

O5-4506832 Spustaka.upsi.edu.my

SYNTHESIS OF MAGNESIUM LAYERED HYDROXIDE-3-(4-METHOXYPHENYL)PROPIONATE NANOCOMPOSITE FOR CONTROLLED RELEASE FORMULATION PROPERTIES

NOR SALEHA BINTI MISUAN

05-4506832 😵 pustaka.upsi.edu.my 👔 Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun

ptbupsi

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE (CHEMISTRY) (MASTER BY RESEARCH)

ptbupsi

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

ABSTRACT

aims to synthesise magnesium layered hydroxide-3-(4-This study methoxyphenyl)propionate (MLH-MPP) and coated nanocomposites for controlled release formulation of herbicide. Direct reaction method has been used to intercalate MPP into the space between layers of MLH. Further, carboxymethyl cellulose (CMC) and chitosan, was coated on the external surface of the MLH-MPP nanocomposite to form new materials, named MLH-MPP/CMC and MLH-MPP/chitosan nanocomposites, respectively. The physicochemical properties of all nanocomposites were characterised using powder x-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), carbon, hydrogen, nitrogen and sulphur (CHNS) analyser, inductive coupled plasma optical emission spectrometry (ICP-OES), thermogravimetric analysis and derivative thermogravimetry (TGA/DTG), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). Results of this study showed that the XRD pattern revealed an intense and sharp peak with basal spacing of 18.9 Å, which is proved that MPP anions were successfully intercalated into the space between layers of MLH in a monolayer arrangement. The XRD pattern for both coated nanocomposites indicates the adsorption of the polymer on the surface of MLH-MPP nanocomposite. TGA/DTG spectra have shown an increase in the thermal stability of the MPP anion in all nanocomposites. Both coated nanocomposites showed a slower 05-450 controlled release compared to the MLH-MPP nanocomposite and the release behaviours of MPP anion from all nanocomposites were controlled by the pseudo-second order kinetics. In conclusion, the MLH-MPP and coated nanocomposites have been successfully synthesised and can be used as a host for the controlled release formulations of herbicide. The implications from these results highlight the potential of the nanocomposite as encapsulation materials for controlled release formulations of herbicide in the agriculture sector.

05-4

v

332 pustaka.upsi.edu.my **F**^{Perpustakaan} Tuanku Bainun Sintesis Nanokomposit Lapisan Hidroksida Magnesium-3-(4-Metoksifenil) Propionat Dan Bersalut Untuk Formulasi Pelepasan Terkawal Herbisida

ABSTRAK

Kajian ini bertujuan mensintesis nanokomposit lapisan hidroksida magnesium-(LHM-MFP) dan bersalut untuk formulasi 3-(4-metoksifenil)propionat pelepasan terkawal herbisida. Kaedah tindak balas langsung telah digunakan untuk menginterkelasi MFP ke dalam ruang antara lapisan LHM. Selanjutnya, karboksimetil selulosa (KSS) dan kitosan, masing-masing telah disalut ke atas permukaan luar nanokomposit LHM-MFP untuk membentuk bahan baru, yang dinamakan nanokomposit LHM-MFP/KSS dan LHM-MFP/kitosan. Sifat untuk semua nanokomposit telah dicirikan menggunakan fisikokimia pembelauan serbuk sinar-x (PSSX), spektroskopi inframerah transformasi Fourier (IMTF), penganalisis karbon, hidrogen, nitrogen dan sulfur (KHNS), spektrometri pancaran optik plasma gandingan aruhan (SPO-PGA), analisis termogravimetri dan termogravimetri terbitan (ATG/TGT), mikroskop imbasan pancaran medan elektron (MIPME) dan mikroskop transmisi elektron (MTE). Keputusan kajian ini menunjukkan bahawa pola PSSX mendedahkan puncak yang jelas dan tajam dengan jarak dasar 18.9 Å, yang membuktikan bahawa anion MFP telah berjaya diinterkelasikan ke dalam ruang antara lapisan LHM dalam susunan monolapisan. Pola PSSX untuk kedua-dua nanokomposit bersalut menunjukkan terdapatnya penjerapan polimer pada permukaan nanokomposit LHM-MFP. Spektra ATG/TTG telah menunjukkan peningkatan dalam kestabilan terma bagi anion MFP dalam semua nanokomposit. Keduadua nanokomposit bersalut menunjukkan pelepasan terkawal yang lebih perlahan berbanding nanokomposit LHM-MFP dan tingkah laku pengeluaran anion MFP daripada semua nanokomposit dikawal oleh kinetik tertib pseudokedua. Kesimpulannya, nanokomposit MLH-MFP dan bersalut telah berjaya disintesiskan dan boleh digunakan sebagai perumah bagi formulasi pelepasan terkawal herbisida. Implikasi dapatan ini telah menyerlahkan lagi potensi nanokomposit sebagai bahan pengkapsulan untuk formulasi pelepasan terkawal bagi herbisida dalam sektor pertanian.

