N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRI^{SSZ 19:1}6/Rinder/97/11 F UNIVERSITI TEKNOLOGI MALAYSIA

Author's full name : WAN HASLINDA BINTI WAN AHMAD Date of birth : 11 NOVEMBER 1978 Title : HEXAVALENT CHROMIUM REDUCTION BY Acinetobacter haemolytic us USING AGRICULTURAL WASTE
Date of birth : 11 NOVEMBER 1978 Title : HEXAVALENT CHROMIUM REDUCTION BY Acine tobacter haemolytic us USING AGRICULTURAL WASTE Academic Session : 2012/2013
Title : HEXAVALENT CHROMIUM REDUCTION BY Acinetobacter haemolytic us USING AGRICULTURAL WASTE Academic Session : 2012/2013
haemolytic us USING AGRICULTURAL WASTE
Academic Session :2012/2013
I declare that this thesis is classified as :
CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
RESTRICTED (Contains restricted information as specified by the organization where research was done)*
\checkmark OPEN ACCESS I agree that my thesis to be published as online open access (full text)
I acknowledged that Universiti Teknologi Malaysia reserves the right as follows:
 The thesis is the property of Universiti Teknologi Malaysia. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose of research only. The Library has the right to make copies of the thesis for academic exchange.
Certified by :
Inda within
SIGNATURE SIGNATURE OF SUPERVISOR
781111-11-5412 PROF. DR. WAN AZLINA BINTI AHMAD
(NEW IC NO. /PASSPORT NO.) NAME OF SUPERVISOR
Date : 26 December 2013 Date : 26 December 2013

NOTES : * If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from UNIVERSITI PENDIDIKAN SULTA the organization with period and reasons for confidentiality or restriction. ENDIDIKA

UNIVERSITI PENDIDIKAN SULTAN IDRIS N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDR

ERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEND UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSI

HEXAVALENT CHROMIUM REDUCTION BY Acinetobacter haemolyticus USING AGRICULTURAL WASTE

WAN HASLINDA BINTI WAN AHMAD

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemistry)

> Faculty of Science Universiti Teknologi Malaysia

DECEMBER 2013

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN

ERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

ABSTRACT

The high cost of culture growth medium is one of the problems faced in the scaling-up of biological processes involved in wastewater treatment. This makes it imperative to find a useful, cheap and easily available alternative source for culture growth medium. The possibility of using sugarcane bagasse (SCB), solid pineapple waste (SPW) and soybean meal (SBM) as alternative sources for culture medium is preferable as these agricultural wastes are easily available, cheap and abundantly grown. The present work highlights the use of SCB, SPW and SBM to sustain the bacterial population for the Cr(VI) reduction process. Growth of A. haemolyticus in agricultural wastes was measured by optical density (OD₆₀₀) followed by viable cell counts. Reduction of Cr(VI) was determined using diphenylcarbazide method. For all Cr(VI) concentrations tested (10-100 mg/L), SCB-adapted A. haemolyticus showed the highest reduction ranging from 92-99% followed by SPW and SBM with 40-94% and 21-85% reduction respectively. From the FESEM-EDX analysis, toxicity effect can be seen clearly from the shape of bacteria in the presence of 100 mg/L Cr(VI). The FT–IR analysis showed shifting of the C–O band absorption peak from 1252–1261 cm⁻¹ and 1048–1037 cm⁻¹ after Cr–loaded which was due to the binding of Cr(VI) to this functional group. In this study, down-ward biofilm packed-bed reactor was used. A minimum of 4 h was required for complete reduction of Cr(VI) to Cr(III) at the flow rate of 3.0 mL/min using 25 mg/L initial Cr(VI) concentration. Cr(VI) reduction mechanism study using XPS and ESR implies that the Cr bound to the SCB and SCB-adapted A. haemolyticus were mostly in trivalent form. SCB can serve as an alternative and cost-effective growth medium for cultivation of A. haemolyticus with high percent reduction of Cr(VI). Phylogenetic analysis revealed that the microbial community was dominated by Chitinophaga terrae, Laribacter hongkongensis, Ottowia thiooxydans, Rhizobium cellulosilyticum, Candidate division OP10, Pedobacter sp. and uncultured bacterium.

