan dan melepaskan rotenon dalam sistem in vitro telah ditentukan menggunakan Kromatografi Cecair Prestasi Tinggi (HPLC). Eksperimen pasu telah dijalankan selama 12 minggu untuk menilai keberkesanan formulasi racun perosak. Cili (Capcisum annuum) telah digunakan sebagai penunjuk untuk mengawasi kesan serangan afid dan trip. Berdasarkan analisis TEM, dapatan menunjukkan bahawa terbitan-terbitan kitosan amfifilik membentuk penswabentukan dan mempamerkan bentuk sfera. Kepekatan Misel Kritikal (CMC) untuk OCMCs, DCMCs and DACMCs telah ditentukan dengan masing-masing sebagai 0.093, 0.098 dan 0.468 mg/mL. Nilai-nilai kecekapan pengkapsulan (EE) adalah dalam lingkungan julat 60.3 hingga 98.7%, manakala nilainilai muatan pembebanan (LC) adalah dalam lingkungan julat 0.97 hingga 7.90%. Misel OCMCs, DCMCs and DACMCs mempamerkan keupayaan yang sangat baik untuk mengawal pelepasan rotenon, yang mana 90.0% rotenon telah dilepaskan dalam lingkungan 40 hingga 52 jam. Berdasarkan eksperimen pasu, penggunaan OCMCs sebagai ejen pembawa dan polivinil alkohol (PVA) sebagai pengemulsi telah terbukti menjadi formulasi paling berkesan untuk merawat tumbuhan yang dijangkiti afid dan trip. Kesimpulannya, OCMCs, DCMCs dan DACMCs mempunyai beberapa ciri-ciri utama untuk bertindak sebagai ejen pembawa yang berkesan untuk formulasi racun perosak. Implikasi kajian ini ialah penggunaan terbitan kitosan amfifilik mampu menurunkan penggunaan pelarut organik dalam pengeluaran agrokimia sebanyak 33.3%, mewujudkan sekitaran yang lebih hijau dan selamat.

O5-4506832 Spustaka.upsi.edu.my F Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun topper ptbupsi

TABLE OF CONTENTS

	Page
DECLARATION	ii
ACKNOWLEDGEMENTS	111
ABSTRACT	iv
ABSTRAK	V
TABLE OF CONTENT	vi
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xvi
05-CHAPTER 1 ^{ustaka.u} INTRODUCTION Sultan Abdul Jalil Shah	ptbupsi
1.1 Research Background	1
1.1.1 Definition of Pesticides	4
1.1.2 History of Pesticides	7
1.1.3 Amount of Pesticides Used	8
1.2 Formulation of Pesticides	12
1.2.1 Synthetic Pesticides	12
1.2.2 Natural Alternatives	17
1.3 Impacts of Pesticides	19
1.3.1 Environment	20
1.3.1.1 Air	20
1.3.1.2 Water	22
05-4506832 vustaka.upsi.edu.my	23 ptbupsi

05-4506832	pustaka.upsi.ed	u.my	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	ptbups
		1.3.2	Health Risks	25
	1.4	Resea	rch Aim, Objectives and Significance	29
CHAP	TER 2 LIT	'ERA'	FURE REVIEW	
	2.1	Agric	ulture in Malaysia	30
		2.1.1	Crop Production in Malaysia	31
		2.1.2	Issues involving Agriculture in Malaysia	33
			2.1.2.1 Water Irrigation System in Malays	sia 34
			2.1.2.2 Climate Change	34
			2.1.2.3 Land Reduction	35
			2.1.2.4 Farmer Knowledge	35
		2.1.3	Usage of Pesticides in Malaysia	36
05-4506832	pustaka.upsi.ed	2.1.4	Effect of Pesticides in Malaysia Kampus Sultan Abdul Jalil Shah	38 ptbups
			2.1.4.1 Health	38
			2.1.4.2 Soil Erosion	39
			2.1.4.3 Water Contamination	40
		2.1.5	Resolution by Government in Malaysia	40
	2.2	Plant	Derived Active Ingredients	42
		2.2.1	Source of Plant Derived Active Ingredient	ts 43
		2.2.2	Application of Plant Derived Active Ingredients	47
		2.2.3	Plant Derived Active Ingredients in Malaysia	50
		2.2.4	Advantages and Disadvantages of Plant Derived Active Ingredients	50
			2.2.4.1 Advantages	50
05-4506832	g pustaka.upsi.ed	u.my	2.2.4.2 Disadvantages Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalii Shah	51 ptbups