ptbupsi

	٠
* 7	-
- V	
- ¥	л

PustakaTBainun Dtbupsi

Page

C	05-4506832	Perpustakaa.upsi.edu.my TABLE OF:CONTENTalil Shah

DECLARATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
ABSTRAK	v
TABLE OF CONTENT	Vi
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xix

CHAPTER 1 INTRODUCTION

	1.1	Exploration of Nanotechnology	1
05-4506832	😯 p lu2 ak	a Nanomaterial Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	aTBainut optoupsi
		1.2.1 Nanomaterials for Agrochemicals	5
	1.3	Herbicides in Agriculture	7
		1.3.1 Herbicides, 3-(4- Methoxyphenyl)propionic acid	8
	1.4	Nanocomposite	10
		1.4.1 Layered Metal Hydroxide Nanocomposite	11
	1.5	Coating	13
	1.6	Controlled Release Formulation (CRF)	14
	1.7	Problem Statements	16
	1.8	Objectives of the Study	20

					vii
CHAPTER		RATUR	Perpustakaan Tuanku Bainun EREVIEW ^{IS} Sultan Abdul Jalil Shah	9 PustakaTBainun	ptbupsi
	2.1	Layered	Material	21	
	2.2	Layered	Double Hydroxide (LDH)	23	
		2.2.1	Historical Background	23	
		2.2.2	Structural and Chemical Composit	ion 26	
	2.3	Layered	Metal Hydroxide (LMH)	28	
		2.3.1	Structural and Chemical Composit	tion 28	
	2.4	Intercal	ation Reaction	30	
	2.5	Synthes	is of Layered Material Hydroxide	35	
		2.5.1	Coprecipitation Method	36	
		2.5.1.1	Coprecipitation Method for LDF	·I 37	
		2.5.1.2	Coprecipitation Method for LMI	H 39	
		2.5.2	Ion-exchange Method	39	
05-4506832	pustaka	a.u 2;5;3 u.m	Reconstruction/calcination Meth	100s ^p ustakaTBain41	ptbupsi
	2.6	Betwee	n the Layers	41	
		2.6.1	Characteristic of Anions	41	
		2.6.2	Orientation of the Anions	42	
		2.6.3	Water in Layered Material	44	
	2.7	Applica	ation of Layered Materials Hydrox	tide 44	
		2.7.1	Application of Layered Double Hydroxide	44	
		2.7.1.1	LDH as Drug Delivery System	44	
		2.7.1.2	LDH in Sensors Device	46	
		2.7.2	Application of Layered Metal Hydroxide	47	

05-4506832	yu:	staka.upsi.edu.m 2.7.2.1	Perpustakaan Tuanku Bainun VLMH iñ Sensor Devicealil Shah	PustakaTBair47	ptbupsi
		2.7.2.2	LMH as Sunscreen Formulation	n 48	
		2.7.2.3	LMH in Controlled Release Formulation	49	
	2.8	8 Herbicio	les and Mode of Actions	51	
	2.9	9 Applica	tion of Coating	53	
CHAPTER	.3 M	ETHODOL	OGY		
	3.	1 Introduc	tion	56	
	3.	2 Chemic	als	57	
	3.	3 Instrum	entation and Apparatus	58	
	3.	4 Synthes	is of Nanocomposites	58	
05-4506832	pus	3.4.1 staka.upsi.edu.m	Synthesis of Magnesium Laye Hydroxide-(3-(4-methoxypher propionate (MLH-MPP) of Shah Nanocomposite	red 59 hyl) PustakaTBainun	ptbupsi
		3.4.2	Synthesis of Magnesium Laye Hydroxide-(3-(4-methoxypher propionate /coating (MLH- MPP/coating) Nanocomposite	ared 59 nyl)	
	3.	5 Charact MPP/C Nanoco	erisation of MLH-MPP, MLH- MC and MLH-MPP/chitosan mposites	59	
		3.5.1	Powder X-ray Diffractometer	(PXRD) 61	
		3.5.2	Fourier Transform Spectrophotometer (FTIR)	Infrared 62	
		3.5.3	Carbon, Hydrogen, Nitro Sulphur (CHNS) Analyser	gen and 63	
		3.5.4	Inductively Coupled Plasm Emission Spectroscopy (ICP-	na-Optical 63 OES)	