ABSTRAK

Kos yang tinggi dalam penyediaan media untuk pertumbuhan bakteria adalah salah satu masalah yang timbul dalam proses rawatan air sisa menggunakan kaedah biologi pada skala besar. Maka adalah penting untuk mencari sumber alternatif yang berguna, murah dan mudah didapati untuk pertumbuhan bakteria tersebut. Penggunaan hampas tebu (SCB), sisa pepejal nenas (SPW) dan sisa kacang soya (SBM) sebagai sumber alternatif adalah disarankan kerana ianya murah, mudah dan banyak didapati. Kajian ini menekankan penggunaan SCB, SPW dan SBM untuk mengekalkan populasi bakteria bagi proses penurunan Cr(VI). Pertumbuhan A. haemolyticus dalam media sisa pertanian telah ditentukan berdasarkan nilai kekeruhan bakteria (OD₆₀₀) diikuti oleh pengiraan sel hidup. Penurunan kepekatan Cr(VI) telah ditentukan menggunakan kaedah difenilkarbazida. Bagi semua kepekatan logam kromium yang diuji (10–100 mg/L), bakteria *A. haemolyticus* yang telah menjalani penyesuaian di dalam SCB menunjukkan tahap penurunan yang tertinggi (92–99%) diikuti dengan penyesuaian di dalam SPW (40–94%) dan SBM (21–85%). Daripada analisis FESEM–EDX, kesan toksik dapat dilihat dengan jelas melalui bentuk bakteria dengan kehadiran Cr(VI) berkepekatan 100 mg/L. Analisis FT–IR pula telah menunjukkan anjakan jalur penyerapan C–O daripada 1252–1261 cm⁻¹ dan 1048–1037 cm⁻¹ yang disebabkan oleh pembentukan ikatan antara Cr(VI) dengan kumpulan berfungsi pada SCB. Dalam kajian ini, turus dengan aliran ke bawah telah digunakan. Masa paling minimum diperlukan bagi melengkapkan penurunan Cr(VI) kepada Cr(III) ialah 4 jam, pada kadar alir 3.0 mL/min dengan kepekatan awal Cr(VI) sebanyak 25 mg/L. Mekanisma penurunan Cr(VI) menggunakan XPS dan ESR membuktikan bahawa Cr terikat kepada SCB dan SCB yang diadaptasi dengan *A. haemolyticus* kebanyakannya dalam bentuk trivalen. SCB boleh dijadikan sebagai media pertumbuhan alternatif dengan kos yang efektif kepada pertumbuhan bakteria *A. haemolyticus* dengan peratus penurunan Cr(VI) yang tinggi. Analisis filogenetik menunjukkan bahawa komuniti mikrob telah didominasi oleh Chitinophaga terrae, Laribacter hongkongensis, Ottowia thiooxydans, Rhizobium cellulosilyticum, Candidate division OP10, Pedobacter sp. dan bakteria yang tidak dikultur.

ORIS UNIVE

TI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNI

JNIVERSITI PEN

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS'	ГКАСТ	v
	ABS'	ГКАК	vi
	TAB	LE OF CONTENTS	vii
	LIST	OF TABLES	xiv
	LIST	OF FIGURES	xvii
	LIST	OF ABBREVIATIONS	xxi
	LIST	OF APPENDICES	xxiii
1	INTI	RODUCTION	
	1.1	Background of the problem	1
	1.2	Statement of the problem	2
	1.3	Objectives of the study	3
	1.4	Scopes of the study	4
	1.5	Significance of the study	4
2	LITI	ERATURE REVIEW	
	2.1	Water resources pollution	5
	2.2	Chromium	7
		2.2.1 Chemical and physical properties	7
UNIVERSITI PENDIDIKAN SULT	TAN IDR	S2.2.2 UN Trivalent and hexavalent chromium	univers 8 ti pendidika
ORIS UNIVERSITI PENDIDIK	AN SUL	TA2.2.3 RIS Toxicity of chromiumIDIKAN SULTAN	IDRIS U N VERSITI PEN

vii

viii

46

UNIVE	RSITI PENDIDIKAN SULTAN I	DRIS	UNIVERS	ITI PENDIDIKAN SULTAN IDRIS	IVERSITI PENDID
N IDRIS	UNIVERSITI PENDIDI 2/3 N S	Treatme	nt of chron	nium-contaminated wastewater I IDRIS	11UNIVERSITI F
		2.3.1	Conventio	onal treatment methods	13
		2.3.2	Biologica	l treatment methods	15
			2.3.2.1	Biosorbent and biosorption	16
			2.3.2.2	Bioreduction	17
			2.3.2.3	Bioaccumulation	20
	2.4	Agricult	ural waste	as support and growth medium	22
		for treat	ment of chr	omium-contaminated	
		wastewa	iter		
		2.4.1	Sugarcan	e bagasse	23
		2.4.2	Pineapple	ewaste	26
		2.4.3	Soybean	meal	28
	2.5	Microbi	al technolo	gy for Cr(VI) bioremediation	29
		2.5.1	Biofilm r	eactors in Cr(VI) wastewater	30
			treatment		
	2.6	Molecul	lar analysis	of microbial communities	31
		2.6.1	Microbia	l diversity applications	34
	2.7	Cr(VI) r	eduction n	nechanism study	36
		2.7.1	Microbia	l reduction of hexavalent	36
			chromiun	n	
			2.7.1.1	Aerobic Cr(VI) reduction	38
			2.7.1.2	Anaerobic Cr(VI) reduction	40
		2.7.2	Determin	ation of the oxidation state of	42
			chromiur	n bound to the lignocellulosic	
			residue u	sing instrumental analysis	
	3 MAT	FERIALS	S AND ME	CTHODS	
	3.1	Bacteria	al strain		45
		3.1.1	Growth r	nedium	45
			3.1.1.1	Nutrient broth	45
			3.1.1.2	Nutrient agar	45

