UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

FABRICATION OF CALIXARENE FILMS USING LANGMUIR AND LANGMUIR-BLODGETT (LB) METHOD FOR HEAVY METAL ION SENSING

NOOR AZYYATI BINTI NOOR AZAHARI

UNIVERSITI PENDIDIKAN SULTAN IDRIS

2014

FABRICATION OF CALIXARENE FILMS USING LANGMUIR AND LANGMUIR-BLODGETT (LB) METHOD FOR HEAVY METAL ION SENSING

NOOR AZYYATI BINTI NOOR AZAHARI

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE (PHYSICS) (RESEARCH MODE)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2014

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA

ACKNOWLEDGEMENTS

First and foremost I thank Allah, the Most Beneficent and the Most Merciful for giving me the strength, guidance and patience to complete my thesis.

I would like to express my deep gratitude to Dr. Faridah Lisa Supian, my research supervisor, for her valuable and constructive suggestions during the planning and development of this research work. Her willingness to give her time so generously has been very much appreciated. I would also like to thank Associate Professor Dr. Syed Abdul Malik Syed Mohamad, my co-supervisor, for his advice and assistance in keeping my progress on schedule. His detailed comments on previous draft of this thesis undoubtedly improved its standard substantially.

My special acknowledgement goes to Associate Professor Dr. Zulkifley Mohamed, the Dean of Faculty of Science and Mathematics, UPSI. Also, the former Dean of Faculty of Science and Mathematics, Prof. Mustaffa Ahmad. Thank you for giving me the opportunity of attending and presenting my research works in the international conference. It was a very good experience for a young researcher like me to mix around with the real scientist community in sharing new scientific knowledge and building a research network.

My special thanks are extended to Associate Professor Dr. Suriani Abu Bakar, the Head of Physics Department for her motivation and kind help in my work. I would like to express my grateful thanks to UPSI for providing me with "Skim Tajaan Pelajar Cemerlang" Scholarship. Financial support of Fundamental Research Grant Scheme (FRGS: 2011-0069-102-02) and MyMaster in my fourth semester awarded by the Ministry of Higher Education, Malaysia are greatly appreciated.

This thesis is dedicated to my beloved parents, Mr. Noor Azahari Mohd Noor and Mrs. Che Jauriah Yaakob for their endless love, prayers and encouragement. To my wonderful brothers; Noor Azam, Noor Azamin and Noor Azyman, thank you for your continuous support. I am blessed to have such a close knit family. Sharif Muhammad Shahrir, thank you for always supporting me as I forge forward to accomplish the goals I set out for myself. This has been a long journey that is coming to a close.

I would like to thank all the members in Organic Electronics Lab; Amira Shakila Razali, Fatin Hana Naning and Azyuni Aziz for their cheerful cooperation, help and support during the course of my study. I would also like to extend my thanks to the technicians and lab assistance of the Physics and Chemistry department for their help in handling the instruments. Not to forget my dear housemates; Nur Faizah, Rozelia Azni and Nik Rabiatul Adawiyah for the best moment we shared together. Thank you for everything.

To all the people who have helped me throughout my master's studies, your contribution shall not be forgotten. Thank you very much.