05-4506832	pustaka	.upsi.edu.my 3.5.5	Thermogravimetric Analysis (TGA) PustakaTBa and Differential Thermogravimetric Analysis (DTG)	64	ptbupsi
		3.5.6	Field Emission Scanning Electron Microscope (FESEM)	65	
		3.5.7	Transmission Electron Microscope (TEM)	65	
		3.5.8	Ultraviolet Visible Spectrophotometer (UV/Vis)	66	
	3.6	Herbicid	e Release Study	66	
CHAPTER 4	RESU SYN7 NAN	JLTS AN FHESIS A OCOMP	D DISCUSSION AND CHARACTERISATION OF OSITES		
	4.1	Introduct	tion	68	
	4.2	Characte	risation of MLH-MPP Nanocomposite	69	
05-4506832	pustaka	4.2.1 .upsi.edu.my 4.2.2	Powder X-ray Diffraction (PXRD) Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Fourier Transform Infrared Spectroscopy (FTIR)	69 ^{ainun} 72	ptbupsi
		4.2.3	Spatial Orientation of MPP in the MLH	75	
			Interlayers		
		4.2.4	Elemental Analysis	76	
		4.2.5	Thermal Analysis	77	
		4.2.6	Morphology Analysis	80	
	4.3	Characte Nanocor	erisation of MLH-MPP/CMC nposite	81	
		4.3.1	Powder X-ray Diffraction (PXRD)	81	
		4.3.2	Fourier Transform Infrared	83	
			Spectroscopy (FTIR)		

٦	v	
4	η.	
4		

					Δ
05-4506832	pustaka	a.upsi.edu.m 4 .3.3	y Perpustakaan Tuanku Bainun Thermál Analysis ^{Abdul} Jalil Shah	^{air} 85	ptbupsi
		4.3.4	Morphology Analysis	87	
		4.3.5	Transmission Electron Microscopy Analysis	88	
	4.4	Character Nanocor	erisation of MLH-MPP/chitosan mposite	89	
		4.4.1	Powder X-ray Diffraction (PXRD)	89	
		4.4.2	Fourier Transform Infrared Spectroscopy (FTIR)	92	
		4.4.3	Thermal Analysis	94	
		4.4.4	Morphology Analysis	96	
		4.4.5	Transmission Electron Microscopy Analysis	97	

CHAPTER 5 RESULTS AND DISCUSSION

05-4506832	CON pustaka	upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Pustaka TE	Bainun 98	ptbupsi
	5.1	Introduction		
	5.2	Controlled Release Study of MPP from MLH- MPP Nanocomposite into Various Solution	100	
	5.3	Kinetic Study for the Controlled Release of MPP from MLH-MPP Nanocomposite into various Solutions	105	
	5.4	Effect of Binary and Ternary Solution System for Controlled Release Study of MPP from MLH-MPP Nanocomposite	112	
	5.5	Kinetic Study for the Controlled Release of MPP from MLH-MPP Nanocomposite into Binary and Ternary Solution System	116	
	5.6	Controlled Release Study of MPP from Interlayer of MLH-MPP/CMC and MLH- MPP/chitosan Nanocomposites into Various Solution	120	

C.

05-4506832	pustaka 5.7	Kinetic Study for the Controlled Release of MPP from Interlayer of MLH-MPP/CMC and MLH- MPP/chitosan Nanocomposites into Various Solution	^{TBai} l'25	ptbupsi
	5.8	Effect of Binary and Ternary Solution System for Controlled Release Study of MPP from Coated MLH-MPP/CMC and MLH- MPP/chitosan Nanocomposites	134	
	5.9	Kinetic Study for the Controlled Release of MPP from Interlayer MLH-MPP/CMC and MLH- MPP/chitosan Nanocomposites into Binary and Ternary Solution System	137	
CHAPTER	6 CON	CLUSION	146	
	Reco	mmendation	149	
REFERENCI	ES		150	
PUBLICATI	ON		167	
05-4506832	pustaka	.upsi.edu.my Ferpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah Verstaka	TBainun	ptbupsi

Page

PustakaTBainun

No. of Tab	ole	Page
2.1	The list of previous intercalated of anion into the interlayer of LDH	31
2.2	The list of previous intercalated of anion into the interlayer of LMH	33
2.3	The list of previous application of coating of active materials	54
3.1	List of chemicals	57
4.1	Fourier transform infrared spectra for MPP and MLH-MPP nanocomposite	74
4.2	Chemical composition of MgO and the MLH-MPP nanocomposite	77
4.3	TGA/DTG data of weight loss for MgO, MPP and MLH-MPP nanocomposite	80
4.4	TGA/DTG data of weight loss for CMC and MLH-MPP/CMC nanocomposite	87
05-45,5832	TGA/DTG data of weight loss for chitosan and MLH Pustaka TBainur MPP/chitosan nanocomposite	9 6 p
5.1	Correlation coefficients, rate constants and half-life $(t_{1/2})$ obtained from the data of MPP released from MLH-MPP nanocomposite into NaNO ₃ , Na ₂ SO ₄ and NaH ₂ PO ₄ solutions	112
5.2	Correlation coefficients, rate constants and half-life $(t_{1/2})$ obtained from the data of MPP released from MLH-MPP nanocomposite into binary and ternary solutions system	119
5.3	Percentage released (%) of MPP anion from MLH-MPP/CMC nanocomposite and MLH-MPP/chitosan nanocomposite interlayer into various solutions.	124
5.4	Correlation coefficients, rate constants and half-life $(t_{1/2})$ obtained from the data of MPP released from the interlayers of MLH-MPP/CMC nanocomposite into NaNO ₃ , Na ₂ SO ₄ and NaH ₂ PO ₄	132