3.1.1.3 Luria–Bertani glycerol

UNIVERSITI PENDIDIKAN SULTAN IDRIS 3.1.2 UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN PENDIDIKAN SULTAN PENDIDIKAN SULTAN PENDIDIKAN SULT

ix

UNIVE	KSITI PENDIDIKAN SUL	IAN IDRIS	UNIVERS	III PENDIDIKAN SULIAN IDRIS	NIVERSITI PENDID
IDRIS	UNIVERSITI PENDIDI	3.2 SAgrid	cultural waste	NIVERSITI PENDIDIKAN SULTAN IDRIS	5 47 UNIVERSITI F
		3.2.1	Sampling	g of agricultural wastes	47
		3.2.2	Characte	rization of agricultural wastes	47
			3.2.2.1	Moisture, ash content and total	48
				solids determination	
			3.2.2.2	рН	49
			3.2.2.3	α -cellulose content	49
				determination	
			3.2.2.4	Lignin analysis	49
			3.2.2.5	Heavy metal content analysis	50
			3.2.2.6	Monosaccharide determination	51
			3.2.2.7	Total carbohydrate analysis	53
			3.2.2.8	Anion content	53
		3.3 Grov	vth and Cr(VI) reduction of A. haemolyticus in	54
		agric	ultural wastes	s in a batch system	
		3.3.1	Screenin	g of agricultural wastes as an	54
			alternativ	ve growth medium for A.	
			haemoly	ticus	
		3.3.2	. Adaptati	on of A. haemolyticus in	55
			agricultu	ral wastes	
		3.3.3	Chromiu	m analysis	56
			3.3.3.1	Preparation of Cr(VI) stock	56
				solution	
			3.3.3.2	Determination of total	56
				chromium concentration using	
				Flame Atomic Absorption	
				Spectrophotometer	
			3.3.3.3	Determination of Cr(VI)	56
				concentration using	
				diphenylcarbazide method	
		3.3.4	Cr(VI) r	eduction study of agricultural	57
NIVERSI	ITI PENDIDIKAN SULTAN	I IDRIS	wastes a haemolv	dapted and non-adapted A. PENDIDIKAN SULTAN IDRIS UNIV <i>ticus</i>	ERSITI PENDIDIKA
1 219				/ERSITI DENIDIKANI SHIITANI IDRIS	I INIVERSITI DENI

I IDRIS	UNIVERSITI PENDI	DIKAN SI 31,345 N IE	Growth a	nd Cr(VI) reduction by selected IDRIS	58UNIVERSITI
			agricultur	al waste-adapted A.	
			haemolyt	icus	
			3.3.5.1	Denatured and absolute ethanol	58
				as disinfecting agents	
			3.3.5.2	Effect of different	59
				concentrations of denatured	
				ethanol on growth of A.	
				haemolyticus	
			3.3.5.3	Growth profile of selected	59
				agricultural waste-adapted A.	
				haemolyticus	
			3.3.5.4	Cr(VI) reduction study of	60
				selected agricultural waste-	
				adapted A. haemolyticus	
		3.3.6	Chromiu	m desorption study	61
		3.4 Continu	ous Cr(VI)) reduction process in packed-bed	61
		reactor			
		3.4.1	Laborato	ry packed-bed reactor set up	61
		3.4.2	Immobili	ization of adapted A. haemolyticus	63
			onto SCE	3	
		3.4.3	Cr(VI) re	eduction using Cr(VI) stock	64
			solution		
			3.4.3.1	Effect of influent flow rate	64
			3.4.3.2	Effect of influent Cr(VI)	64
				concentration	
			3.4.3.3	Packed-bed reactor	65
				performance study	
			3.4.3.4	Evaluation of bacterial growth	66
				using dislodging methods	
			3.4.3.5	Assessment of biofilm	66
				morphology using electron	
JNIVERSI	TI PENDIDIKAN SULT	AN IDRIS U	NIVERSITI F	microscopy UNIVE	RSITI PENDIDIKA
RIS U	NIVERSITI PENDIDIK	AN SULTAN IDRIS	5 UNIV	/ERSITI PENDIDIKAN SULTAN IDRIS	UNIVERSITI PEN

Х

xi UNIVERSITI PENDIDI**3.5**N SI**Biofilm microbial diversity study** DIDIKAN SULTAN IDRIS 67UNIVERSITI F Ampicillin stock solution 67 3.5.1 Luria-Bertani agar incorporated with 68 3.5.2 ampicillin 68 Extraction of total genomic DNA from 3.5.3 treated SCB 69 3.5.4 Amplification of 16S rRNA gene fragment 69 Purification of PCR products 3.5.5 71 Cloning of PCR products 3.5.6 Transformation of recombinant plasmids 71 3.5.7 72 3.5.8 Agarose gel electrophoresis 73 3.5.8.1 Preparation of 1% (w/v) agarose gel Preparation of 3% (w/v) 73 3.5.8.2 Metaphor[®] gel Colony PCR 73 3.5.8.3 **Restriction Fragment Length** 75 3.5.8.4 Polymorphism analysis 75 3.5.9 DNA sequencing 76 3.5.10 Bioinformatic analysis 76 Nucleotide sequence accession numbers 3.5.11 77 Cr(VI) reduction mechanism study 3.6 77 3.6.1 Oxidation state determination using X-Ray Photoelectron Spectroscopy 77 3.6.2 Oxidation state determination using