Noor Azyyati Noor Azahari 2014

UNIVERSITI PENDIDIKAN SULTAN IDRIS

I IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS

UNIVERSITI PENDIDIKAN SULTAN IDRIS

UNIVERSITI PENDID

ABSTRACT

This study aims to develop novel calixarenes monolayer and multilayer films for sensing properties of heavy metals ion, namely Pb²⁺ and Cd²⁺, using Langmuir and Langmuir-Blodgett (LB) films techniques. Langmuir monolayer formation at the airwater interface was achieved by spreading amphiphilic molecules on water subphase and compressing them into an ordered arrangement. LB films were formed by transferring the floating monolayer molecules at the airwater interface onto a solid substrate. The properties of the calixarenes molecules developed from Langmuir film were discussed on terms of surface pressure-area (II-A) isotherms, surface potential (ΔV) and effective dipole moment (μ) of the molecules in the absence and presence of metal ions. The calixarenes LB films were characterized by UV-visible spectroscopy to identify their optical properties. FTIR analysis yielded useful information regarding the specific interactions of calixarenes and the tested metal ions. Under the optimum experimental conditions, the lowest detectable concentration of Pb²⁺ is 2.5x10⁻² mM and Cd²⁺ is 5.0x10⁻² mM. Furthermore, calixarenes showed a well-defined response towards the Pb²⁺ and Cd²⁺ ions in aqueous solution were also discussed. These findings are suitable to be applied for the development of optical sensors for the detection of heavy metal pollution in water.

UNIVERSITI PENDIDIKAN SULTAN IDRIS

UNIVERSITI PENDIDIKAN SULTAN IDRIS

UNIVERSITI PENDID

NIDRIS

SULIAN IDKIS UNIVERSITI PENDIDIKAN SULIAN ID

PENGHASILAN FILEM CALIXARENE MENGGUNAKAN KAEDAH LANGMUIR DAN LANGMUIR-BLODGETT (LB) UNTUK MENGESAN ION LOGAM BERAT

ABSTRAK

Kajian ini bertujuan menghasilkan satu dan beberapa lapisan filem calixarenes bagi mengenalpasti ciri pengesanan ion Pb²⁺ dan Cd²⁺ dengan menggunakan kaedah Langmuir dan Langmuir-Blodgett (LB). Pembentukan filem Langmuir pada antara muka udara-air berlaku dengan menyebarkan molekul amfifilik tersebut pada sub-fasa air dan memampatkannya menjadi susunan yang teratur. Filem LB terbentuk dengan memindahkan lapisan filem terapung pada antara muka udara-air ke atas substrat. Sifatsifat molekul calixarenes melalui penghasilan filem Langmuir dibincangkan dari segi isoterma tekanan permukaan-kawasan (Π -A), potensi permukaan (Δ V) dan momen dwikutub berkesan (µ) molekul dalam ketiadaan dan kehadiran ion-ion logam. Manakala pencirian filem LB calixarenes dilakukan dengan menggunakan spektroskopi penyerapan sinar ultra lembayung-cahaya nampak (UV-visible spectroscopy) untuk mengenalpasti ciri-ciri optik bahan tersebut. Analisis spektroskopi Fourier transformasi inframerah (FTIR) menghasilkan maklumat yang berguna mengenai interaksi tertentu calixarenes dengan ion logam yang diuji. Dalam keadaan yang optimum, kepekatan terendah untuk mengesan kehadiran ion Pb²⁺ ialah 2.5x10⁻² mM dan Cd²⁺ ialah 5.0x10⁻ ² mM. Tambahan pula, *calixarenes* menunjukkan tindak balas yang jelas ke arah ion Pb²⁺ dan Cd²⁺ dengan sensitiviti dan kebolehulangan yang baik. Mekanisme *calixarenes* mengesan ion Pb^{2+} dan Cd^{2+} dalam larutan *aqueous* turut dibincangkan dalam tesis ini. Hasil kajian ini sesuai diaplikasikan dalam pembangunan sensor optik bagi mengesan pencemaran logam berat dalam air.