pustaka.upsi.edu.my

Correlation coefficients, rate constants and half-life $(t_{1/2})$ obtained from the data of MPP released from MLH-133 5.5

05-4506832

05-4506832

pustaka.upsi.edu.my

PustakaTBainun

ptbupsi

- 5.6 Percentage release (%) of MPP anion from the interlayer of 136 MLH-MPP/CMC nanocomposite and MLH-MPP/chitosan nanocomposite into binary and ternary solutions system of nitrate, sulphate and phosphate
- 138 5.7 Correlation coefficients, rate constants and half-life $(t_{1/2})$ obtained from the data of MPP released from MLH-MPP/CMC nanocomposite into binary and ternary solutions system
- 139 5.8 Correlation coefficients, rate constants and half-life $(t_{1/2})$ obtained from the data of MPP released from MLH-MPP/chitosan nanocomposite into binary and ternary solutions system

05-4506832

05-4506832 😵 pustaka.upsi.edu.my 👔 Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

PustakaTBainun Dtbupsi

(05-4506832

pustaka.upsi.edu.my **F** Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

xiii

PustakaTBainun

ptbupsi

05-4506832 pustaka.upsi.edu.my Perpustakaan Tuanku Bainun LIST OF FIGURES^{ul Jalil Shah}

No. of Figure			
1.1	Molecular structure of 3-(4-methoxypenyl)propionic acid (MPP)	9	
1.2	Illustration of electron withdrawal from hydroxyl hydrogen and resonance delocalisation of carboxylate	10	
2.1	Feitknecht's idea, structure of Doppelschictstrukturen, (Cavani et al. 1991)	24	
2.2	General structure of an LDH showing the polymorphic stacking patterns: (a) rhomohedral, (b) hexagonal, (Khan & O'Hare, 2002)	25	
2.3	Schematic representation of the brucite structure. (a) Side and (b) top view of the layer, (Arizaga et al. 2007)	26	
2.4	Schematic representation of the LDH structure. (a) Side and (b) top view of the layer, (Arizaga et al. 2007)	27	
2.5	Structures of zinc hydroxide nitrate (a) side and (b) top view, (Arizaga et al. 2007)	29	
2.6	Schematic structure of a LDH intercalated by a (a) monolayer, (b)	43	
05-450683	and (c) bilayer of laurate and (c) tilted arranged of laurate (Gerds et 2al., 2012)staka.upsi.edu.my	ptbupsi	
3.1	Flow chart for the preparation steps of MLH-MPP nanocomposite	60	
3.2	Flow chart for the preparation steps of MLH-MPP/CMC and MLH-MPP/chitosan nanocomposites	61	
4.1	PXRD patterns of MgO, MPP and MLH-MPP nanocomposite at various concentrations of MPP, 0.25 M, 0.40 M and 0.60 M $$	70	
4.2	The FTIR spectra of MgO, MPP and the MLH-MPP nanocomposite	73	
4.3	The 3D molecular size of (a) 3-(4-methoxyphenyl) propionic acid, and (b) the proposed spatial orientation of MPP anions intercalated between the MLH interlayer for the formation of MLH-MPP nanocomposite	75	
4.4	TGA/DTG thermograms of (a) MgO (b) MPP and (c) MLH-MPP nanocomposite	78	
4.5	The FESEM micrograph of (a) MgO and (b) MLH-MPP nanocomposite, at 10k magnification	81	

