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ABSTRACT

The high cost of culture growth medium is one of the problems faced in the

scaling-up of biological processes involved in wastewater treatment. This makes it

imperative to find a useful, cheap and easily available alternative source for culture

growth medium. The possibility of using sugarcane bagasse (SCB), solid pineapple
waste (SPW) and soybean meal (SBM) as alternative sources for culture medium is

preferable as these agricultural wastes are easily available, cheap and abundantly
grown. The present work highlights the use of SCB, SPW and SBM to sustain the

bacterial population for the Cr(VI) reduction process. Growth of A. haemolyticus in

agricultural wastes was measured by optical density (00600) followed by viable cell

counts. Reduction of Cr(VI) was determined using diphenylcarbazide method. For

all Cr(VI) concentrations tested (10-100 mg/L), SCB-adapted A. haemolyticus
showed the highest reduction ranging from 92-99% followed by SPW and SBM

with 40-94% and 21-85% reduction respectively. From the FESEM-EOX analysis,
toxicity effect can be seen clearly from the shape of bacteria in the presence of 100

mg/L Cr(VI). The FT-IR analysis showed shifting of the C-O band absorption peak
from 1252-1261 ern" and 1048-1037 cm-I after Cr-Ioaded which was due to the

binding of Cr(VI) to this functional group. In this study, down-ward biofilm

packed-bed reactor was used. A minimum of 4 h was required for complete
reduction of Cr(VI) to Cr(III) at the flow rate of 3.0 mUmin using 25 mg/L initial

Cr(VI) concentration. Cr(Vl) reduction mechanism study using XPS and ESR

implies that the Cr bound to the SCB and SCB-adapted A. haemolyticus were mostly
in trivalent form. SCB can serve as an alternative and cost-effective growth medium

for cultivation of A. haemolyticus with high percent reduction of Cr(VI).
Phylogenetic analysis revealed that the microbial community was dominated by
Chitinophaga terrae, Laribacter hongkongens is, Ottowia thiooxydans, Rhizobium

cellulosilyticum, Candidate division OPIO, Pedobacter sp. and uncultured bacterium.
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ABSTRAK

Kos yang tinggi dalam penyediaan media untuk pertumbuhan bakteria adalah

salah satu masalah yang timbul dalam proses rawatan air sisa menggunakan kaedah

biologi pada skala besar. Maka adalah penting untuk mencari sumber alternatif yang
berguna, murah dan mudah didapati untuk pertumbuhan bakteria tersebut.

Penggunaan hampas tebu (SCB), sisa pepejal nenas (SPW) dan sisa kacang soya

(SBM) sebagai sumber alternatif adalah disarankan kerana ianya murah, mudah dan

banyak didapati. Kajian ini menekankan penggunaan SCB, SPW dan SBM untuk

mengekalkan populasi bakteria bagi proses penurunan Cr(VI). Pertumbuhan A.

haemolyticus dalam media sisa pertanian telah ditentukan berdasarkan nilai

kekeruhan bakteria (OD600) diikuti oleh pengiraan sel hidup. Penurunan kepekatan
Cr(VI) telah ditentukan menggunakan kaedah difenilkarbazida. Bagi semua

kepekatan logam kromium yang diuji (10-100 mg/L), bakteriaA. haemolyticus yang
telah menjalani penyesuaian di dalam SCB menunjukkan tahap penurunan yang

tertinggi (92-99%) diikuti dengan penyesuaian di dalam SPW (40-94%) dan SBM

(21-85%). Daripada analisis FESEM-EDX, kesan toksik dapat dilihat dengan jelas
melalui bentuk bakteria dengan kehadiran Cr(VI) berkepekatan 100 mg/L. Analisis
FT-IR pula telah menunjukkan anjakan jalur penyerapan C-O daripada 1252-1261

em" dan 1048-1037 cm-1 yang disebabkan oleh pembentukan ikatan antara Cr(VI)
dengan kumpulan berfungsi pada SCB. Dalam kajian ini, turus dengan aliran ke

bawah telah digunakan. Masa paling minimum diperlukan bagi melengkapkan
penurunan Cr(VI) kepada Cr(III) ialah 4 jam, pada kadar alir 3.0 mLimin dengan
kepekatan awal Cr(VI) sebanyak 25 mg/L. Mekanisma penurunan Cr(VI)
menggunakan XPS dan ESR membuktikan bahawa Cr terikat kepada SCB dan SCB

yang diadaptasi dengan A. haemolyticus kebanyakannya dalam bentuk trivalen. SCB

boleh dijadikan sebagai media pertumbuhan alternatif dengan kos yang efektif

kepada pertumbuhan bakteria A. haemolyticus dengan peratus penurunan Cr(VI)
yang tinggi. Analisis filogenetik menunjukkan bahawa komuniti mikrob telah

didominasi oleh Chitinophaga terrae, Laribacter hongkongensis, Ottowia

thiooxydans, Rhizobium cellulosilyticum, Candidate division OP10, Pedobacter sp.
dan bakteria yang tidak dikultur.
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CHAPTER 1

INTRODUCTION

1.1 Background of the problem

Chromium (Cr) contaminated wastewater can originate from a multitude of

sources. Cr was employed in leather tanning, textile dyeing and wood preserving.