N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

TABLE OF CONTENTS

Page

ACKNOWLEDGEM	ENTS	iii
ABSTRACT		iv
ABSTRAK		v
TABLE OF CONTE	NTS	vi
LIST OF TABLES		xi
LIST OF FIGURES		xii
LIST OF SYMBOLS		XV
LIST OF ABBREVIA	ATIONS	xvi
CHAPTER 1 INTR	ODUCTION	-1
1.1	Introduction	1
1.2	Motivation	3
1.3	Problem statement	4
1.4	Research objectives	6
1.5	Scope of research	7
1.6	Thesis organization	8
CHAPTER 2 LITE	RATURE REVIEW	9
2.1	Introduction	9
2.2	History of calixarenes	10
2.3	Structural characteristic of calixarenes	11
2.4	Current status and applications of calixarenes as metal	12
IDIKAN SUITAN IDRIS	ion sensor	/FRSIT

2.5	Basic principle of organic compound	14	
	2.5.1 Carbon bonding	14	
	2.5.2 Hybridization of carbon	16	
	2.5.3 Conjugated system	18	
2.6	Potential energy and electric dipole in aromatic	19	
	compound		
2.7	History of Langmuir-Blodgett films	24	
2.8	Langmuir-Blodgett films applications	25	
2.9	Characterization techniques	26	
	2.9.1 Ultraviolet-visible spectroscopy (UV-Vis)	26	
	2.9.2 Fourier transform infrared spectrometry (FTIR)	28	
2.10	Conclusion	30	

CHAPTER 3 METI	HODOLOGY	31
3.1	Introduction	31
3.2	Materials	32
3.3	Solution preparation	34
3.4	Substrate preparation	34
	3.4.1 Quartz	35
	3.4.2 Silicon (100) wafer	36
3.5	Langmuir and Langmuir-Blodgett (LB) technique	36
	3.5.1 Langmuir-Blodgett (LB) trough	37
	3.5.2 Surface pressure, Π	40
	3.5.3 Surface pressure-area (П-А) isotherm	42
ENDIDIKAN SULTAN IDRIS	3.5.4 Surface potential, ΔV measurement UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIV	43 ERSITI P
ERSITI PENDIDIKAN SULTA	AN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS	UNIVI

SEIMIN IERIS		OTATVER(SITT I	
	44		
	45		

		3.5.5	Effective dipole moment, μ_{i}	44
		3.5.6	Deposition of LB films	45
	3.6	Chara	cterization techniques	47
		3.6.1	Ultraviolet-visible spectroscopy (UV-Vis)	48
		3.6.2	Fourier transform infrared spectrometry (FTIR)	49
	3.7	Flow	chart of research project	50
	3.8	Concl	usion	52
HAPTER	4 RESU	J LTS A	ND DISCUSSION	53
	4.1	Introd	luction	53
	4.2	Physic	cal characteristics of calixarenes	54
	4.3	Langr	nuir film studies	54
		4.3.1	Surface pressure-area (Π -A) isotherm of Mat 3	55
		4.3.2	Surface pressure-area (Π -A) isotherms of Mat 7	58
		4.3.3	Comparison of the molecule size of Mat 3 and	60
			Mat 7	
		4.3.4	Surface pressure-area (Π -A) isotherm of Mat 3	61
			within lead solution	
		4.3.5	Surface pressure-area (Π -A) isotherm of Mat 7	63
			within lead solution	
		4.3.6	Surface pressure-area (Π -A) isotherm of Mat 7	64
			within cadmium solution	
		4.3.7	Surface potential (ΔV) and effective dipole	66