C

)	05-450683 4.6	Perpustakaan Tuanku Bainun PXRD patterns of 1(a) MLH-MPP nanocomposite, 2(a) MgO. In the inset, PXRD patterns of 1(b) MLH-MPP/CMC nanocomposite, 2(b) MgO-CMC (MCM), 3(b) CMC.	82 ^{pt}
	4.7	The FTIR spectra of CMC and MLH-MPP/CMC nanocomposite	84
	4.8	TGA/DTG thermograms of (a) CMC and (b) MLH-MPP/CMC nanocomposite	86
	4.9	The FESEM micrograph of (a) CMC and (b) MLH-MPP/CMC nanocomposite at 10k magnification	88
	4.10	TEM micrograph of MLH-MPP/CMC nanocomposite at 300k magnification	89
	4.11	PXRD patterns of 1(a) MLH-MPP nanocomposite, 2(a) MgO. In the inset, PXRD patterns of 1(b) MLH-MPP/chitosan nanocomposite, 2(b) MgO-chitosan (MCH), 3(b) chitosan	90
	4.12	The FTIR spectra of chitosan and MLH-MPP/chitosan	93
	4.13	TGA/DTG thermograms of (a) chitosan and (b) MLH-MPP/chitosan nanocomposite	95
	4.14	The FESEM micrograph of (a) chitosan and (b) MLH-MPP/chitosan	97
)	05-450683	nanocomposite at 10k magnification Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah	pt
	4.15	TEM micrograph of MLH-MPP/chitosan nanocomposite at 300k magnification	97
	5.1	Release profile of MPP from the interlamellae of the MLH-MPP nanocomposite into solutions containing various concentrations of NaNO ₃	100
	6.0	D 1	102

- 5.2 Release profile of MPP from the interlamellae of the MLH-MPP 102 nanocomposite into solutions containing various concentrations of Na₂SO₄
- 5.3 Release profile of MPP from the interlamellae of the MLH-MPP 103 nanocomposite into solutions containing various concentrations of NaH₂PO₄
- 5.4 Fitting of the data of MPP released from MLH-MPP nanocomposite 109 into solution containing various concentration of NaNO₃; 5.0x10⁻⁶ M (turquoise), 1.0x10⁻⁵ M (black) and 8.0x10⁻⁴ M (blue) to the (a) zeroth, (b) first, (c) pseudo-second order, (d) parabolic diffusion and (e) Fickian diffusion models

f

xvi

120

5.5 Fitting of the data of MPP released from MLH-MPP nanocomposite into solution containing various concentration of Na₂SO₄; 5.0x10⁻⁶ M (turquoise), 1.0x10⁻⁵ M (black) and 8.0x10⁻⁴ M (blue) to the (a) zeroth, (b) first, (c) pseudo-second order, (d) parabolic diffusion and (e) Fickian diffusion models

- 5.6 Fitting of the data of MPP released from MLH-MPP nanocomposite 111 into solution containing various concentration of NaH₂PO₄; 5.0x10⁻⁶ M (turquoise), 1.0x10⁻⁵ M (black) and 8.0x10⁻⁴ M (blue) to the (a) zeroth, (b) first, (c) pseudo-second order, (d) parabolic diffusion and (e) Fickian diffusion models
- 5.7 Release profile of MPP from the interlamellae of the MLH-MPP 114 nanocomposite into binary and ternary solutions system of nitrate, sulphate and dihydrogen phosphate
- 5.8 Fitting of the data of MPP released from MLH-MPP nanocomposite 117 into binary solution of NaNO₃ and NaH₂PO₄ (blue), NaNO₃ and Na₂SO₄ (black) and NaH₂PO₄ and Na₂SO₄ (turquoise) to the (a) zeroth, (b) first, (c) pseudo-second order, (d) parabolic diffusion and (e) Fickian diffusion models
- 5.9 Fitting of the data of MPP released from MLH-MPP nanocomposite 118 into ternary solution of NaNO₃,Na₂SO₄ and NaH₂PO₄ to the (a) zeroth, (b) first, (c) pseudo-second order, (d) parabolic diffusion and (e) Fickian diffusion models
 D5-4506832 Pustaka.upsi.edu.my Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah
- 05-4506832 pustaka.upsi.edu.my Ferpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah
 5.10 Release profile of MPP from the interlamellae of the MLH-MPP/CMC and MLH-MPP/chitosan nanocomposites into solutions containing various concentrations of NaNO₃
- 5.11 Release profile of MPP from the interlamellae of the MLH-MPP/CMC and MLH-MPP/chitosan nanocomposites into solutions containing various concentrations of Na₂SO₄
- 5.12 Release profile of MPP from the interlamellae of the MLH-MPP/CMC and MLH-MPP/chitosan nanocomposites into solutions containing various concentrations of NaH₂PO₄
- 5.13 Fitting of the data of MPP released from MLH-MPP/CMC 126 nanocomposite into aqueous solution containing various concentration of NaNO₃; $5.0x10^{-6}$ M (turqoise), $1.0x10^{-5}$ M (black) and $8.0x10^{-4}$ M (blue) to the (a) zeroth, (b) first, (c) pseudo-second order, (d) parabolic diffusion and (e) Fickian diffusion models
- 5.14 Fitting of the data of MPP released from MLH-MPP/CMC 127 nanocomposite into aqueous solution containing various concentration of Na_2SO_4 ; $5.0x10^{-6}$ M (turquoise), $1.0x10^{-5}$ M (black) and $8.0x10^{-4}$ M (blue) to the (a) zeroth, (b) first, (c) pseudo-second