> Electron Spin Resonance Functional group determination using 78 3.6.3 Fourier Transform-Infra Red 78 Morphology determination using Scanning 3.6.4 Electron Microscopy coupled with Energy

Dispersive X–Ray

N IDRIS	UNIV 4 :RSITI PENDIDI RESI	ULTS AN	D DISCU	SSION ITI PENDIDIKAN SULTAN IDRIS	UNI
	4.1	Characte	rization of	fagricultural wastes	80
	4.2	Growtha	and Cr(VI)) reduction of A. haemolyticus in	84
		agricultu	ral wastes	in a batch system	
		4.2.1	Screening	g of agricultural wastes as an	84
			alternativ	e growth medium for A.	
			haemolyt	icus	
		4.2.2	Adaptatic	on of A. haemolyticus in	87
			agricultur	ral wastes	
		4.2.3	Cr(VI) re	duction study of agricultural	88
			wastes ad	lapted and non-adapted A.	
			haemolyt	icus	
		4.2.4	Growth a	nd Cr(VI) reduction by SCB-	91
			adapted A	1. haemolyticus	
			4.2.4.1	Denatured and absolute ethanol	91
				as disinfecting agents	
			4.2.4.2	Effect of different	92
				concentrations of denatured	
				ethanol on growth of A.	
				haemolyticus	
			4.2.4.3	Growth profile of SCB-adapted	93
				A. haemolyticus	
			4.2.4.4	Cr(VI) reduction study of SCB-	96
				adapted A. haemolyticus	
		4.2.5	Chromiu	m desorption study	101
	4.3	Continu	ous Cr(VI)) reduction process in packed-bed	102
		reactor			
		4.3.1	Immobil	ization of adapted A. haemolyticus	102
			onto SCI	3	
		4.3.2	Cr(VI) re	eduction using Cr(VI) stock	104
			solution		
			4.3.2.1	Effect of influent flow rate	104
UNIVE	RSITI PENDIDIKAN SULTAN IDR	IS UN	NIVERSITI I	PENDIDIKAN SULTAN IDRIS UNIVE	RSITI PE
DRIS	UNIVERSITI PENDIDIKAN SUL	TAN IDRIS	UNIV	/ERSITI PENDIDIKAN SULTAN IDRIS	UNIVEF

JNIVERSITI PENDIDIKAN SULTAN IDR

N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDF4:3.2.2 UNEffect of influentICr(VI)JLTAN IDRIS 106JNIVERSITI F

			concentration	
		4.3.2.3	Packed-bed reactor	107
			performance study	
		4.3.2.4	Assessment of biofilm	112
			morphology using electron	
			microscopy	
4	Biofilm	microbial d	liversity study	115
	4.4.1	16S rDNA	A sequence analyses	116
5	Cr(VI) r	eduction m	echanism study	126
	4.5.1	Oxidation	state determination using X-	126
		Ray Photo	pelectron Spectroscopy	
	4.5.2	Oxidation	state determination using	134
		Electron S	Spin Resonance	
	4.5.3	Functiona	l group determination using	138
		Fourier T	ransform–Infra Red	
	4.5.4	Morpholo	gy determination using Scanning	141
		Electron l	Microscopy coupled with Energy	
		Dispersiv	e X–Ray	

	-
4	
а.	7
•	-

CONCLUSION AND SUGGESTION

5.1	Conclusion	145
5.2	Suggestion	146

REFERENCES

Appendices A-E

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDI

xiii

147

172-192

/ERSITI PENDIDIKAN SULTAN IDRIS UNIV UNIVERSITI PENDIDIKAN SULTAN IDRIS

LIST OF TABLES

	TABLE NO.	TITLE	AGE
	2.1	Common health problems exerted on humans by heavy metals (Singh <i>et al.</i> , 2011; Barakat, 2011)	6
	2.2	Environmental Quality Regulation (Industrial Effluent) 2009, amendment on Environmental Quality Act 1974 (Department of Environment, 2009). Standard A – industrial wastewater within the catchment area, Standard B – industrial wastewater outside the catchment area	12
	2.3	Bacterial biomass and agricultural products as biosorbents (Saha and Orvig, 2010)	16
	2.4	Microbial populations that transform Cr(VI) to Cr(III)	18
	2.5	Basic composition of SCB	24
	2.6	Microorganism cultivated on SCB and the products (Parameswaran, 2009)	26
	2.7	Composition of SPW (Abdullah and Mat, 2008)	27
	2.8	Composition of LPW	27
	2.9	Cr(VI) reduction using the continuous-flow and fixed- film bioreactors at pilot-scale level (Ahmad <i>et al.</i> , 2010b)	29
	2.10	Current techniques that can be used to study wastewater microorganisms (Gilbride et al., 2006)	32
	3.1	The sources of AW and the fibre preparation for characterization	47
	3.2	Operating parameters for anion separation by suppressed	54
EN	DIDIKAN SULTAN	conditions	
ЕΚ	SITI PENDIDIKAN	SULIAN IDKIS UNIVERSITI PENDIDIKAN SULIAN IDRIS	UNIVER