4.3.7 Surface potential (ΔV) and effective dipole moment (μ) of Mat 3

4.3.8	Surface potential (ΔV) and effective dipole	68
	moment (μ) of Mat 7	
4.3.9	Surface potential (ΔV) and effective dipole	70
	moment (μ) of Mat 3 within lead solution	
4.3.10	Overall maximum surface potential (ΔV_{max})	72
	and maximum effective dipole moment (μ_{max}) of	
	Mat 3 within lead solution	
4.3.11	Overall maximum surface potential (ΔV_{max})	74
	and maximum effective dipole moment (μ_{max}) of	
	Mat 7 within lead solution	
4.3.12	Overall maximum surface potential (ΔV_{max})	75
	and maximum effective dipole moment (μ_{max}) of	
	Mat 7 within cadmium solution	
Langm	uir-Blodgett (LB) films studies	78
4.4.1	Optical properties of calix[4]arenes in chloroform	78
4.4.2	Ultraviolet-visible (UV-Vis) spectra of Mat 7	82
	film on quartz	
4.4.3	Comparison between Mat 7 in chloroform and	83
	LB film	
4.4.4	Ultraviolet-visible (UV-Vis) Spectra of Mat 7-Pb	84
4.4.5	Ultraviolet-visible (UV-Vis) Spectra of Mat 7-Cd	85
4.4.6	FTIR result	86
4.4.7	ΔV_{max} of Mat 7 LB films	89
4.4.8	ΔV_{max} of Mat 7 LB films incorporated with Pb^{2+}	90
	and Cd ²⁺	
	4.3.8 4.3.9 4.3.10 4.3.11 4.3.12 4.3.12 4.4.1 4.4.2 4.4.3 4.4.3 4.4.3 4.4.3 4.4.4 4.4.5 4.4.6 4.4.7 4.4.8	 4.3.8 Surface potential (ΔV) and effective dipole moment (μ) of Mat 7 4.3.9 Surface potential (ΔV) and effective dipole moment (μ) of Mat 3 within lead solution 4.3.10 Overall maximum surface potential (ΔVmax) and maximum effective dipole moment (μ, max) of Mat 3 within lead solution 4.3.11 Overall maximum surface potential (ΔVmax) and maximum effective dipole moment (μ, max) of Mat 7 within lead solution 4.3.12 Overall maximum surface potential (ΔVmax) and maximum effective dipole moment (μ, max) of Mat 7 within lead solution 4.3.12 Overall maximum surface potential (ΔVmax) and maximum effective dipole moment (μ, max) of Mat 7 within cadmium solution 4.3.12 Ultraviolet-visible (UV-Vis) spectra of Mat 7 4.4.1 Optical properties of calix[4]arenes in chloroform 4.4.2 Ultraviolet-visible (UV-Vis) Spectra of Mat 7-Pb 4.4.3 Ultraviolet-visible (UV-Vis) Spectra of Mat 7-Pb 4.4.4 Ultraviolet-visible (UV-Vis) Spectra of Mat 7-Pb 4.4.5 Ultraviolet-visible (UV-Vis) Spectra of Mat 7-Pb 4.4.6 FTIR result 4.4.7 Max of Mat 7 LB films 4.4.8 ΔV max of Mat 7 LB films incorporated with Pb²⁺ and Cd²⁺

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID 4.5 Conclusion 91 CHAPTER 5 SUMMARY & SUGGESTIONS FOR FUTURE WORKS 93 5.1 Introduction 93 5.2 Summary 93 Suggestions for future works 5.3 95 98 REFERENCES APPENDIX 108

N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

LIST OF TABLES

Table		Page
2.1	Four different quantum numbers of wave function	16
3.1	Molecular structure of Mat 3, Mat 4 and Mat 7	33
4.1	Limiting area per molecule (A_0) and radius of Mat 3	57
4.2	Limiting area per molecule (A ₀) of Mat 7	59
4.3	Limiting area per molecule (A ₀) of Mat 3 in water subphase and \mathbf{Ph}^{2+} subphase	62
4.4	Limiting area per molecule (A_0) of Mat 7 in water subphase and Pb^{2+} subphase	64
4.5	Limiting area per molecule (A_0) of Mat 7 in water subphase and Cd^{2+} subphase	65
4.6	Summary of A ₀ , ΔV_{max} and μ_{max} of Mat 3 and Mat 7 in lead (II) solution	77
4.7	Summary of A ₀ , ΔV_{max} and μ_{max} of Mat 3 and Mat 7 in cadmium (II) solution	77
4.8	Assignments of FTIR main bands of Mat7 LB film	87
4.9	ΔV_{max} of Mat 7 LB films	90
4.10	ΔV_{max} of 10 layer Mat 7 LB films incorporated with Pb^{2+} and Cd^{2+}	91