110^{ptbupsi}

order, (d) parabolic diffusion and (e) Fickian diffusion models

- 5.15 Fitting of the data of MPP released from MLH-MPP/CMC 128 nanocomposite into aqueous solution containing various concentration of NaH₂PO₄; 5.0×10^{-6} M (turquoise), 1.0×10^{-5} M (black) and 8.0×10^{-4} M (blue) to the (a) zeroth, (b) first, (c) pseudo-second order, (d) parabolic diffusion and (e) Fickian diffusion models
- 5.16 Fitting of the data of MPP released from MLH-MPP/chitosan 129 nanocomposite into solution containing various concentration of NaNO₃; 5.0x10⁻⁶ M (turqoise), 1.0x10⁻⁵ M (black) and 8.0x10⁻⁴ M (blue) to the (a) zeroth, (b) first, (c) pseudo-second order, (d) parabolic diffusion and (e) Fickian diffusion models
- 5.17 Fitting of the data of MPP released from MLH-MPP/chitosan 130 nanocomposite into solution containing various concentration of Na_2SO_4 ; $5.0x10^{-6}$ M (turqoise), $1.0x10^{-5}$ M (black) and $8.0x10^{-4}$ M (blue) to the (a) zeroth, (b) first, (c) pseudo-second order, (d) parabolic diffusion and (e) Fickian diffusion models
- 5.18 Fitting of the data of MPP released from MLH-MPP/chitosan 131 nanocomposite into solution containing various concentration of NaH₂PO₄; 5.0x10⁻⁶ M (turqoise), 1.0x10⁻⁵ M (black) and 8.0x10⁻⁴ M (blue) to the (a) zeroth, (b) first, (c) pseudo-second order, (d) parabolic diffusion and (e) Fickian diffusion models
 05-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shab
- 05-4506832 pustaka.upsi.edu.my f Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah
 5.19 Release profile of MPP from the interlamellae of the MLH-MPP/CMC and MLH-MPP/chitosan nanocomposites into binary and ternary solutions system of nitrate, sulphate and phosphate
- 5.20 Fitting of the data of MPP released from MLH-MPP/CMC 140 nanocomposite into binary solution of NaNO₃ and NaH₂PO₄ (blue), NaNO₃ and Na₂SO₄ (black) and NaH₂PO₄ and Na₂SO₄ (turquoise) to the (a) zeroth, (b) first, (c) pseudo-second order, (d) parabolic diffusion and (e) Fickian diffusion models
- 5.21 Fitting of the data of MPP released from MLH-MPP/CMC 141 nanocomposite into ternary solution of NaNO₃, Na₂SO4 and NaH₂PO₄ to the (a) zeroth, (b) first, (c) pseudo-second order, (d) parabolic diffusion and (e) Fickian diffusion models
- 5.22 Fitting of the data of MPP released from MLH-MPP/chitosan 142 nanocomposite into binary solution of NaNO₃ and NaH₂PO₄ (blue), NaNO₃ and Na₂SO₄ (black) and NaH₂PO₄ and Na₂SO₄ (turquoise) to the (a) zeroth, (b) first, (c) pseudo-second order, (d) parabolic diffusion and (e) Fickian diffusion models

135

xviii

05-4506832 Spustaka.upsi.edu.my

PustakaTBainun O ptbupsi

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

05-450683	32 😯 pustaka.ups	i.edu.my LIST OF ABBREVIATIONS ^{Chah}	PustakaTBainun	ptbupsi
Al ³⁺		Aluminium ion		
Со		Cobalt		
Cr		Chromium		
CRF		Controlled release formulation		
CFX		Ciprofloxacin		
CHN	S	Carbon, hydrogen, nitrogen, sulphur		
СМС	×	Carboxymethyl cellulose		
CM-o	chit	Carboxymethyl-chitosan		
CNT	S	Carbon nanotubes		
COD)	Chemical oxygen demand		
CPPA	A	2-(3-chlorophenoxy)propionate		
DEX		Dextran		
05 DPB	🗙 🔇 pustaka.ups	4-(2,4-dichlorophenoxybutyrate)	PustakaTBainun	ptbupsi
DRS		Diffuse reflectance spectra		
FTIR	Ł	Fourier transform infrared		
FESI	EM	Field emission scanning electron mi	croscope	
H-be	ent	Bentonite		
HDS	}	Hydroxide double salt		
ICP-	OES	Inductively coupled plasma/optical	emission spectrome	eter
LDH	[Layered double hydroxide		
LHS		Layered hydroxide salts		
LMF	4	Layered metal hydroxide		
MgC	CO_3	Magnesium carbonate		