xiv

58

59

61

81

88

89

92

93

94

102

120

124

128

UNIV3.3SITI PENDIDIK Adaptation of A.S haemolyticus in IAW for growth profile IDRIS55 UNIVERSITI F monitoring Cr(VI) and active culture used for the Cr(VI) reduction 3.4 Different concentrations of ethanol for growth profile 3.5 monitoring Cr(VI) and SCB-adapted A. haemolyticus culture used 3.6 for time-dependent study Composition of SCB, SPW and SBM. Data shown are 4.1 the mean value of three different batches Turbidity and cell concentration profiles for 10% (w/v) AW-adapted *A. haemolyticus*, 85% (v/v) deionised water, 5% (v/v) denatured ethanol and 10% (v/v) active 4.2 culture Percentage reduction of 10–100 mg/L Cr(VI) by AW– adapted and non–adapted *A. haemolyticus* after 48 h 4.3 contact time Effect of ethanol pre-treatment on SCB 4.4 Turbidity and cell concentration profiles for A. 4.5 haemolyticus grown in pre-treated SCB Turbidity and cell concentration profiles for A. 4.6 *haemolyticus* grown overnight in increasing volumes of deionised water in the presence of 10% (w/v) SCB Percentage of Cr desorption 4.7The plasmid DNA concentration and purity of each selected clone for (a) control (C5) and (b) test (T5) 4.8 samples Taxonomic affiliations and abundance of 16S rRNA 4.9 sequence types as defined by RFLP analysis Elemental composition of raw and Cr-loaded SCB as 4.10

> Components of Cr2p high-resolution spectra for Cr(VI)-loaded SCB samples as obtained using XPS. Initial 131 4.11 Cr(VI) concentration (100 mg/L), biomass dosage (10% w/v), exposure time (48 h) and pH (3.29–4.36) IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS

determined using XPS

UNIVERSITI PENDIC

N IDRIS UNIV4.12TI PENDIDIK FT-IR analysis of *A. haemolyticus* grown onto SCB with IDRI140 UNIVERSITI F and without Cr(VI) after 48 h contact time

ica **Bundeni prisiv**ita in the state base of the state A **Bundeni prisiv**ita da state in the state of the state of the state Bunden state of the state of the

kaliki kwa mwa amina ili kuto na mwanyi kuto kaji ji 19 kaliki kwa kaliki kali na 19 kali na 19 kaliki k

tar ping ato in parapra lanal ditara na mang dan ato paragita protessa. Tarini lalar ilaha

UNIVERSITI PENDIDIKAN SULTAN IDRIS

KIS UNIVERSI II PENDIDIKAN SULTAN IDRIS

NIVERSITI PENDIDIKAN SULTAN II

LIST OF FIGURES

	FIGURE NO.	TITLE	PAGE
	2.1	Eh-pH predominance diagram for aqueous Cr at 25 °C (Reeder <i>et al.</i> , 2006)	10
	2.2	Bacterium of A. haemolyticus (Zakaria et al., 2006)	19
	2.3	Schematic representation of the experimental set up for the Cr(VI) reduction system using a 0.2 m^3 bioreactor; A – nutrient tank, B – raw Cr(VI) wastewater tank, C – mixing tank, D – holding tank, E – bioreactor, F – receiving tank, G – flocculation and coagulation section, H – sludge drying bed, I – sludge collecting tank, J –	20
		powdered activated carbon column (Ahmad et al., 2010a)	
	2.4	Secondary cell wall (CW) structure of cellulose, hemicelluloses and lignin in lignocellulosic materials. For SCB, the basic composition is 40% cellulose, 28% hemicelluloses and 22% lignin (Lee, 2005)	24
	2.5	Biochemical processes in industrial bagasse feedstock piles based on microbial biodiversity (Rattanachomsri et al., 2011)	36
	2.6	Biochemical processes in industrial bagasse feedstock piles based on microbial biodiversity (Rattanachomsri <i>et al.</i> , 2011)	40
	3.1	Schematic representation of laboratory packed-bed reactor of the Cr(VI) reduction system	62
	3.2	Sampling site for pineapple liquid effluent at the waste treatment plant of a pineapple–processing facility in Tampoi, Johor Bahru	63
ΕN	IDIDIKAN SULTAN	IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS Schematic representations for purification of PCR	IIVERSITI 70