N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

LIST OF FIGURES

Figure		Page
1.1	Lead exposure	5
2.1	The calix crater and calix[4]arene molecular model	11
2.2	Schematic representation of calix[4]arene structure	12
2.3	Structures of representative hydrocarbon	15
2.4	Electronic configuration of carbon	17
2.5	The orbital overlapping diagram of CH ₄	17
2.6	Molecular structure of conjugated molecules	18
2.7	Diagram of electric dipole of two point charges	20
2.8	Dipole moment of water	21
2.9	Working principle of surface potential	22
2.10	Schematic diagram of monolayer being compressed in the Langmuir-	25
2.11	A schematic diagram of a double beam UV-Vis spectrophotometer	27
2.12	An analysis process of a sample in FTIR spectrometer	29
3.1	Mat 3 solution	34
3.2	Types of substrate	35
3.3	Illustration of Langmuir film	36
3.4	An illustration of LB film	37
3.5	Photo of LB Deposition Trough	38
3.6	A schematic diagram of LB deposition trough	39
3.7	An illustration of wilhelmy plate	40
3.8	A schematic Π -A isotherm of fatty acid (left) and phospholipid	43
3.9	(right) with the arrangement of molecules at different phases KSV Surface Potential Sensor (SPOT)	44

UNIVERSITI PEN	DIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS	UNI
3.10	Example of ΔV -A and μ -A isotherms	45
3.11	Langmuir trough with dipper mechanism	46
3.12	Different types of LB films deposition	47
3.13	JASCO V-570 UV/VIS spectrophotometer	48
3.14	Thermo Nicolet 6700 Fourier Transform Infrared Spectrometer	49
3.15	Flow chart of the research work	50
4.1	Schematic drawing of Langmuir and LB film fabrication	55
4.2	Isotherms of Mat 3 with various spreading volume	56
4.3	An illustration of calix[4]arene orientation on water	57
4.4	Isotherms of Mat 7 with various spreading volume	58
4.5	Comparison of Π -A isotherm of Mat 3, Mat 4 and Mat 7	60
4.6	Host-guest interaction	61
4.7	Isotherms of Mat 3 in water subphase and Pb ²⁺ subphase	62
4.8	Isotherms of Mat 7 in water subphase and Pb ²⁺ subphase	63
4.9	Isotherms of Mat 7 in water subphase and Cd ²⁺ subphase	65
4.10	Π -A and Δ V-A isotherms of Mat 3	67
4.11	Surface pressure and surface potential isotherms of Mat 7 monolayer	69
4.12	Relation between Π -A and Δ V-A of Mat 3-Pb ²⁺ at 2.5 x 10 ⁻² mM	70
4.13	Relation between ΔV -A and μ_{\perp} -A of Mat 3-Pb ²⁺ at 2.5 x 10 ⁻² mM	71
4.14	ΔV_{max} of Mat 3 with increasing concentration of Pb^{2+} ion	73
4.15	μ_{max} of Mat 3 with increasing concentration of Pb^{2+} ion	73
4.16	ΔV_{max} of Mat 7 with increasing amount of Pb ²⁺ ion	74
4.17	μ_{max} of Mat 7 with increasing concentration of Pb^{2+} ion	75
4.18	ΔV_{max} of Mat 7 with increasing concentration of Cd^{2+} ion	76