05-4506832	pustaka.upsi.edu.my	f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Commercialisation of Plas	PustakaTBainun nt Derived Active	ptbupsi 52
	2.2.6	Ingredient 5 Plant Derived Active vers	us Synthetic	53
		Pesticides	5	
	2.3 Carri	er Agents for Pesticides For	rmulations	56
	2.3.1	Polymer-based Formulation	ons	57
	2.3.2	2 Carrier Agents in Capsule	Form	57
	2.3.3	3 Carrier Agents in Particle	Form	59
	2.3.4	Carrier Agents in Micelle	s Form	61
	2.3.5	5 Inorganic Materials Form	ulation	62
	2.4 Chite	osan		62
	2.4.1	Production of Chitosan		63
	2.4.2	2 Physical and Chemical Ch	naracteristic of	65
05-4506832	pustaka.upsi.edu.my	Application of Chitosan in	PustakaTBainun n Various Field	ptbupsi 65
	2.4.4	Application of Chitosan in	n Agrochemical	67
	2.4.5	5 Amphiphilic Chitosan Der Agents for Hydrophobic F Active Ingredients	ivatives as Carrier Plant Derived	70
СНАРТ	ER 3 METHO	DOLOGY		
	3.1 Cher	nicals Used in Research Pro	oject	72
	3.2 Synt	hesis of Amphiphilic Chitos	an Derivatives	73
	3.2.1	Carboxymethyl Chitosan	(CMCs)	73
	3.2.2	2 Oleoyl Carboxymethyl Cl	nitosan (OCMCs)	75
	3.2.3	<i>N,N</i> -Dimethylhexadecyl C Chitosan (DCMCs)	Carboxymethyl	76
05-4506832	3.2.4	 Deoxycholic acid Carbox (DACMCs) Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 	ymethyl Chitosan	77

	_		
/		`	
ī (5		١.
U	\sim	ь.	
∕.			

05-4506832	pustaka.upsi.ed	du.my	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	PustakaTBainun	ptbupsi
	3.3	Charac	terisation Study		78
		3.3.1	Fourier Transform Infrare	d (FTIR) analysis	78
		3.3.2	Nuclear Magnetic Resona Analysis	nce (NMR)	78
		3.3.3	CHN-O Elemental Analys	ser Analysis	79
		3.3.4	Transmission Electron Mi Analysis	croscope (TEM)	80
		3.3.5	Differential Scanning Cale Analysis	orimeter (DSC)	81
		3.2.6	Thermogravimetric Analy Analysis	ser (TGA)	81
	3.4	Perform	nance Study		82
		3.4.1	Solubility Study		82
		3.4.2	Critical Micelles Concent	ration (CMC)	82
05-4506832	pustaka.upsi.ed	du.my	Study Ferpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	PustakaTBainun	ptbupsi
		3.4.3	Preparation of Rotenone-l Amphiphilic Chitosan Der	oaded ivatives	83
		3.4.4	Measurement of Rotenone Amphiphilic Chitosan Der	e Content in ivatives	84
		3.4.5 I	<i>n vitro</i> Release Studies of Amphiphilic Chitosan Der	Rotenone-loaded ivatives	84
		3.4.6	Kinetic Study for the Rele of Rotenone	ase Mechanism	85
	3.5	Pot Ex	periments		86
СНАРТ	TER 4 RE	SULTS	AND DISCUSSION		
	4.1	Charac	terisation Study		88
		4.1.1	FTIR Analysis		89
		4.1.2	¹ H NMR Analysis		97
05-4506832	pustaka.upsi.ed	4.1.3 du.my	CHN-O Analysis Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	PustakaTBainun	106 ptbupsi