3.3Schematic representations for purification of PCK70DRISUNIVERSITI PENDIDIKAN SproductsDRISUNIVERSITI PENDIDIKAN SULTAN IDRISUNIVERSITI PEN

xvii

xviii

UNIV3.4SITI PENDIDIK/Blue/white screening on the LBTagar platekincorporatedIDRIS72 UNIVERSITI F with 80 µg/mL ampicillin 74 3.5 Plate of colony PCR Effect of different concentration of SCB, SPW and SBM, sterilized with 5% (v/v) denatured ethanol towards 85 4.1 bacterial counts Profile for total carbohydrate for 10% (w/v) SCB, SPW 86 4.2 and SBM during growth of A. haemolyticus pH profiles for 10% (w/v) SCB, SPW and SBM during 87 4.3 growth of A. haemolyticus CFU/mL of A. haemolyticus grown in 10% (w/v) SCB in 95 4.4 deionised water Percentage reduction of 100 mg/L Cr(VI) by SCB 96 4.5 control and SCB-adapted A. haemolyticus Cr(VI) reduction profile of SCB control, SCB-adapted and non-adapted *A. haemolyticus* of (a) total Cr, (b) 97 4.6 Cr(VI) and (c) Cr(III) Time-dependent concentrations profile of SCB-adapted A. haemolyticus based on percentage of reduction 4.7 99 achieved Distribution of A. haemolyticus cells in (a) effluent and (b) SCB. Ah culture = adapted A. haemolyticus culture, Ah/DI3 = adapted A. haemolyticus culture with 104 4.8 circulation for 3 days, NB2 continuous supplementation with NB for 2 days and LPW1 = supplementation with LPW for 1 day Time to achieved complete reduction towards different 105 4.9 of influent flow rate Time to achieved complete reduction towards different of influent Cr(VI) concentration 107 4.10Profile of chromium concentration during Cr(VI) 108 4.11 reduction using seventh batches of Cr(VI) (B1–B7) at a flow rate of 3 mL/min and 25 mg/L Cr(VI)concentration. Profiles of abiotic reduction of LPW for all batches 109 NIVERŠITI PENDIDIKA studied (B1–B7). $0 = Cr(VI), (0)^* = Cr(VI):LPW, (0)^{**}$

UNIVERSITI PENDIDIKAN SE Cr(VI): LPW pH 7 NIVERSITI PENDIDIKAN SULTAN IDRIS

UNIV4.13TT PENDIDIK/Profile of total carbohydrate, COD, OD₆₀₀ and pH during IDRI 11 UNIVERSITIF Cr(VI) reduction of test reactor. DI = effluent after rinsed with deionised water, Ah3 = adapted A. haemolyticus culture with continuous circulation for 3 days, NB2 = supplementation with NB for 2 days, LPWif = initial reading for filtered LPW, LPWff = final reading for filtered LPW and B1-B7 = Cr(VI) of 25 mg/L for first batch to seventh batches 113 Formation of biofilm inside the reactor (a) before rinse 4.14 with sterile deionised water, (b) after immobilization with pure *A. haemolyticus* culture (4 days) and (c) after introduction of seventh batches of Cr(VI) at 25 mg/L (32 days) FESEM micrographs and EDX spectra of (a) control 114 4.15 reactor and (b) test reactor after supplementation with LPW (7 days reactor operation), while (c) control reactor and (d) test reactor after first batch tr eatment of Cr(VI) (8 days reactor operation) at magnification of 10, 000X. Pt peak is associated with platinum sputter coating

- SEM micrographs of (a) control reactor and (b) test 115 4.16 reactor after 61 days of reactor operation at magnification of 6400X
- Agarose gel electrophoresis of PCR-amplified product of 16S rDNA. M: 100 bp plus marker; C: Control sample; T: Test sample, 2 and 5: Volume of DNA used 116 4.17 (µL)
- Agarose gel electrophoresis of positive and negative colony PCR band. Numbers in red circle show the 117 4.18negative colony. M: 100 bp plus marker
- Agarose gel electrophoresis of purified PCR products. 118 4.19 M: 100 bp plus marker; (a): Control sample, C5; (b): Test sample, T5
- Agarose gel electrophoresis of RFLP bands of purified PCR products. M: 100 bp plus marker; (a): Control sample, C5 (5 clones with different RFLP patterns); (b): Test sample, T5 (8 clones with different RFLP patterns) 119 4.20

Phylogram shows phylogenetic relationships of selected 125 4.21 13 dominant patterns