4.19	μ_{max} of Mat 7 with increasing concentration of Cd^{2+} ion	76
4.20	UV-Vis spectra of Mat 3 in chloroform	79
4.21	UV-Vis spectra of Mat 7 in chloroform	80
4.22	Abs. max of Mat 3 at 261 nm	81
4.23	Abs. _{max} of Mat 7 at 275nm	81
4.24	UV-Vis Spectra of Mat 7 film deposited on quartz	82
4.25	UV-Vis spectra of Mat 7 in chloroform and 30 layer LB film	83
4.26	UV absorption spectra for 10 layer and 20 layer LB films of Mat 7- Pb	85
4.27	UV absorption spectra for 10 layer and 20 layer LB films of Mat 7-	86
4.28	Transmission FTIR spectra of 10 layer LB films transferred from a	87
4.29	Comparison of transmission FTIR spectra (a) Mat7 and (b) Mat7-Pb	88
4.30	Comparison of transmission FTIR spectra (a) Mat 7 and (b) Mat 7- Cd LB films	89

N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

LIST OF SYMBOLS

Π	Surface pressure
А	Mean molecular area
A ₀	Limitting area per molecule
γ	Surface tension of water with monolayer
γο	Surface tension of water
V	Electric potential
ΔV	Surface potential
V _{acc}	Accelerating voltage
U	Potential energy
q	Charge
σ	Charge density
d	Distance separated by two plates
W	Work done
μ	Dipole moment
μ	Effective dipole moment
3	Relative permittivity
εο	Vacuum permittivity
T.R.	Transfer ratio
Pb	Lead
Cd	Cadmium

N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

LIST OF ABBREVIATIONS

DI	Deionized
EPA	Environmental Protection Act
FTIR	Fourier Transform Infrared Spectroscopy
HMDS	Hexamethyldisilazane
IUPAC	International Union of Pure and Applied Chemistry
LB	Langmuir-Blodgett
LCAO	Linear combination of atomic orbitals
МО	Molecular orbitals
PTFE	Polytetrafluoroethylene
SPOT	Surface Potential Sensor
UV-Vis	Ultraviolet-Visible Spectroscopy
WHO	World Health Organization

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI

CHAPTER 1

INTRODUCTION

1.1 Introduction

The combination knowledge of Physics, Chemistry, Biology, Medicine, Material Science and Engineering lead to a new emerging scientific field which is called nanotechnology. This technological field provides outstanding potential to lead in the new discovery and invention for real life application. In recent years, many significant advances in the field of nanoscience and nanotechnology have emerged. The development of tools and devices to probe and manipulate matter at the atomic, molecular and macro-molecular levels are the significant part of research in nanotechnology.

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

Nanotechnology is defined as the engineering and utilization of functional structures designed at molecular scale with at least one characteristic dimension measured in nanometers (typically ranging from 1 to 100 nanometres). Nanotechnology can offer us a remarkable understanding of materials and devices that are useful in many kinds of fields. By tuning the structure on the nanoscale, a wide range of performance of existing chemicals and materials can be expended (Silva, 2006; Kim et al., 2012).

Nanotechnology has initiates the improvement of sensors suitable for measurements at the molecular level with high sensitivity and response time because of their high surface to volume ratio (Nano Connect Scandinavia, 2009). In short, most benefits of nanotechnology come from the possibility to modify the structures of materials at the nanoscale to obtain specific properties. Hence, the materials can be made to be stronger, lighter, more durable, more reactive, more sensitive, or better electrical conductors (Okwu & Onyeje, 2013). In fact, we also can produce a low-cost material and environment-friendly in order to keep the world a better place to live.

A nanosensor is a chemical or physical sensor, built on the nanoscale with the purpose of obtaining data on the atomic scale and convert them into data that can be easily analyzed. These sensors are very sensitive and able to detect even ultra-low concentrations of a substance that could be dangerous. There are many applications of nanosensors such as in the field of medical, environmental science, national security, aerospace, integrated circuits and so on. Furthermore, there are many types and a lot of ways to manufacture them but we are still facing with challenges to produce these nanosensors.

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

Calixarenes have been studied since 1970s which have been applied to extensive research in the development of electrode ionophores, waste water treatment, medical diagnosis and profoundly sensitive and selective sensors (Strobel et al., 2006). Calixarenes are example of supramolecular structures. Supramolecular structure can be defined as molecules of larger size formed together by grouping or bonding with the smaller molecules (Owens, 2005). Calixarenes are the third generation of supramolecular receptor after cyclodextrins and crown ethers (Shinkai et al., 1989) which can be functionalized at either upper rims or lower rims part to bind with cation or anion. By functionally modifying either the upper and/or lower rims it is possible to prepare various derivatives with differing selectivities for various guest ions and small molecules. Based on these interesting traits, calixarene is finally chosen as the sensing material in this work.

1.2 Motivation

The motivation behind the study of surface potential and effective dipole moment of calixarenes originates from their unique characteristics, which are capable for metal ions detection in aqueous environment. Due to their potential in capturing metal ions in water, it is believed that a metal ion sensor can be built by using Langmuir and Langmuir-Blodgett technique. Furthermore, calixarenes are non-toxic organic material. Therefore, the safety of using them as a receptor shall not be doubted. Although there are plenty of metal ion sensors have been produced (Shnek et al., 1995; Sun et al., 2011) it is rarely found a sensor that work based on the surface potential and effective dipole

and chemistry which is compliment to each other.

This research focuses on the use of calixarene as organic sensor to detect heavy metals ion, namely Pb²⁺ and Cd²⁺ in a very low concentration. It is well known that lead and cadmium are toxic for living organisms, thus early detection in the environment is essential. The study of ion sensing plays an important role especially in industrial activity like manufacturing, mining, sewage treatment plant, and hazardous waste management facilities. In fact, food industry may also need the sensor to control the food quality and safety.

1.3 Problem statement

Heavy metals pollution have become a big worldwide environmental issue due to their tendency to accumulate in reservoir by biological and geochemical process and end up with entering the biological chain. The presence of heavy metals in the environment can naturally occur through weathering of rocks and volcanic activities (Liaghati, 2004). Besides that, heavy metals may occur due to human activities such as agriculture, industry and mining which can transport the contaminants to the river (Wang et al., 2007; Sany et al., 2013). Water contaminated by heavy metals may cause serious health problems and give a negative impact to our socio economy.

According to Lide (1992), heavy metals are chemical elements with a specific gravity that is at least 5 times the specific gravity of water (1 at 4°C). Specific gravity is a measure of density of a given amount of a solid substance when it is compared to an equal amount of water. For instance, cadmium (8.65), iron (7.9), lead (11.34) and mercury (13.546) (Thakur & Semil, 2013).

Lead (Pb) is one of the potentially toxic heavy metals when absorbed into the body. It is non-biodegradable and can accumulate in living tissues, thus becoming concentrated throughout the food chain and can be readily absorbed into the human body. The presence of Pb in drinking water even at low concentration level may cause diseases such as anemia, hepatitis and nephritic syndrome (Kumar & Gayathri, 2009). Pb is very harmful especially to children because children absorb 70% of Pb while adults only absorb 20% of it as in Figure 1.1 (Painter, 2013; Frisco Unleaded, 2013).

levels, which can a	s. children age accumulate ov blems	s 1 to 5 have ele er months and ye	ears and cause
senous nealth prot	Jiems.		Sources
Effects on children • Kids absorb up to 70 percent of lead, adults about 20 percent • Often undetected; no obvious symptoms • Can lead to learning disabilities, behavioral problems, malformed bones,			Lead-based paint, contaminated dust in homes built before 1979
			Contaminated food
			slow growth
 Very high levels of cause seizures, 	an	-	not biodegrade, decay)
coma, death	5		·Toys*
What parents ca	n do 🗢		
Have child screened if	Frequently wash child's	• Only	• Test paint, dust in home
there is concern	hands, toys,	water for drinki	ng, if it was built

Figure 1.1. Lead exposure. Adapted from "U.S. Centers for Disease Control and Prevention, U.S. Department of Health and Human Services. Copyright 2007 by MCT.