xix

© 05-4506832 MLH	pustaka.upsi.	edu.my Perpustakaan Tuanku Bainun Magnesium layered hydroxide Shah	PustakaTBainun	ptbupsi
MoS_2		Molybdenite		
MPP		3-(4-methoxyphenyl)propionic acid		
NaNO ₃		Sodium nitrate		
NH ₃ -N		Ammonia-nitrogen		
N ₂ O		Nitrous oxide		
NPK		Nitrogen, phosphorus and potassium	1	
n-TiO ₂		Nano-size titanium oxide		
NZA		Zinc hydroxyl acetate		
PASA		Para-amino salicylic acid		
pCA		P-coumaric acid		
PEG		Poly(ethylene)glycol		
PVA		Polyvinyl alcohol		
🕓 05 PXRÐ	pustaka.upsi.	Powder X-ray diffraction Juanku Bainun	PustakaTBainun	ptbupsi
SWCNT	- -	Single-walled carbon nanotube		
TB		Tuberculosis		
UV		Ultraviolet		
UV/Vis		Ultraviolet visible		
ZBS		Zinc basic salt		
ZCA		Zinc copper hydroxyl acetate		
ZHN		Zinc hydroxide nitrate		
ZLH-CH	PPA	Zinc layered hydroxide-2-(3-chloro	phhenoxy)propiona	te
ZLH-M	PP	Zinc layered hydroxide-3-(4-metho:	xyphenyl)propionat	e

XX

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

CHAPTER 1

f

INTRODUCTION

1:1-4506 Exploration of Nanotechnology ampus Sultan Abdul Jalil Shah

9 PustakaTBainun

Nanotechnology has grown tremendously in the past few years and the application of nanotechnology has developed flourishly. A stained glass window is one of the example applications of nanotechnology. Stained glass windows that are found in medieval churches contain different sizes of gold nanoparticles. The specific size of the particles created orange, purple, red or greenish colour to the glass. Stained glass windows can also be found in Sultan Abdul Samad Mosque or KLIA mosque. In the biomedical field, application of nanotechnology can be seen in tissue engineering scaffolds, drug delivery and cosmetics (Schulte, 2005). Tissue engineering scaffolds is a synthetic biodegradable tissue that provides temporary templates for cell seeding, invasion, proliferation and differentiation, resulting in regeneration of biologically

05-4506832 😵 pustaka.upsi.edu.my F Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

There are a number of definitions used to explain nanotechnology. Roco, Mirkin and Hersam (2011), stated that nanotechnology is the control and restructuring of matter at the nanoscale, at the atomic and molecular levels in the size range of about 1-100 nm. Ramsden (2011), also defined nanotechnology as the application of scientific knowledge to measure, create, pattern, manipulate, utilize or incorporate materials and components in the nanoscale. As mentioned before, definitions of nanotechnology vary, but it generally refers to understand and manipulate of matter on the nanoscale, from 1 nm to 100 nm (Zhu, Bartos & Porro, 2004). The ability to Control the size of matter is important in order to create materials, devices and pubuesi systems with new properties and wide functions.

Nanotechnology has entered one of the most promising scientific fields of research for decades. This is due to the nanotechnology deals with the production, processing and application of materials with sizes less than 100 nm, the reduction in size of matter to nanoscale range will increase to surface-to-volume ratio. Thus, improved the properties of materials (Neethirajan & Jayas, 2010). For example, discovery on silicon chips by nanotechnology for two decades has led to the rise of advances in electronics, computing and communications. Silicon chip is electronics equipment consisting of a small crystal of a silicon semiconductor fabricated to carry out a number of electronic functions in an integrated circuit. The advancement created

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

2

a better application like speed, accuracy for nowadays computers and transforms it provide for nowadays computers and transforms it from room-sized devices to the portable sized.

The European Technology Platform (ETP) group has defined nanomedicine as the application of nanotechnology to achieve breakthroughs in healthcare. Nanotechnology and nanomedicine are rapidly growing fields that encompass the creation of materials and devices at atomic, molecular and supramolecular level, for potential clinical use. Advances in nanotechnology have brought us closer to the development of dual and multi-functional nanoparticles that challenge the traditional distinction between diagnostic and treatment agents. Nanomedicine consists of several sub domains including diagnostics and imaging, drug delivery, and regenerative medicine (Adlakha-Hutcheon et al., 2009). In January 2005, nanotechnology-based drug called Abraxane was approved, and it is used in the battle against breast cancer (Criswell, 2007). Nanomedicine is dominated by nanoparticle drug delivery systems due to their ability to cross biological barriers, accumulate at tumour sites and increase the solubility of drugs.

Malaysia's goal known as *Wawasan 2020* is to become an industrialised and developed nation by the year 2020. There are nine key points of *Wawasan 2020* and one of them is, to establish a progressive and inventive in science and society. Thus, Malaysians are encouraged to be contributors to the scientific and technological civilisation and not only consumers of technology. Therefore, the exploration in nanotechnology will pave the way of Malaysia to achieve this *Wawasan 2020*.