Consequently, effluents may contain a wide range of concentrations of either Cr(VI)

or Cr(Ill) or both. Conventional methods for removing chromates from effluents

include ion exchange, electrochemical treatments and membrane technologies.

Nevertheless, these methods are expensive due to their requirements for high energy

or used large quantities of chemicals and may be ineffective for the lower

concentrations. Therefore, a biological based system comprising of living cells and

untreated agricultural wastes (AW) were used for the removal of Cr(VI) from

industrial wastewater effluent. Bacterial biofilm formed during the immobilization

and supplementation process was used as the agent to reduce Cr(VI) to Cr(Ill). A

'ChromeBac™ system' was developed and applied to solve the Cr problem in the

industrial wastewater.

The high cost of culture growth medium is one of the problems faced in the

scaling-up of biological processes involved in wastewater treatment. This makes it

imperative to fmd a useful, cheap and easily available alternative source for culture

growth medium (Ahmad et al., 2009a). Advances in industrial biotechnology offer

potential opportunities for economic utilization of agrc--industrial residues.

Agricultural waste can replace glucose and other nutrient sources in the media.

Application of agro-industrial residues in bioprocesses on the one hand, provides
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alternative substrates, and on the other hand helps in solving pollution problems,

which their disposal may otherwise cause.

1.2 Statement of the problem

This study is an extension of the previous study completed from the Cr(VI)

reduction system i.e. ChromeBac™. This system was developed at the laboratory

and pilot-scale in Universiti Teknologi Malaysia (UTM), Skudai since 2005.

ChromeBac™ is a novel and environmentally-friendly system to treat Cr(VI)

bearing water consisting of bioreactor packed with sawdust-immobilized Cr(VI)

resistant-reducing bacteria (Acinetobacter haemolyticus). This bacteria (A.

haemolyticus, GenBank Accession No. EF369508) acts as the primary bacterium in

the ensuing biofilm formed during the non-sterile Cr(VI) reduction process using

real Cr(VI) containing industrial wastewaters. During the ChromeBac™ process,

there are three important observations that need to be immediately addressed or

explained.

Firstly, the issue of having liquid pineapple waste (LPW) as a nutrient. Even

though, LPW acts as an excellent, cheap and abundant source of nutrients, it also

contributes to the high COD content in the effluent before the post treatment step.

Therefore, this study aims to look into the possibility of having other types of

excellent, cheap and abundant source of nutrients (targeted from discharge of the

agricultural industries).

Secondly, the effect of nutrient supplemented by LPW on the microbial

community thriving on the biofilm formed. Previous research has reported on the

formation ofbiofilm during the ChromeBac™process, and the isolation of bacterial

species present has been attempted (Zakaria et al., 2007a; Ahmad et al., 2009b).

However, the attempts were not successful due to the morphology based isolation

procedure and the possible presence of uncultivable bacteria in the biofilm.

Therefore, this study plans to apply other techniques such as culture-independent
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approach as suggested by other researchers (Wagner-Dobler et al., 2000; Von

Canstein et al., 2002).

Thirdly, the Cr(VI) reduction-resistance mechanisms of the bacteria,

primarily A. haemolyticus. Previous research demonstrated that the Cr(VI)

reduction-resistance mechanisms for the bacterium occur aerobically in the soluble

protein fraction (Zakaria et al., 2007b; Hsiao Pei et al., 2009). However, the Cr(VI)

reduction also proceeds in an anaerobic/semi-anaerobic environments which could

be, due to the diversity of microbial species present, in the biofilm formed. This

study plans to address this issue by studying the Cr(VI) reduction-resistance

mechanisms of the bacteria isolated from the biofilm during the treatment process.

The study will be carried out in both batch and continuous modes. The

feasibility of other AW as nutrient will be carried out in the batch mode, analysis on

microbial community present in the biofilm will be conducted using continuous

mode, while Cr(VI) reduction-resistance mechanisms of selected AW will be

elucidated using batch mode.

1.3 Objectives of the study

The objectives of this work are:

1. To evaluate the Cr(VI) reduction-resistance of A. haemolyticus in the

presence of selected agricultural waste as growth medium and support

material.

2. To evaluate the effect of agricultural waste on the microbial community in

the biofilm formed by using PCR and basic molecular techniques.

3. To analyze the Cr(VI) reduction-resistance mechanisms of A. haemolyticus

isolated from the biofilm in the anaerobic/semi-anaerobic environment.