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

If the level of Pb in the environment is not monitor and allowed to rise, it is afraid that it may cause long-term health risk to human and ecosystem. Therefore, the World Health Organization (WHO) has recommended an allowable concentration of Pb in drinking water, waste water and water used for daily purpose. The Environmental Protection Act (EPA) has established the drinking water standard for lead are 0.05 mg/L, but it is under review to decrease the level to 0.02 mg/L (Groffman et al., 1992) while the EPA has determined that the maximum contaminant level for cadmium in drinking water is 0.005 mg/L (Toxicological profile for Cadmium, 2012).

Based on the facts from WHO and EPA, it is very important to develop a sensor which can detect the presence of heavy metal even at a very low concentration. In this study, the aim is to detect two types of heavy metal ions, namely lead ion (Pb^{2+}) and cadmium ion (Cd^{2+}) in aqueous environment. Calix[4]arene is chosen as the sensing material because of the binding capabilities toward divalent cation and it is an organic material. Hence, it is believed that this study will be utilized in environmental analysis and medical diagnostic for early detection of heavy metal poisoning in humans.

1.4 Research objectives

This study was carried out with the following objectives:

i. To determine the Langmuir film characteristic such as surface pressure-area (Π -A) isotherm, limiting area per molecule (A₀) and isotherm phases of two types of

calix[4]arene-based; Mat 3 and Mat 7.

- ii. To determine the effective dipole moment (μ) of Langmuir film for Mat 3 and Mat7.
- iii. To compare Mat 3 and Mat 7 in terms of their size, surface potential (ΔV) and effective dipole moment (μ) in the absence and presence of Pb²⁺ and Cd²⁺ ions in aqueous solution.

1.5 Scope of research

In this study, two types of calix[4]arene were used as the sensing material namely Mat 3 and Mat 7. The study focus on the Langmuir and Langmuir-Blodgett (LB) technique to investigate the surface potential (ΔV) and effective dipole moment (μ) of calix[4]arene. The optimized parameters are ion concentration and spreading volume of calix[4]arene. The tested heavy metal elements used in this work are Pb²⁺ and Cd²⁺ metal cations. Several analysis such as surface pressure-area (Π -A) isotherm, surface potential (ΔV) measurement and effective dipole moment (μ) calculation were done on the ultra-thin film of calix[4]arene. Ultraviolet-visible spectroscopy were used to determine the optical properties of calix[4]arene sample in solution and thin films. The chemical bonding of the sample was determined using Fourier transform infrared spectrophotometer (FTIR).

A few challenges faced during the research period such as inability to conduct the experiment in a standard clean room. However, the cleanliness of the workplace and the instrument used are constantly monitored to minimized the contamination during

the experiment. Besides that, the material of Mat 3 is insufficient to be tested with Cd²⁺. UNIVERSITI PENDIDIKAN SULTAN IDRIS SULTAN IDRIS VI PENDIDIKAN SULTAN IDRIS VI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS VI PENDIDIKAN SULTAN UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F Thus, the surface pressure, surface potential and effective dipole moment of Mat 3

doped with Cd^{2+} cannot be done.

1.6 Thesis organization

There are five chapters in this thesis and each chapter describes the sequence of this research. Chapter 1 presents a brief introduction of nanotechnology and its importance to humankind and the world. This chapter also presents the motivation to carry out the research, the problem statement, research objectives, scope of research and thesis organization. Chapter 2 covers an overview of related knowledge of Langmuir and Langmuir- Blodgett (LB) film. The applications of calixarene are reviewed in terms of ion sensing scope. Chapter 3 refers to the materials and methods describing the experimental procedure in the research. This chapter also covers the analysis and the characterization method of calixarene before and after incorporating with the ion. Chapter 4 presents the results and discussion covering heavy metals detection by calixarene. Chapter 5 refers to overall conclusions that are based on the findings obtained in the results and discussion (Chapter 4). Recommendations for future research were also given in the chapter.