3

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

🍠 PustakaTBainun

4

The term use of nanotechnology and nanomaterials are often misleading (Bawa, Audette & Rubinstein, 2016). Nanotechnology referred to the technology used, while nanomaterials referred to chemical substances or materials that are used at the nanoscale. Nanomaterials are materials that have structural components smaller than 100 nm in at least one dimension (Khot, Sankaran, Maja, Ehsani & Schuster, 2012).

1.2 Nanomaterial

Nanomaterials are implicated in several domains such as chemistry, electronics, high-density magnetic recording media, sensors, biotechnology and many more. The applications of nanomaterials are very wide due to their excellent and unique optical, electrical, magnetic, catalytic, biological or mechanical properties. Those properties are originated from finely tuned nanoarchitectures and nanostructures of these materials (Capek, 2006). The syntheses of nanomaterials are achieved mainly through two approaches identified as top-down and bottom-up approach. The top-down approach involves breaking down the bulk size of the materials to the nanometer scale, while the bottom-up approach refers to the approach that builds a material up from the bottom. Attrition or milling is a typical top-down method in making nanoparticles whereas the colloidal dispersion is a good example of bottom-up method (Cao & Wang, 2011).

Several researches were carried out on the risk faced by the environmental, health harms and industrial. Thus, nanomaterials give solution for the arising risk. Earlier in 1900, carbon black was discovered as a nanomaterial that is used in car tyre to increase the life of the tyre and provide the black colour. Nanomaterials can also be

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

05-4506832 ustaka.upsi.edu.my Perpustakaan Tuanku Bainun PustakaTBainun used in the treatment of wastewater. Wäter is atthe most sessential substance for all living life. As mention before, nanomaterials often possess novel size-dependent properties different from their large counterparts. In the treatment of wastewater utilise the smoothly scalable size-dependent surface area, such as fast dissolution, high reactivity, strong sorption and superparamagnetism (Qu, Alvarez & Li, 2013). Nano-absorbents can be integrated into existing treatment processes in slurry reactors or adsorbers. These nano-adsorbents can be highly efficient since all surfaces of the adsorbents are utilised and the mixing greatly facilitates the mass transfer. The example of nano-adsorbents is carbon based nano-adsorbents, like carbon nanotubes (CNTs) which is used in organic and heavy metal removal (Pan & Xing, 2008). It is clear that nowadays, nanotechnology and nanomaterials have received a great deal of interest in the various research areas. Thus, nanomaterials soon will be recognised in commercial market.

05-4506832 votaka.upsi.edu.my

5

Nanomaterials for Agrochemicals 1.2.1

The development of nanotechnology collaborates with biotechnology has significantly expanded the application of nanomaterials in various fields. The application of nanotechnology in agriculture normally focused on the significance of the nanomaterials in order to improve the efficiency and productivity. There are some studies that have been done on the function of nanomaterials towards plant germination and growth. The effect of nano-size titanium oxide (n-TiO₂) on the germination of tomato, onion and radish seeds had been carried out and the germination of tomato seed showed the most positive outcomes. The positive results

pustaka.upsi.edu.my **f** Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shah

are involved with two main reasons which are, the nano size of TiO_2 and a great contact area between this nanomaterials with the root and testa. The acceleration of seed germination that caused by n-TiO₂ depends on the species, surface structure of testa, timing and method of application of n-TiO₂ (Haghighi & Silva, 2014b). Carbon nanotubes (CNTs) can be applied to change the morphology and physiology characteristics of plant cells. Haghighi and Silva (2014a) carried out a research on the effect of CNT on the seed germination and seeding growth of tomato, onion, radish and cabbage. From the previous research, it showed that CNTs had a greater positive impact on germination percentage and seedling length of anion compared to other crops.

Nanomaterials also help in plant protection and production. Pesticides are used to protect plant from pests. Nanopesticides can be used to increase the pesticidal properties, thus give a huge impact to the production plants. There are dots of researches on nanopesticides carried out nowadays, for examples the nanopesticide with photocatalysis (Jianhui, Kelong, Yuelong & Suqin, 2005), nanoencapsulation of imidacloprid with chitosan and alginate (Guan, Chi, Yu & Li, 2010) and the controlled delivery system of water-soluble pesticide validamycin (Liu et al., 2006). This is due to the useful properties of nanopesticides itself. Nanopesticides has a higher stiffness, permeability, crystallinity, thermal stability, solubility and biodegradability (Bouwmeester et al., 2009). In addition, nanomaterial can also be applied in agricultural as a pesticide residue detectors and plant pathogen detectors (Khot et al., 2012).

Perpustakaan Tuanku Bainun Kampus Sultan Abdul Jalil Shal