UNIVERSITI PENDIDIKAN SULTAN IDRIS

UNIVERSITI PENDIDIKAN SULTAN IDRIS

XX

N IDRIS	UNIV 4.22 ITI PEN	 NDIDIK Wide scan lof XPS spectra for (a) SCB adapted A.IDF haemolyticus, (b) SCB in the present of 100 mg/L Cr(VI), (c) SCB adapted A. haemolyticus in the present of 100 mg/L Cr(VI), (d) SCB, (e) standard Cr(III) and (f) standard Cr(VI) 	RI 128	UNIVERSIT
	4.23	Narrow-resolution spectra collected from the Cr2p core region; (a) standard Cr(VI) and Cr(III) used and (b) Cr-loaded SCB and Cr-loaded SCB adapted <i>A. haemolyticus</i>	130	
	4.24	Narrow range of Cr2p spectra for (a) SCB in the present of 100 mg/L Cr(VI) and (b) SCB adapted A . <i>haemolyticus</i> in the present of 100 mg/L Cr(VI)	131	
	4.25	ESR spectra of standard Cr(III) and Cr(VI) at wide range for (a) solid and narrow range for (b) aqueous Cr(III) and (c) aqueous Cr(VI) at concentration of 100, 150, 300 and 500 mg/L	135	
	4.26	ESR spectra of (a) solid and (b) liquid samples	136	
	4.27	ESR spectra of (a) solid and (b) aqueous samples of Cr- loaded SCB-adapted <i>A. haemolyticus</i> at Cr(VI) concentration of 150, 300 and 500 mg/L	137	
	4.28	Bacterial attachments (a) in the pore and (b) at the surface of SCB	141	
	4.29	SEM micrograph and EDX spectra of (a) raw SCB, (b) <i>A. haemolyticus</i> cells grown on SCB, (c) SCB in the presence of 100 mg/L Cr(VI) and (d) <i>A. haemolyticus</i> cells grown on SCB in the presence of 100 mg/L Cr(VI) at magnification of 3000X	143	
	4.30	Proposed mechanism of Cr(VI) reduction (modified from Park et al., 2007)	144	

UNIVERSITI PENDIDIKAN SULTAN IDRIS

UNIVERSITI PENDIDIKAN SULTAN IDRIS N IDRIS UNIVERSITI PENDIDIKAN SULTAN I /ERSITI PENDIDIKAN SULTAN IDRIS UNI UNIVERSITI PENDIDIKAN SULTAN IDRIS

UNIVERSITI PENDID

xxi

LIST OF ABBREVIATIONS

	A. haemolyticus	-	Acinetobacter haemolyticus	
	AAS	-	Atomic Absorption Spectrophotometer	
	ADMI	-	American Dye Manufacturers Institute	
	АРНА	-	American Public Health Association	
	ARDRA	-	Amplified Ribosomal Deoxyribonucleic acid Restriction Analysis	
	ASTM	-	American Society for Testing and Materials	
	ATP	-	adenosine triphosphate	
	AW	-	agricultural wastes	
	BLASTn	- 1	Basic Local Alignment Search Tool	
	bp	-	base pairs	
	CFU	- L	colony forming unit	
	COD	4.1	chemical oxygen demand	
	Cr(III)	-	Chromium (III)	
	Cr(VI)	-	Chromium (VI)	
	DGGE	-	Denaturing Gradient Gel Electrophoresis	
	DNA	-	deoxyribonucleic acid	
	DNA	-	deoxyribonucleic acid	
	dNTP	26	deoxynucleoside triphosphate	
	DOE	-	Department of Environment	
	DPC	-	1,5–diphenylcarbazide	
	E. coli	-	Escherichia coli	
	EPR	-	Electronic Paramagnetic Resonance	
	ESR	-	Electron Spin Resonance	
	EXAFS	-	Extended X-Ray Absorption Fine Structure	
UNIVERSITI PENI FESEMEDX IN IDRIS			Field Emission Scanning Electron Microscope coupled TI PENDIDIKA	
ORIS	UNIVERSITI PENDIDIKAN S	ULTAN	with Energy Dispersive X–Ray IDRIS UNIVERSITI PENDIDIRAN SULTAN IDRIS UNIVERSITI PEN	

JNIVERSITI PENDIDIKAN SULTAN IDF

xxii

I IDRIS	univ frim i pendii	DIKAN SULI	A Forest Research Institute Malaysia AN SULTAN IDRIS	UNIVERSITI F
	FT–IR	-	Fourier Transform–Infra Red	
	ICP-MS	-	Inductively Coupled Plasma-Mass Spectrometer	
	id	-	inner diameter	
	LB	-	Luria–Bertani	
	LPW	-	liquid pineapple waste	
	NA	-	Nutrient agar	
	NADH		nicotinamide adenine dinucleotide	
	NB	82	Nutrient broth	
	NCBI	-	National Center for Biotechnology Information	
	OD	/ -	optical density	
	od	-	outer diameter	
	PCR	-	polymerase chain reaction	
	rDNA	-	ribosomal deoxyribonucleic acid	
	RFLP	-	Restriction Fragment Length Polymorphism	
	RNA	-	ribonucleic acid	
	rRNA		ribosomal ribonucleic acid	
	SBM	-	soybean meal	
	SCB	-	sugarcane bagasse	
	SPW		solid pineapple waste	
	TAE	-	tris-acetate-EDTA	
	TEM	-	Transmission Electron Microscope	
	T-RFLP	-	Terminal Restriction Fragment Length Polymorphism	
	v/v		volume per volume	
	w/v	425	weight per volume	
	XANES		Absorption Near–Edge Structure	
	XAS	-	X-Ray Absorption Spectroscope	
	XPS	-	X-Ray Photoelectron Spectroscope	

UNIVERSITI PENDIDIKAN SULTAN IDRISUNIVERSITI PENDIDIKAN SULTAN IDRISUNIVERSITI PENDIDIKADRISUNIVERSITI PENDIDIKAN SULTAN IDRISUNIVERSITI PENDIDIKAN SULTAN IDRISUNIVERSITI PENDIDIKAN SULTAN IDRIS