05-4506832	pustaka.upsi.edu.my	Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	PustakaTBainun	ptbupsi
	4.1.4	TEM Analysis		107
	4.1.5	DSC Analysis		112
	4.1.6	TGA Analysis		116
	4.2 Perfo	rmance Study		119
	4.2.1	Solubility Study (UV-Vis spectrophotometer)		119
	4.2.2	2 Critical Micelle Concentr Study	cation (CMC)	122
	4.2.3	Encapsulation Efficiency Capacity of Rotenone into Chitosan Derivatives	and Loading Amphiphilic	128
	4.2.4	In Vitro Release of Amph Derivatives	iphilic Chitosan	131
	4.2.5	Kinetic Release Study of Chitosan Derivatives	Amphiphilic	136
05-4506832	pustaka.upri3dumy 4.3 Appli	cation Study (Pot Experim	ents) PustakaTBainun	941 ^{tbupsi}
	4.3.1	The Growth of Chilli Pla	nts	141
	4.3.2	2 Effect of Pesticide Form Commercial Pesticide on	lations and Chilli Plants	144
CHAP	TER 5 CONCLU	USIONS AND FUTURE I	RESEARCH	
	5.1 Conc	lusions		157
	5.2 Futur	e Research		158
REFER	RENCES			159

APPENDIX

177

Х

O5-4506832 Spustaka.upsi.edu.my F Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun topper ptbupsi

xi

LIST OF TABLES

No of Ta	able	Page
1.1	Human population for selected countries (2010-2013)	3
1.2	Classification of pesticides by WHO	6
1.3	Domestic consumption of pesticides in selected countries (2010-2012)	9
1.4	World usage of pesticide (2010-2012)	11
1.5	Advantages and disadvantages of liquid formulations	13
1.6	Advantages and disadvantages of dry formulations	15
1.7	Advantages and disadvantages of fumigants	17
1.8	Natural alternatives to pesticides utilisation	18
05-4506832 2.1	Type of crops and their production in Malaysia (2010-2013)	ptbup 33
2.2	Amount of each type of pesticide used in Malaysia (2009 2012)	- 37
2.3	Active ingredients derived from plants	45
2.4	Toxicity of selected active ingredients derived from plants	55
2.5	General application of chitosan in selected fields	66
2.6	Types of chitosan polymer used as carrier agent in agriculture	69
3.1	List of Chemicals Used	73
4.1	Elemental composition of chitosan, CMCs, OCMCs, DCMCs and DACMCs	106
4.2	The effect of weight ratios of OCMCs, DCMCs and DACMCs to rotenone on the encapsulation efficiency and loading capacity	130
4.3	Value of r^2 of OCMCs for several kinetic models	137
05-4506832	😵 pustaka.upsi.edu.my 📑 Perpustakaan Tuanku Bainun 💟 PustakaTBainun	ptbup

05-4506832	pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah D PustakaTBainun	ptbupsi
4.4	Value of r^2 of DCMCs for several kinetic models	137
4.5	Value of r^2 of DACMCs for several kinetic models	137
4.6	Parameters of Ritger and Peppas kinetics model for controlled release of rotenone-loaded OCMCs with different weight ratios of (1:10, 1:50 and 1:100) in PBS solution at 25 °C	140
4.7	Parameters of Ritger and Peppas kinetics model for controlled release of rotenone-loaded DCMCs with different weight ratios of (1:10, 1:50 and 1:100) in PBS solution at 25 °C	140
4.8	Parameters of Ritger and Peppas kinetics model for controlled release of rotenone-loaded DACMCs with different weight ratios of (1:10, 1:50 and 1:100) in PBS solution at 25 $^{\circ}$ C	140
4.9	The increment in water solubility values of rotenone with different weight ratios of OCMCs, DCMCs and DACMCs	147
05-4506832	pustaka.upsi.edu.my	p tbupsi

O5-4506832 Spustaka.upsi.edu.my F Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah PustakaTBainun topp pubupsi

xiii

LIST OF FIGURES

No of F	igure	Page
2.1	Chemical structures of selected plant derived active ingredients	47
2.2	Structure of cellulose, chitin and chitosan	64
3.1	The synthetic procedure of CMCs	74
3.2	The synthetic procedure of OCMCs	75
3.3	The synthetic procedure of DCMCs	76
3.4	The synthetic procedure of DACMCs	77
4.1	FTIR spectra of (a) chitosan, (b) CMCs, (c) OCMCs, (d) DCMCs and (e) DACMCs	92
© 05-4526832 4.2	FTIR spectra of (a) OCMCs, (b) rotenone-loaded OCMCs and (c) rotenone	94 ^{tbups}
4.3	FTIR spectra of (a) DCMCs, (b) rotenone-loaded DCMCs and (c) rotenone	95
4.4	FTIR spectra of (a) DACMCs, (b) rotenone-loaded DACMCs and (c) rotenone	96
4.5	(a) Structure of chitosan and (b) ¹ H NMR spectra of chitosan	98
4.6	(a) Structure of CMCs and (b) ¹ H NMR spectra CMCs.	99
4.7	(a) Structure of OCMCs and (b) ¹ H NMR spectra of (b) OCMCs and (c) OCMCs-Rotenone	101
4.8	(a) Structure of DCMCs and (b) ¹ H NMR spectra of (b) DCMCs and (c) DCMCs-Rotenone	103
4.9	(a) Structure of DACMCs and (b) ¹ H NMR spectra of (b) DACMCs and (c) DACMCs-Rotenone	105
4.10	TEM images of OCMCs micelles at (a) $30,000x$, (b) $200,000x$ and (a) $250,000x$ magnifications	108
05-4506832	pustaka.upsi.edu.my	ptbups

•	
V1	3 7
ΛI	v

05-4506832	pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 900 PustakaTBainun	ptbupsi
4.11	TEM images of DCMCs micelles at (a) 30 000x, (b) 70 00x and (c) 200 000x magnifications	109
4.12	TEM images of DACMCs micelles at (a) 30 000x, (b) 70 00x and (c) 200 000x magnifications	110
4.13	DSC thermograms of (a) chitosan and (b) CMCs	113
4.14	DSC thermograms of (a) OCMCs and (b) DCMCs (c) DACMCs	115
4.15	Thermograms of chitosan with (a) OCMCs and (b) DCMCs (c) DACMCs	118
4.16	Water solubility of chitosan with (a) OCMCs and (b) DCMCs (c) DACMCs at pH 1 to 13.	121
4.17	The fluorescence spectra of pyrene in (a) OCMCs and (b) DCMCs (c) DACMCs solution at 1.0×10^{-4} to 1.0 mg/mL	124
4.18	The intensity ratio (I_{372}/I_{384}) of pyrene versus the concentration of (a) OCMCs (b) DCMCs and (c) DACMCs	127
05-4594832	Perpustakaan Tuanku Bainun In vitro release of rotenone and rotenone-loaded (a) OCMCs and (b) DCMCs with different weight ratios of (5:1, 50:1 and 100:1) in PBS solution at 25 °C.	134 ^{bupsi}
4.20	<i>In vitro</i> release of rotenone-loaded DACMCs with different weight ratios of (5:1, 50:1 and 100:1) in PBS solution at 25 °C.	135
4.21	The growth of chilli plant from day 31 to day 66	143
4.22	The average height of chilli plants after transplant.	143
4.23	The chilli leaf without any pesticide treatment (control)	149
4.24	The chilli leaf treated with commercial pesticide	150
4.25	The chilli leaf treated with rotenone-loaded OCMCs pesticide formulation	151
4.26	The chilli leaf treated with rotenone-loaded DCMCs pesticide formulation	152
4.27	The chilli leaf treated with rotenone-loaded DACMCs pesticide formulation	153
05-4506832	😵 pustaka.upsi.edu.my 📔 Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah 💟 PustakaTBainun	ptbupsi

XV

05-4506832	pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah DustakaTBainun	ptbupsi
4.28	The chilli leaf treated with rotenone-loaded OCMCs with PVA pesticide formulation	154
4.29	The chilli leaf treated with rotenone-loaded DCMCs with PVA pesticide formulation	155
4.30	The chilli leaf treated with rotenone-loaded DACMCs with PVA pesticide formulation	156

O5-4506832 V pustaka.upsi.edu.my

ptbupsi

O5-4506832 V pustaka.upsi.edu.my

LIST OF ABBREVIATIONS

	AZA	Azadirachtin			
	CMCs	Carboxymethyl Chitosan			
	DACMCs	Deoxycholic Acid Carboxymethyl Chitosan			
	DCMCs	N,N-Dimethylhexadecyl Carboxymethyl Chitosan			
	DOCA	deoxycholic acid			
	DSC	Differential Scanning Calorimeter			
	EDC	1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride			
	FAOSTAT	Food and Agriculture Organization of the United Nations Statistics Division			
05-4506832	FTIR ^{taka.upsi}	Fourier Transform Infrared			
	HPLC	High Performance Liquid Chromatography			
	MANCID	Malaysian National Committee of ICID			
	MCPA	Methylphenoxyacetic acid			
	NHS	N-Hydroxysuccinimide			
	NMR	Nuclear Magnetic Resonance			
	OCMCs	Oleoyl Carboxymethyl Chitosan			
	PCA	Polycitric acid			
	PVA	Polyvinyl alcohol			
	TEM	Transmission Electron Microscope			
	TGA	Thermogravimetric Analyser			
	TMTD	Tetramethylthiuram disulphide			
05-4506832	WHO	World Health Organization edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah			

'erpustakaan Tuanku Bainun Campus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

CHAPTER 1

INTRODUCTION

1.1 Research Background

Food is an essential necessity for the survival of each living organism. Agriculture is one of the main food source for human population that contribute around 99.7% of the world food production (Pimentel, 2009). According to United Nation, around one billion of people were undernourished in 2010 (Odegard & van der Voet, 2014). Hence, the increment in agricultural productivity to meet the necessity for food demands of human population is a matter of great concern for all countries (Sachdev & Cameotra, 2013).

According to the United Nations (2015), the world population already reached 7.30 billion in 2015 and will continue to increase to about 9.70 billion by the year 05-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah (\mathbf{C})

pustaka.upsi.edu.my

Kampus Sultan Abdul Jalil Sha

IstakaTBainun

2050. Of all the continents, Asia has the highest human population with the percentage of 60.31% (4.30 billion) followed by Africa with 15% (1.00 billion) of the human population. Third is Europe with 11% (733.00 million) of world's population whereas Latin American and Caribbean regions both consist of 9% (600.00 million) of human population. Meanwhile, United States of America and Canada both are estimated with 5% (352.00 million) human population. Oceania, has the least human population with 0.50% (35.00 million) (Msangi, 2014). The rapid escalation in human population has forced food production to be increased in order to cope with the global population growth.

Table 1.1 presents the human population of several countries around the world. Based on the data by WHO (2014), China has the highest human population of throughout the years followed by India where the human population were more than 1.20 billion in each country. According to Msangi (2014), both human populations in China and India contribute around 37% of the world's population. Meanwhile, United States, Indonesia and Brazil are in the top five countries that have high human population in the world with more than 1.90 million people. Although Brunei has the least human population as compared to other countries, the population growth shows a steady increment over the years. Overall, each country showed a continuous increase in human population from 2010 to 2013.

The increase pattern of human population observed in every country has upsurge the demand for food. Although food supply has generally afford human with safe and healthy food, the food production is still outrun the population growth (Chen, Shi, Sivakumar, & Peart, 2016). Several problems such as hunger and malnutrition

pustaka.upsi.edu.my

could occur and people could also predispose themselves to contagious diseases (Pimentel, 2009). Furthermore, the reduction in manufacture of food in agricultural sector could force other food industry to produce canned and junk food. Consequently, people could undergo health complication such as undernutrition, overweight and chronic diseases due to high amount of saturated fat, free sugar and sodium that the canned and junk food possess (Herforth & Ahmed, 2015). Therefore, it is necessary to increase the current levels of food production to provide human with a better quality of food.

Table 1.1

05-4506832

	Total population (in thousands)				
O 05-Country 🔮 pustaka	.u2010.my 1	2011 Sultan Abdul Ja	liil 2012 DeustakaTi	Bai2013 ptbupsi	
China	1,370,000	1,380,000	1,390,000	1,393,337	
India	1,210,000	1,220,000	1,240,000	1,252,140	
United States	312,000	315,000	318,000	320,051	
Indonesia	241,000	244,000	247,000	249,866	
Brazil	195,000	197,000	199,000	200,362	
Thailand	66,402	66,576	66,785	67,010	
United Kingdom	62,066	62,427	62,783	63,136	
Malaysia	28,276	28,759	29,240	29,717	
Singapore	5,079	5,192	5,303	5,412	
Brunei	401	407	412	418	

Human population for selected countries (2010-2013)

pustaka.upsi.edu.my

Note. Adapted from World Health Organization (WHO), 2014.

pustaka.upsi.edu.my

Kampus Sultan Abdul Jalil Shal

4

Agriculture industry possess many challenges due to climate change, bioenergy and land degradation (Msangi, 2014). The restraint in fertile land, water, and other resources as well as to harvest good quality of crop yield have caused an immense pressure on the agriculture sector (Specht et al., 2013). Furthermore, around 35% of crop yield worldwide has lost due to pre-harvest pests. In this context, the use of pesticide in agriculture to meet the dietary demand of public is absolutely unavoidable. The evidence of utilisation of pesticide as a crucial tool to retain and enhance the crop production was inevitable (Popp, Peto, & Nagy, 2013).

1.1.1 Definition of Pesticides

Pesticides work by killing the targeted organisms, interfered using a specific variation of biochemical and physiological procedures found in the large scope of living organisms (Pretty, 2005). Pesticides names are originated from the Latin or scientific name which depend on their function against the target organisms. Most of the pesticides have the ending or suffix *-cide* which represent kill or killer. However, some of the pesticides have different names rather than end with *-cide*. For instance, growth regulators (activate or hinder the development of pests) and defoliants (stimulate plants to drop off its leaves), pesticides encompasses a diverse type which consist of insecticides, herbicides, fungicides, nematocides, rodenticides and many others that are being classified by their targeted pests. Pesticides could also be classified by their chemical identity which share mutual class of compounds (The University of Arizona, 2000).

pustaka.upsi.edu.my

Kampus Sultan Abdul Jalil Sha

akaTBainun

ptk

World Health Organization (WHO) was first to develop a simple classification system for pesticides, and sanctioned by its 28^{th} World Health Assembly in 1975. In 1978, after the guidelines were early issued, these guidelines were being reviewed followed by reissued within the intervals of two-years since then. Table 1.2 shows classification of pesticides by WHO. The classification was based on acute risks to human health including the possible outcome of single or morefold exposures at a period of time. The tests were done on rats in order to measure the acute oral and dermal toxicity of the products as this is a standard procedure in toxicology. These are measured by the LD₅₀ value, a statistic approximation on the amounts of mg of toxicant per kg of bodyweight needed to destroy 50 percent of a large species on the animal evaluation (Pretty, 2005).

WHO classified pesticides into four risk categories, namely Class Ia (extremely hazardous), Class Ib (highly hazardous), Class II (moderately hazardous) and Class III (slightly hazardous). For example, the active ingredients of cholinesterase-inhibiting pesticides often categorised by WHO as Class Ia, Ib or II. In several developed countries, Class Ia and Ib are either banned or restricted.

ptbupsi

6

Table 1.2

Classification of pesticides by WHO

]	LD ₅₀ for rat (mg/kg body weight)				
Class of pesticide	Oral		Dermal			
-	Solids ¹	Liquids	Solids	Liquids		
Ia-extremely hazardous	<5	<20	<10	<40		
Ib – highly hazardous	5-50	20-200	10-100	40-400		
II-moderately hazardous	50-500	200-2000	100-1000	400-4000		
III- slightly hazardous	>500	>2000	>1000	>4000		

Note. ¹ This refers to the physical state of the active ingredient. Adapted from *Pretty*, 2005; *IPCS*, 2002.

WHO does not provide specific symbols to aid farmers or other pesticide users to determine these classes in its recommendations. However, it does state Class Ia and Ib types must possess a symbol to indicate the pesticides are highly hazardous which commonly symbolised as a skull and cross-boned with a keyword, such as poison or toxic.

Even though the organic sector has established many effective agricultural systems across the world that are not reliable to synthetic pesticides most of the farmers are still utilised several pesticides to their crops. However, the majority of pesticides are categorised as Class Ia, Ib and II which have significant effect on human and environment.

PustakaTBainur

ptbupsi

7

1.1.2 History of Pesticides

Pesticides have already been used for such a long time to regulate pests and ailments in the agricultural industry (Pretty, 2005). In 2500 BC sulphur compounds were applied by Sumerians for pest regulation, followed by plenty of natural organic materials by Chinese farmers to prevent against any types of pests. Inorganic mercury and arsenic compounds were also be used to regulate body lice (Pretty, 2005).

In the 1600s, nicotine was utilised as a natural pesticide followed by the discovery of the wood preservative properties of mercuric oxide in the early 1700s, and the fungicidal properties of copper sulphate in the early 1800s. In mid-19th century, rotenone derived from the roots of derris and pyrethrum from ⁶⁵ chrysanthemum flowers had been explored, and were associated by a rapid growth in the use of inorganic products, especially arsenic (Pretty, 2005).

The early years of the 20th century seen an increment in the utilisation of many hazardous products derived from arsenic, cyanide and mercury. This has brought public concern regarding the residues of these products on fruits and vegetables. However, over the time, pesticide products have tended to become less broad-ranging in their effects and are focusing toward the targeted pests, weeds or ailments (Pretty, 2005).

PustakaTBainu

ptbupsi

8

1.1.3 Amount of Pesticides Used

Around two million tonnes of pesticides are used worldwide annually, of which 45% in Europe, 24% in USA and the remaining 25% are used in other countries (Yadav et al., 2015). Most of the developed countries such as North America, Western Europe and Japan consumed three quarters of the total pesticide utilised worldwide.

The consumption of pesticides in three consecutive years (2010-2012) in several countries is given in Table 1.3. As compared to eight other countries, Brazil used the highest amount of pesticides with more than 300,000 tonnes. De Siqueira et al. (2010) stated that almost 50% of the agricultural pesticides used in Latin America was from Brazil. In Brazil, pesticides such as deltamethrin, fenitrothion, fipronil and sulfluramid were used to combat leaf-cutting ants and termites (Zanuncio et al., 2016). Meanwhile, Mexico was in the second place with 110,00 tonnes of pesticides used within the three consecutive years. Mexico was ranked in sixth place worldwide for the utilisation of dichlorodiphenyltrichloroethane (DDT) in agricultural sector (Li & Macdonald, 2005). Chlordane and Lindane have been used for a long time in Mexico as agriculture insecticides to control termite and ectoparasite on cattle and other animals (Alegria et al., 2008).

In Malaysia, around 6% of the entire Malaysian annual export comes from the chemicals industry (Lee, Mokhtar, Goh, Singh, & Chan, 2015). Majority of the farmers in Malaysia used herbicides to combat weed problems, which has been regarded as one of the most severe issues encountered in agriculture field in Malaysia

(Sapari & Ismail, 2012). For instance, herbicides such as 2,4-dichlorophenoxy(2,4-D),

Kampus Sultan Abdul Jalil Sł

pustaka.upsi.edu.my

2-methyl-4-chlorophenoxyacetic acid (MCPA), pyrazosulfuron, bensulfuron, and metsulfuron were applied by the farmers in the rice fields of the Alor Setar district, Kedah (Ismail, Prayitno, & Tayeb, 2015). Meanwhile, Netherlands consumed least amount of pesticides than other countries with less than 8,000 tonnes. Similar to Malaysia, the usage of herbicides was found highest in Netherlands. According to Pan, Jiang, and Kuil (2012) about 92% of herbicides were used on the arable fields in Netherlands. Although the usage of pesticides worldwide was still considered high, other alternatives have also been taken into measure in order to reduce the pesticide impacts.

Table 1.3

05-4506832

pustaka.upsi.edu.my

5-4 Country pustaka.upsi.edu.my	f Amount pesticides used (tonnes)			
_	2010	2011	2012	
Brazil	311,591	305,882	308,882	
Mexico	113,880	118,649	116,478	
Thailand	67,581	85,259	69,418	
Japan	55,042	51,284	54,157	
Malaysia	59,944	41,369	49,674	
Germany	27,585	29,109	29,735	
United Kingdom	13,876	13,507	14,293	
China	7,769	8,198	9,332	
Netherlands	7,890	7,566	7,995	

Domestic consumption of pesticides in selected countries (2010-2012)

Note. Adapted from Food and Agriculture Organization of the United Nations Statistics Division (FAOSTAT), 2015.

pustaka.upsi.edu.my

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shał

In the past 50 years, the global utilisation of pesticides in agriculture had increased rapidly to about 2.56 billion kg annually which the market value cost around US\$25-30 billion in the 1990s and 2000s. Around US\$3 billion of sales are from the developing countries (CropLife, 2003) which include herbicides account for 37% of sales, insecticides 25% fungicides 22% and other 28% between 1998 and 1999 (Pretty, 2005).

Pesticides can be categorised as herbicides, insecticides, fungicides, bactericides, nematicides, molluscicides, rodenticides, and plant growth hormones (Mahmood, Bilal, & Jan, 2014). Each type of pesticide works differently. For instance, insecticides are used to control pests and insects (Pang, 2014). Meanwhile, herbicide and fungicide are applied in order to kill weeds and inhibit fungi or fungi spores, respectively (Mahmood et al., 2014; Leadbeater, 2014). Without pesticides usage the productivity of the world crop could decrease as infestation of agriculture pests or diseases would be much more severe (Willers, DeFauw, English, & Jenkins, 2014). Such problems would cause an economic loss estimated around \$ 500 billion per annum and the reduce in the world's food supply (Willers et al., 2014).

Table 1.4 shows the usage of several type of pesticides in three consecutive years from 2010 to 2012. According to FAO, the highest type of pesticides used in 2010 were fungicides and bactericides. Meanwhile in 2011 and 2012, herbicides were highly consumed. The amount of each type of pesticide utilised worldwide exhibited a decrease pattern during the three years. This primarily due to diverse development in agricultural systems in recent years (Willers et al., 2014). For instance, current practices such as biotechnology and bioengineering expose farmers to latest 450682 Opustaka.upsi.edu.my Perpustakaan Tuanku Bainun Konstantion abdul tabil Shah