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI

xxiii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Blast results of dominant clones	172
В	GenBank database (Accession numbers: EF369508)	173
C	GenBank database (Accession numbers: KC295702 to KC295714)	174
D	FT–IR spectra	187
Е	List of publication (journal/article) and paper presentation	191

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS

a la competita de la competita

and Alfredge Receipt March Control

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN

CHAPTER 1

INTRODUCTION

1.1 Background of the problem

Chromium (Cr) contaminated wastewater can originate from a multitude of sources. Cr was employed in leather tanning, textile dyeing and wood preserving. Consequently, effluents may contain a wide range of concentrations of either Cr(VI) or Cr(III) or both. Conventional methods for removing chromates from effluents include ion exchange, electrochemical treatments and membrane technologies. Nevertheless, these methods are expensive due to their requirements for high energy or used large quantities of chemicals and may be ineffective for the lower concentrations. Therefore, a biological based system comprising of living cells and untreated agricultural wastes (AW) were used for the removal of Cr(VI) from industrial wastewater effluent. Bacterial biofilm formed during the immobilization and supplementation process was used as the agent to reduce Cr(VI) to Cr(III). A 'ChromeBacTM system' was developed and applied to solve the Cr problem in the industrial wastewater.

The high cost of culture growth medium is one of the problems faced in the scaling-up of biological processes involved in wastewater treatment. This makes it imperative to find a useful, cheap and easily available alternative source for culture growth medium (Ahmad *et al.*, 2009a). Advances in industrial biotechnology offer potential opportunities for economic utilization of agro–industrial residues.

Agricultural waste can replace glucose and other nutrient sources in the media. UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS Application of agro-industrial residues in bioprocesses on the one hand, provides UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS

1.2 Statement of the problem

This study is an extension of the previous study completed from the Cr(VI) reduction system i.e. ChromeBacTM. This system was developed at the laboratory and pilot-scale in Universiti Teknologi Malaysia (UTM), Skudai since 2005. ChromeBacTM is a novel and environmentally-friendly system to treat Cr(VI) bearing water consisting of bioreactor packed with sawdust-immobilized Cr(VI) resistant-reducing bacteria (*Acinetobacter haemolyticus*). This bacteria (*A. haemolyticus*, GenBank Accession No. EF369508) acts as the primary bacterium in the ensuing biofilm formed during the non-sterile Cr(VI) reduction process using real Cr(VI) containing industrial wastewaters. During the ChromeBacTM process, there are three important observations that need to be immediately addressed or explained.

Firstly, the issue of having liquid pineapple waste (LPW) as a nutrient. Even though, LPW acts as an excellent, cheap and abundant source of nutrients, it also contributes to the high COD content in the effluent before the post treatment step. Therefore, this study aims to look into the possibility of having other types of excellent, cheap and abundant source of nutrients (targeted from discharge of the agricultural industries).

Secondly, the effect of nutrient supplemented by LPW on the microbial community thriving on the biofilm formed. Previous research has reported on the formation of biofilm during the ChromeBac[™] process, and the isolation of bacterial species present has been attempted (Zakaria *et al.*, 2007a; Ahmad *et al.*, 2009b). However, the attempts were not successful due to the morphology based isolation procedure and the possible presence of uncultivable bacteria in the biofilm. Therefore, this study plans to apply other techniques such as culture–independent

UNIVERSITI PENDIDIKAN SULTAN IDRIS approach as suggested by other researchers (Wagner–Dobler *et al.*, 2000; Von UNIVERSITI PENDIDIKAN SULTAN IDRIS Canstein *et al.*, 2002).

Thirdly, the Cr(VI) reduction-resistance mechanisms of the bacteria, primarily *A. haemolyticus*. Previous research demonstrated that the Cr(VI) reduction-resistance mechanisms for the bacterium occur aerobically in the soluble protein fraction (Zakaria *et al.*, 2007b; Hsiao Pei *et al.*, 2009). However, the Cr(VI) reduction also proceeds in an anaerobic/semi-anaerobic environments which could be, due to the diversity of microbial species present, in the biofilm formed. This study plans to address this issue by studying the Cr(VI) reduction-resistance mechanisms of the bacteria isolated from the biofilm during the treatment process.

The study will be carried out in both batch and continuous modes. The feasibility of other AW as nutrient will be carried out in the batch mode, analysis on microbial community present in the biofilm will be conducted using continuous mode, while Cr(VI) reduction–resistance mechanisms of selected AW will be elucidated using batch mode.

1.3 Objectives of the study

The objectives of this work are:

- 1. To evaluate the Cr(VI) reduction-resistance of *A. haemolyticus* in the presence of selected agricultural waste as growth medium and support material.
- 2. To evaluate the effect of agricultural waste on the microbial community in the biofilm formed by using PCR and basic molecular techniques.
- 3. To analyze the Cr(VI) reduction–resistance mechanisms of *A. haemolyticus* isolated from the biofilm in the anaerobic/semi–anaerobic environment.

UMIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN